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Abstract-A unified framework for coupled elastoplastic and damage theories is developed. A 
rigorous thermodynamic procedure is followed that is sufficiently general to include anisotropic 
plasticity and anisotropic damage formulations. The concept of effective stress is the critical mech- 
anism for coupling these theories. Yield and damage functions, constructed of homogeneous 
functions of degree one, are shown to satisfy thermodynamic restrictions. The principle of maximum 
entropy provides the evolutionary relations, the loading and unloading conditions, and the convexity 
of the undamaging elastic domain. The plastic and damage variables evolve normal to their respective 
surfaces which for plasticity corresponds to an associative flow for plastic strain. This general 
framework is shown to be sufficiently general to encompass several popular theories for plasticity 
and damage. Limitations of some existing damage theories are discussed. The performance of two 
specific coupled formulations are illustrated by replicating the experimental behavior of an alumi- 
num alloy. 

I. INTRODUCTION 

The ever increasing need to advance the performance and the understanding of material 
response has increased the emphasis on the proper modeling of inelastic constitutive 
behavior. The two most popular classes of inelastic material constitutive theories are 
elastoplasticity and continuum damage mechanics (CDM). These theories have traditionally 
been used to represent completely different physical phenomena. The theory of plasticity 
attempts to replicate the dislocation or “slip” of the material at the micro-scale or sub-scale. 
In contrast, CDM is concerned with the evolution and effective continuum representation of 
a material with distributed microdefects (microcracks and microvoids). Theories of CDM 
are generally either based on a micromechanical or a phenomenological approach. The 
micromechanical technique employs basic mechanics principles, such as well-posed bound- 
ary value problems and fracture mechanics on the microscopic scale, to describe the macro 
behavior. In contrast, the phenomenological theories involve a set of internal variables 
motivated by experimental observations and then the principles of irreversible thermo- 
dynamics are employed. Krajcinovic (1989) has compiled a rather comprehensive review 
of CDM. In general, materials can exhibit both the damage and the dislocation (plasticity) 
behavior. The existence of both phenomena has motivated several researchers to couple 
these theories to form a general description (Simo and Ju, 1987 ; Chow and Wang, 1987a ; 
Yazdani and Schreyer, 1990 ; Ju, 1989 ; Stevens and Liu, 1992 ; and Yazdani and Karnawat, 
1992). 

In this paper a thermodynamic framework for a coupled elastoplastic and damage 
model is developed. An outline of the remaining content of this paper is as follows. In 
Section 2, some basic thermodynamic concepts and relations are reviewed, prior to the 
development of the thermodynamic framework. Then the thermodynamic variables and 
conjugate relations are introduced, followed by the postulated form of the Helmholtz free 
energy. The concepts of effective stress and effective strain are presented which leads to the 
introduction of a yield function based in effective-stress space. Both the yield and the 
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damage functions are required to be constructed of homogeneous functions of degree one. 
The principle of maximum entropy is used to determine the evolutionary relation for the 
variables. This principle also guarantees that the undamaging elastic domain is convex. The 
second law of thermodynamics is shown to be satisfied by all constitutive relations that are 
compatible with this framework. 

In Section 3, some specific models are cast into the general framework. For plasticity 
the general class of J2 plasticity is considered. Various forms of hardening are allowed. For 
the damage portion of the formulation. three popular methods of phenomenologically 
based damage representation are considered ; in particular a scalar, a second-order tensor, 
and a fourth-order tensor are used to represent the degraded state of the material. The 
limitations of each of these damage models are discussed. The utility of the developed 
framework becomes most evident by considering the coupled models. Since the individual 
models were developed within the established requirements, the coupled formulation is 
constructed by simply combining models. 

Finally in Section 4, two of the coupled formulations introduced in Section 3 are 
applied to an aluminum alloy. The anisotropic formulations correlate well with the exper- 
imental results from three independent researchers for uniaxial tension. The scalar isotropic 
model is shown to be deficient in representing the damage induced change in the Poisson’s 
ratio. The concept of using a coupled model to represent the temperature dependent ductile- 
to-brittle transition is also introduced. The simulations replicate the general trends observed 
in many materials. 

2. GENERAL THERMODYNAMIC FRAMEWORK 

In this section, a general framework for coupled elastoplasticity and damage for- 
mulations is developed following a rigorous thermodynamics approach. This framework 
follows an irreversible thermodynamic approach using internal variables. The development 
is preceded by a review of some basic continuum thermodynamic relations. 

2. I. Continuum thermodynamics 
The thermodynamic relations presented in this section follow the widely accepted 

approach of internal variable representations given by Coleman and Gurtin (1967) and 
further elaborated by Lubliner (1972). The restrictive assumptions used in this work are 
(1) a purely mechanical theory (no internal heat generation sources and heat fluxes) and 
(2) infinitesimal deformations. The latter restriction allows for an additive decomposition 
of the strain tensor, e, into elastic and plastic components, that is E = se+sP. Many of the 
presented results are either directly applicable or may be generalized to finite deformations. 

The internal energy per unit mass, U, at a local continuum point, x, depends on a set 
of the internal thermodynamic state variables at x. In functional form, the internal energy 
potential is : 

u = 4-T s(x), E(X), W)l, (1) 

where s is the entropy per unit mass and vi is a set of mechanical variables or substates used 
to model the irreversible or dissipative processes. The explicit notation of dependence on 
location x is dropped but this dependency is implied throughout the remaining text. The 
second law of thermodynamics is expressed by a form of the Clausius-Duhem inequality : 

pes 2 pti(s, 8, Vi) -u : i: (2) 

where p is the density, 8 is the absolute temperature, and u is the Cauchystress tensor. The 
substitution of eqn (1) into (2), yields : 
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P (e- fl&+ (a-p~):~-p~~i 3 0. (3) 

We exploit the fact that this inequality must hold for all admissible processes. Since j: and 
it are arbitrary, their coefficients must vanish, resulting in two consequences. The absolute 
temperature, 8, is the the~odynamic variable or force conjugate to the entropy and the 
stress tensor, 6, is the thermodynamic force conjugate to the strain tensor, that is : 

(&au 824 

as ’ a=p3i’ (41 

A thermodynamic variable conjugate to an extensive parameter, such as strain, is often 
called a thermodynamic force and the time rate of change of the extensive parameter (strain 
rate) is termed a flux. The final term in eqn (3) is often defined as the dissipation rate, due 
to the association with the dissipative variables, vi. The dissipation rate is defined to be the 
following : 

au 
I-E -p7&tii. 

Then the second law reduces to : 

r >, 0. (6) 

The Helmholtz free energy is a thermodynamic potential given by a “contact” or 
Legendre transformation (Callen, 1985) of the internal energy using the conjugate pair (s, 
0). The Helmholtz function is : 

Y = U(S, &q Vi) - 8s. (7) 

By taking the total derivative, the following functional dependency is illustrated : 

d\Y=du-d(es)=~ds+~~de+~dvi-8ds-sd0=~da+~dvi-sde. (8) 
I I 

Therefore. 

Y = ul(e, 8, Vi). (9) 

Hence, the internai energy is a thermodynamic potential for entropy and the mechanical 
variables and the Helmholtz function is a potential for temperature and the mechanical 
variables. Natural choices for isentropic and isothermal processes are the internal and the 
Helmholtz potentials, respectively. 

For purely mechanical theories the first law of thermodynamics or balance of energy 
yields : 

pti=a:i: 

pes = r. (10) 

2.2. Coupled ~~as~o~~~~i~i~y and damag~~o~rn~~a~ions 
The coupled elastoplastic and damage framework is developed in this section. First 

the internal variables and potentials used to describe the processes are introduced. The 
concept of transformation or mapping to effective-stress and effective-strain spaces is 
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introduced. General forms for damage functions and yield functions based in effective- 
stress space are constructed using homogeneous functions of degree one. Then with the 
use of the Lagrange minimization method and the principle of maximum entropy, the 
evolutionary relations are derived. In addition, the convexity of the undamaged elastic 

domain is shown and the consistency conditions are determined. The satisfaction of the first 

and second laws is demonstrated. Finally, some specific forms of homogeneous functions of 

degree one are presented. 

2.2.1. Thermodynumic zwiuhles untl potmtiuls. An isothermal process is assumed. 

Since the plasticity and the damage processes are irreversible, they are by definition dissi- 
pative. The excess energy is dissipated in the form of heat. The local generation of heat, 

which for heterogeneous deformation fields results in a flow of heat, is a direct violation of 
the stated isothermal assumption. A general formulation, including heat flow and tem- 

perature dependent properties, is more complicated. The isothermal assumption is a reason- 
able approximation when the amount of heat generated is relatively small, or when a 

process occurs rapidly and the material parameters are relatively insensitive to changes in 

temperature. 
To describe the irreversibility associated with the plastic and the damaging processes, 

a set of variables is introduced. For plasticity, let E’ be the plastic-strain tensor and introduce 

two second-order tensor variables in strain space that will be used to describe the plastic 

hardening phenomena. Let &‘be the hardening variable that describes the shift in the center 
of the yield surface (a kinematic type hardening) and C” be the hardening variable that 

describes the shape and size of the yield surface (such as isotropic hardening). For the 
damage process, introduce a generalized damage tensor, D, that is some measure of degra- 
dation of the material integrity. At this time the rank of the tensors associated with damage 
will remain unspecified to allow the following framework to be applicable to a large class 
of damage theories. Let D” be the damaging variable which describes the shift in the center 

of the damage surface and that is of the same tensor order as D. Furthermore, let DH be 
the damaging variable that describes the shape and size of the damage surface. The final 

assumption is that of rate independence. With these definitions and assumptions, the 
functional form of the Helmholtz free energy is : 

The conjugate thermodynamic forces are defined by : 

The internal energy takes the following form according to eqn (7) : 

pu(s, E, 8, .Y’, E”, D, D”, D”) = ,o’P(E, E’, r’, gH, D, D”, D”) + p0.s. 

The Helmholtz free energy is postulated to be separable as follows : 

pY(e, E’, E’, d’, D, DS, DN) = W(E, E’, D) + H(8, eH, DS, DH) + G,(D), 

where the stored or elastic energy function is defined to be : 

(12) 

(13) 

(14) 
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W(E, E”, D) = 4 (E - sP) : E(D) : (E-E’). (15) 

The exact form of the damage stiffness tensor, E(D), depends on the specific damage 
representation theory employed, several of which are presented in later sections. The fourth- 
order stiffness tensor is initially denoted by E” in the undamaged state. The term H(eS, 8, 
D”, DH) is the contribution of the hardening and damaging variables to the Helmholtz 
potential. This is an unspecified function that will be resolved later by postulating consti- 
tutive relations for these variables. 

If the constitutive relations for the hardening and damaging variables are strict func- 
tions of their conjugate pair, for example CT~ = aS(eS), then from eqns (12) and (14) : 

: dsS+ 
s 

aH(sH) : dsH + 
s 

Y ‘(DS) : dD” 

+ 
s 

YH(D”): dD”. (16) 

The final contribution to the Helmholtz potential is the surface energy term, G,(D). 
Damage, or the generation and propagation of microdefects in the material, causes micro- 
cracks and microsurfaces to grow. A fundamental thermodynamic principle, used in Griffith 
crack theory, for example, states that the increase in the size of material surfaces corresponds 
to an increase in the material surface energy; thus the motivation for this term in the 
Helmholtz potential. For theories employing a second-order tensor as the damage measure, 
it seems reasonable to assume the surface energy term is proportional to a second-invariant 
of the damage tensor, 

G,(D) = y,D: D, (17) 

where y,, is a constant. Other forms can likewise be postulated for other types of damage 
measures but the proper form can only be determined by the application of micromechanical 
concepts with experimental confirmation. The inclusion of the surface energy term in the 
Helmholtz potential implies that some of the energy required to damage the material is 
converted to surface energy and the remaining portion of that energy is dissipated. This is 
contrary to a hypothesis in which the damaging process totally converts the mechanical 
energy to surface energy, an approach that is not followed here. 

The form of the Helmholtz function given in eqn (14) assumes an additive decompo- 
sition into a stored elastic energy term and additional terms related to the hardening and 
damaging variables. The approach may be too restrictive but it is used by others because 
the formulation is still fairly general but not so abstract that the derivations become overly 
complicated. An attractive feature of this form is that the conjugate variables d and bP yield 
classical relations. From eqns (4), (14), and (15) : 

cr = E(D) : (E--Ed) np = u. (18) 

In contrast, if H = H(E, ss, s”, DS, D”), then the stress takes the form given by the 
following : 

~H(E, E’, E”, DS, D”) 
a=E(D):(s-eP)+--- 

a& ’ 
(19) 

which is more complicated and the resulting constitutive relation for stress is at variance 
with the classical form. Alternate forms of the Helmholtz potential will yield similar 
consequences according to the conjugate relations presented in eqn (12). Finally, from eqn 
(5) and with the choice of the variables associated with the irreversible processes as Vi = {Ed, 
Es, E”, D, DS, D”}, the dissipation rate is : 
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By the conjugate force relations (12), the dissipation rate can be rewritten as : 

r = a:iP+uS:~S+uH:~H+Y:b+YS:i)S+YH:bH. 

2.2.2. Efictizle stress and t$xtive strain. As the material becomes damaged, stress at 
the subscale becomes magnified due to the diminished material integrity. This subscale 

(21) 

stress, called the effective stress, was first introduced by Kachanov (1958), and is the 
foundation for the field of continuum damage mechanics. It is in the effective continuum 
where the plasticity process evolves. Hence, the effective stress is the essential mechanism 
by which theories of elastoplasticity are coupled with damage theories, and therefore, a 
proper effective-stress relation is critical. The effective-stress tensor, i, can in general be 
represented by a projection of the Cauchy stress tensor : 

2 = M(D) :o, (22) 

where M(D) is the effective-stress operator (a fourth-order tensor) that is a function of the 
damage state. A specific form of this operator depends on the damage representation theory 
that can either be derived from a phenomenological or a micromechanical approach. Some 
examples are presented in later sections. The stress-space variables associated with the 
plastic hardening are assumed to be mapped into effective-stress space by the same operator : 

8’ = M(D) : us, kH = M(D) : u”. (23) 

The mapping of the stress to the effective stress is required for later derivations, but the 
mapping of us and cr” into effective-stress space is not required for the thermodynamic 
derivations to hold. In fact, equivalent results are obtained if these variables are not 
transformed according to eqn (23). The mapping was assumed for a purely conceptual 
reason. 

If the inverse of the effective-stress operator, M- ‘, exists, then the dissipation rate as 
given in eqn (21) can be rewritten using the effective-stress operator as : 

T=a:(MT:M-T):~P+&(MT:M-r):sS+u”:(MT:M-r):P 

+Y:b+YS:DS+YH:bH. (24) 

Motivated by this form of the dissipation rate, the rate forms of the plasticity variables 
based in strain space are assumed to be mapped into an effective space by the inverse of 
the effective-stress operator, that is : 

t’ z M-T(D) : ip, is E M-r(D) : is, 

and then the dissipation rate becomes : 

5” E M-T(D) : 8” (25) 

r = 6:~P+,s:;s+8H:~H+Y:b+Ys:bs+YH:b”. (26) 

The definition of the effective strains follows naturally from eqn (25). The effective- 
plastic strain is given by : 
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(27) 

and similar relations hold for Ss and SH. If an operator, N’, corresponding to effective- 
plastic strain, is defined such that : 

(28) 

then the relation between the effective-space operators is given by : 

NP:sP = 
s 

(M-r:iP)dt. (29) 

This definition for the effective strain is at variance with the definitions used in other 
phenomenological theories for damage representation as presented in Section 3.2. As will 
be shown, the present approach, which follows as a natural consequence of the dissipation 
rate, produces a thermodynamically rigorous framework without the need for additional 
assumptions. For practical applications the effective strains are not required in an explicit 
form. Once the increment in effective-plastic strain is determined, then it is immediately 
transformed, according to eqn (25), to a plastic-strain increment in actual space and the 
total plastic strain is updated. 

A consequence of the effective-strain relations developed above is that thermodynamic 
variables that are conjugate in actual-stress and actual-strain space are no longer conjugate 
in effective-stress and effective-strain space. This is shown by the following : 

ay aY aiH ay 
rr” - -pp = -paiH:FeT = --pN":@ 

i” rM:aH = -pM:NH:$# -pg. (30) 

2.2.3. Effective-stress-space yield function and damage function. A generalized yield 
function, QP, that separates the elastic and elastoplastic domains in effective-stress space is 
assumed to be of the form : 

@p(i,tw”) f ~,,(~-~s)-[~pZ(dH)+q,.] < 0, (31) 

where o?, is a positive scalar material parameter used to describe the onset of plastic behavior 
(an initial yield stress). The scalar-valued tensor functions, c#I~, (X) and 4P2(X), are required 
to be homogeneous and of degree one. A function F(x, y) is said to be homogeneous of 
degree n provided it satisfies the condition : 

F(ax, cry) = anF(x, y). (32) 

A fundamental property of such functions is given by Euler’s theorem, Davis (1960), which 
states that if c#J~~(X) is a homogeneous function of degree one then the following is satisfied : 

WAX) ( > ~ :x = qbPi(X) 
ax vx. (33) 

Homogeneous functions of degree one will hereafter be referred to as HOD0 functions. By 
exploiting the chain rule, the following two properties can be derived : 
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(34) 

In a similar manner, consider a damage criterion that takes the following form : 

~D(Y,YS,YH) ~~",(Y-YS)-[~D2(YH)+~"] < 0 (35) 

where w(, is a positive scalar material parameter used to describe the onset of damage 
behavior (a damage energy threshold). The scalar-valued tensor functions, 4,), (X) and 
(bD2(X), are likewise required to be homogeneous of degree one, HODO, as defined above. 
The use of a tensor, Y”, equal in tensor order to the damage variable is required for a 
general anisotropic description of the shape of the damage surface. Many anisotropic 
damage theories have been proposed that employ only a scalar variable to describe the 
shape of the damage surface. Among others, these include Simo and Ju (1987) Ju (1989) 
Chow and Wang (1987a, b), and Yazdani and Schreyer (1990). A scalar can only describe 
an isotropic surface or equal damage evolution in all directions which is inconsistent with 
the use of an anisotropic description of damage. 

The above presentation implies two independent dissipation criteria, one for plasticity 
and the other for damage. This is consistent with the formulations of Simo and Ju (1987) 
and Ju (1989), among several others. Some researchers have employed one surface for both 
plasticity and damage, among them Stevens and Liu (1992). In addition, Yazdani and 
Karnawat (1992) have combined the two surfaces with a pressure dependence. The pre- 
sented form of independent surfaces allows for the greatest flexibility in simulating the 
complete spectrum of material behavior. 

2.2.4. Principle qf maximum entropy. There appears to be some confusion of ter- 
minology in the literature as it relates to extremum principles for constitutive relations 
(Simo and Hughes, 1988 ; Lubliner, 1984 ; Ziegler, 1963). In the field of irreversible thermo- 
dynamics two principles are widely accepted; namely at a stable equilibrium state 1) the 
entropy production rate is minimized while 2) the entropy is a maximum for a given total 
energy (Callen, 1985). Recall from eqn (lo)* that the entropy production is proportional 
to the dissipation rate for purely mechanical processes so these terms are used inter- 
changeably. The entropy production is defined as the derivative with respect to time at a state 
point. For incremental inelastic theories, such as plasticity, a variable with superimposed ( ) 
really represents a finite increment from one stable state to the next stable state. Such a 
change might be more appropriately denoted by A( ), but the common notation in the 
literature is as presented. However, the above thermodynamic principles still apply to these 
two states. Since the entropy is maximum at each of the two states the change in the entropy 
between the two states is also a maximum. Here lies the confusion in the literature. The 
entropy production at each state is a minimum, but the change in entropy in going between 
the states is a maximum. All inelastic theories presented in this work are incremental 
theories where each quantity denoted by ( ‘) really represents a finite change between two 
stable states. The (‘) should not be confused with instantaneous time derivatives. 

Consider the actual state, A, where A z {a, c’, c”, Y, Y”, Y”) which corresponds to 
the state, A, at the subscale or in effective-stress space, where .& E {s, i”, &“, Y, Y”, Y”). 
Now consider all admissible states for A, denoted by X = {R, S, T, U, V, W}. The object 
is to determine the state X that maximizes the dissipation or entropy production (between 
two stable states) subject to the constraints of both the yield and the damage conditions. 
The problem is essentially one of constrained optimization. This can be solved using the 
Lagrange minimization method. First, introduce a Lagrangian functional : 
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L(R) E - r(R) + &@p(r2,) + J&Q&) 
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= -(R:~P+S:~S+T:$H$U:Ij+V:bs+W:~~)+3Lp~’p(~-p)+3LD~D(RD)r (36) 

where the Lagrange multipliers, A, and A,,, are associated with the yield and damage 
constraints, respectively. The subscripts P and D distinguish the subsets of variables 
associated with plasticity and damage, respectively. The Lagrange multiplier method deter- 
mines the minimum of a functional. Since the maximum is desired, a negative sign is 
included on the dissipation term. The state that minimizes the functional is obtained by the 
Kuhn-Tucker optimality condition (Strang, 1986). This intermediate result, which is not 
presented, is a function of the admissible states, X. The principle of maximum dissipation 
is employed to determine which admissible state, X, is the actual state, A. This principle is 
credited to von Mises for plasticity (Hill, 1950), and is a basic governing postulate in 
thermodynamics. It states : that amongst all admissible states, 2, the actual state, A, is the 
state attained that maximizes the entropy. Hence, state ff, in conjunction with the results 
of maximization, yield the following evolution relations : 

&j,,(Y-Y") 

ay s 

. (37) 

In addition, the unloading and loading conditions follow directly from the Kuhn-Tucker 
optimality conditions. These are as follows : 

i:,a$(A,) = 0 &(Do&) = 0. (38) 

All variables evolve in the direction normal to the respective yield and damage surfaces. 
Plastic-strain evolution of this form is typically called associative flow. The plasticity 
variables evolve in effective-strain space and are associative in the effective-stress space. 
This associativity is preserved in the actual-stress space, as is illustrated by the following : 

-P = MT:iP =&,MT:~= am 
E = )I,MT~L. au .M-’ = A,* 

au . 

(39) 

With the property derived in eqn (34), the second and fifth relations of eqn (37) reduce to : 
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5” = _hP bs = -b, (40) 

An additional property that can be derived using the principle of maximum entropy 
is the convexity of the undamaged elastic domain. First consider a definition of a smooth 
convex function as given by Simo and Hughes (1988). A smooth function, .f; is convex lf’ 
and only $the following holds : 

SW -f(s) 2 (r - 4 - Vf Cd. (41) 

Suppose the state ,& is on both the yield and damage surfaces. By definition, this implies 
that : 

@p(Ap) = CD,&) = 0. (42) 

Then for all admissible states : 

With Z% and A associated with r and s, respectively, the plastic condition for convexity is : 

@P(%) - @p(Ap) 3 (tip -A,) : VO,(A,). (44) 

By eqns (42) and (43), the left side of the inequality 
convexity condition becomes : 

0 2 @,(?zp) 3 (Ttp -Ap) : W,,(A,) =+ 0 2 

can be simplified and the plastic 

(rz, - B,) : V@p(A,). (45) 

By similar arguments the damage convexity condition is : 

0 3 (Yi/) -A,) : V@,(AD). (46) 

The principle of maximum entropy can be stated in the following form : 

Y(A) 3 I”(%). (47) 

The dissipation rate and the evolutionary relations of eqns (26) and (37), respectively, allow 
eqn (47) to be rewritten as : 

a@P&) aWp) 
a8 +(S-6’): aBs 

w8,) 
+(T-6"): aBH 

( 
,. 

+A, (U-Y) : acD;y +(V-YS): w&) H .a~&) 
ays +(W-Y ). ayH > * (48) 

Since this inequality must hold for arbitrary processes, the two terms can be uncoupled 
without loss of generality. In addition, employ the notation of g and I%, so eqn (48) 
becomes : 

0 2 ip(%p -A,) : VQp(A,) 

0 2 rl”(r2, -A,) : V%&>. (49) 

Since both of the consistency parameters are non-negative, eqns (49) reduce exactly to the 
convexity condition of eqns (45) and (46). Hence, the yield and the damage functions are 
convex or the convexity of the undamaging elastic domain is shown. 

The parameters iP and & are determined by the consistency requirements, which are : 



Framework for coupled theories 369 

&d$(A,) = 0, &b,,(A,) = 0. (50) 

If & = 0, which implies that no plastic processes are occurring, then the state is inside the 
yield surface, &(&) < 0, but if A, > 0 or plastic flow is occurring then by the consistency 
condition : 

(51) 

If the plasticity hardening variables are assumed to be strict functions of their conjugate 
pairs, GS = @(Z”) and hH = O”(P), then it can be shown that the consistency condition for 
plasticity reduces to the following : 

+!$M:E:$=O. (52) 

By a completely analogous procedure for the damage consistency condition along with 
YS = Y”(D’) and Y” = Y”(DH) it can be shown that : 

& -:-‘-+aYH:aDH:aYH--:2:- ( aa, ays aaD am, a~” aa, a~~ a2\y aa,, 
ay aw ay ay aD ay > 

( aQD a9 
+A, -:h--- 

.M.a~p 86 a9 
ay aDasp’ . ao > 

.p*i: = 0. (53) 
ay -a&a~' 

The plasticity consistency condition, eqn (52), is a function of the damage consistency 
parameter, Azo, and conversely the damage consistency condition is a function of the 
plasticity consistency parameter. This coupling of the consistency relations is a consequence 
of a coupled formulation. There are two linear equations in two unknowns so that these 
consistency parameters can be solved explicitly as a function of the strain increment. 

Finally, the tangent modulus is derived using these relations for the consistency par- 
ameters. The tangent modulus maps a strain increment into a stress increment according 
to the following : 

i=c:c (54) 

where C is the fourth-order tangent modulus tensor. Begin with the functional form for the 
stress, that is d = @(E, a’, D). By taking the time derivative we obtain : 

With the substitution of the evolution relations, the result is : 

(55) 

(56) 

The explicit relations for the consistency parameters are then used. Then all terms on the 
right hand side are linear in E and hence, the expression for C is completely determined 
according to eqn (54). For the general case this expression is rather lengthy, and for this 
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reason the explicit expression for the tangent modulus is not presented but it can be easily 
determined for any particular formulation. 

2.2.5. Second hv. With the use of the evolution relations, eqns (37) and (40), the 
dissipation rate can be written in the form 

pi, ( (dd’):?~L&@$ +A, 
i% 1 ( (y_y.S):g!L _y&$ 

> 
. (57) 

Next, employ the HOD0 properties of eqns (33) and (34) along with the postulated form 
of the yield and damage functions, eqns (3 1) and (35), respectively, to obtain : 

I- = ~P[~P(~,,s,8H)+~y]+~D[~~(Y,Ys,YH)+u0]. 

The first term in each set of square parentheses is zero by the loading 
conditions of eqn (38). Hence the dissipation is given by the following : 

I- = &a,.+&w,,. 

(58) 

and unloading 

(59) 

Since & 2 0 and 1, > 0 by the loading/unloading conditions and a?, w0 are defined to be 
positive parameters, the dissipation is guaranteed to be nonnegative. Therefore, the second 
law of thermodynamics is always satisfied according to eqn (6). 

2.2.6. First lus. One of the equations that follows from the first law given in eqn (10) 
provides an explicit relation for the rate of entropy production, which is always positive : 

Other relations involving internal energy or the Helmholtz function can likewise be derived. 

2.2.7. Specific HOD0 jirnctions. Both the damage and the yield criteria are constructed 
using scalar-valued HOD0 functions. This requirement is integral to satisfying the laws of 
thermodynamics. Any function that satisfies the HOD0 requirement has been shown to be 
sufficient. General HOD0 functions, a scalar form and three forms that are functions of 
second-order tensors, are presented below. It is not claimed that those presented are all 
inclusive but it will be shown that many popular theories can be constructed with these 
forms. It should be noted that any linear combination of HOD0 functions is also a HOD0 
function. HOD0 forms of increasingly higher powers of the independent variable and 
increasing tensor order can be constructed in a similar fashion. 

Sculur form 

Only one form of a HOD0 function 
along with its associated derivative is : 

c#@) - Kx 

exists for a scalar argument, X. This function 

(61) 

where K is a scalar constant. 
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A scalar-valued function of a second-order tensor, X, is a linear HOD0 function if: 

q%(X) E x:c, (62) 

where C is a second-order tensor. Specifically, if C is the second-order identity then the 
function 4(x) is the first-invariant of X, or the tr (X). The derivative with respect to X is : 

wm _ c 

ax . 

(63) 

Quadratic form for second-order tensors 

A quadratic HOD0 function of a second-order tensor and its derivative with respect 
to the independent variable, X, are 

(64) 

where A is a positive semi-definite operator (a fourth-order tensor) that is independent of 
X. A is required to possess the symmetries FI;,~, = Ajikl = Ai, = &,,. If A is the fourth- 
order identity then the HOD0 function is the square-root of a second-invariant, 4(X) = 
&(X2). 

Cubic form for second-order tensors 

A cubic HOD0 function of a second-order tensor and its derivative are : 

(65) 

where B is a positive semi-definite operator (a sixth-order tensor) that is independent 
of X and possesses the appropriate symmetries. If X is symmetric and Bijkb,,,, = 6,,6j,,,61,,,, 
where doh is the Kronecker delta, then the function is the cube-root of a third-invariant, 
4(X) = vtr (X3). 

2.2.8. Summary qf the thermodynamic framework. The development of the thermo- 
dynamic framework for coupled elastoplasticity and damage formulations is now complete. 
The remaining sections deal with specific applications of this framework. The assumptions 
and limitations used in the derivations are summarized below : 

5. 

6. 

Only isothermal processes are considered which precludes the inclusion of heat 
conduction and temperature dependent material properties. 
Although infinitesimal deformations are assumed most of the results can be gener- 
alized to the case of finite deformations. 
Strain rate dependence is not included. 
The postulated form of the Helmholtz free energy is not the most general and other 
forms may be more appropriate for some materials. The form used is relatively 
simple and yet yields classical relations. The consequences of other postulated forms 
follow from the conjugate relationships. 
The concept of an effective stress that is associated with a damaged material is the 
critical element that couples the theories of elastoplasticity with damage and leads 
naturally to the use of the effective-stress plasticity formulation. 
The use of HOD0 functions in the construction of the yield and damage functions 
is not overly restrictive. As is shown, many of the popular theories can be constructed 
from these functions. 
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The principle of maximum entropy is used to determine the evolutionary relations. 
This assumption implies that these evolutionary relations involve tensors normal 
to the yield and damage surfaces which for plasticity is equivalent to an associated 
flow rule. Convexity is also implied by this principle. 

None of these assumptions are too restrictive. If a formulation is needed that violates 

one of these restrictions then a similar derivation could be followed with modified assump- 

tion(s). The details and rigor presented in the derivations allows for extensions to alternate 
applications. By developing a general framework for coupled formulations, specific consti- 
tutive theories can easily be constructed by following the stated requirements. 

3. SPECIFIC COUPLED ELASTOPLASTICITY AND DAMAGE MODELS 

In the preceding section a unified framework for elastoplasticity coupled with damage 

was developed following a rigorous thermodynamic approach. In order to construct specific 
models, without repeating the rigorous thermodynamic arguments, the formulation needs 
only to adhere to the requirements summarized below and the thermodynamic restrictions 

will be satisfied. 

1. 

2. 

3. 

4. 

5. 

6. 

Based on either a phenomenological or a micromechanical approach, develop an 
effective-stress relationship, that is, determine M(D). 
Construct a yield function using effective stresses and a linear combination of 

HOD0 functions. The evolution relations for EP and the hardening variables, 5” 
and EH are determined by eqn (37). 

Based on experimental observations, construct the constitutive relations for the 
hardening variables, $‘(S.‘) and #‘(SH). 

With the use of the appropriate thermodynamic damage variable, determine the 
damage energy release rate, Y, from eqn (I 2). 

From a linear combination of HOD0 functions, construct a damage function using 
Y, Y,‘, and YH. The corresponding evolution relations for the damage, D, and the 
damaging variables, D” and DH are determined by eqn (37). 
Postulate forms of the constitutive relations for the damaging variables, Y’(D”) and 
YH(DH). 

The motivation for any of the postulated relations should be based on micromechanical 
considerations or physical observations. The utility of the unified framework developed in 
Section 2, is now illustrated by considering some specific plasticity, damage, and coupled 
theories. 

3.1. Sprc#ic rlustoplusticity models 
Consider now a specific class of plasticity models, called J2 plasticity. This encompasses 

the largest class of models in use today, including von Mises plasticity. For J2 plasticity the 
deviatoric projection operator is used in place of the operator A of eqn (64). Without the 
shift stress term, 4pI (&) becomes : 

where 6” is the deviatoric stress tensor. The function 4pI(~) is essentially the square root 
of the Jz invariant of the function argument, hence the name “Jz plasticity”. If the plasticity 
hardening variable associated with the shift of the stress, or the kinematic hardening, is 
included then : 

(67) 

A Prager-Drucker pressure dependence can be included by adding a linear HOD0 function 
such as K,,(G: i) where KpD is a constant and i is the second-order identity tensor. The 
evolution of the effective-plastic-strain tensor that corresponds to eqn (67) is : 
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(68) 

The yield criterion of eqn (31) is formulated such that an anisotropic change in the 
shape of the yield surface is allowed as evident by dependence of the function 4pZ(#‘) on 
the second-order tensor PH. Although some have developed anisotropic plasticity theories 
(Hill, 1950), many still use an isotropic change in the yield surface or hardening. For 
isotropic hardening the second-order hardening tensors, iH and ?‘, degenerate to the 
following isotropic forms : 

“H 
d = sHi, -H 

E = EHi, (69) 

where tH and SH are the isotropic hardening variables (scalars). Either the substitution of 
an isotropic second-order tensor into eqn (64) or the substitution of the scalar variables 
into eqn (61) results in a scalar form of the hardening HOD0 function, such as 
$J~~(c%~) = KH&H where KH is a constant. Instead, the constant is absorbed in &H(2H), which 
is still to be defined, and the hardening HOD0 function reduces to : 

(70) 

From eqn (37), the evolution relation for the isotropic hardening variable is then : 

'H 
& =-- 1,. (71) 

Since ip is a monotonically increasing positive parameter, this implies that EH is a mono- 
tonically decreasing negative parameter. Recall that the constitutive relation for the hard- 
ening variables is postulated in lieu of postulating a specific form for the contribution to 
the Helmholtz free energy in eqn (14). A simple linear form for the isotropic hardening 
constitutive relationship is assumed : 

dH(EIH) E - K,CH (72) 

where K, is a material parameter. The negative sign is required to make &H be a positive 
variable. Other forms that might be postulated could include trigonometric, exponential, 
and/or polynomial functions of EH. A nonlinear constitutive relation for the isotropic 
hardening variables that resembles a Ramberg-Osgood form is given by : 

eH(EH) s K,[-CH]5 (73) 

where n,, is an additional material parameter. Whatever the specific form of the hardening 
relation, experimental evidence should be used as the motivation. 

Similar arguments apply to the choice of a constitutive relationship for the kinematic 
hardening variables. A general linear relationship between Ss and &’ is given by : 

where G is a fourth-order tensor to be specified. If G is the fourth-order identity, then : 

,+s(;s) E -&is = Kkgp (75) 

where Kk is a scalar material parameter. This is the common Prager kinematic hardening 
rule. 
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3.2. Specific dutnugr models 

The t’hermodynamic framework in Section 2 was developed without regard to a specific 
damage representation theory. The only requirement was that an effective-stress operator be 
provided. The origin of this operator can either be phenomenological or micromechanical. 
Presently, most of the micromechanical models are too complicated for practical appli- 

cations so phenomenological models are emphasized in this section for illustrating the 
utility of the thermodynamic framework. Most of the damage representation theories of 

phenomenological origins employ one of two fundamental hypotheses, these being the 

principle of equivalent elastic energy or the principle of equivalent strains. These hypotheses 
are reviewed prior to the presentation of specific models. 

3.2. I. Principle ~f’eyuimlent elustic energy. The first class of damage representation 

theories employs the principle of equivalent elastic energy as was introduced by Cordebois 
and Sidoroff (I 979), and has since been employed by other researchers including Chow and 
Wang (I 987a, b). To begin, introduce a form of the stored elastic energy, using the stress 

tensor : 

Lf’(a,D) =+c:E ‘:G. (76) 

The principle of equivalent elastic energy (PEEE) states that (PEEE postulate # 1) “the 
elastic energy of the damaged material is the same in form as that of an undamaged material 
except that the stress (strain) is replaced by the effective stress (effective strain)“. The stored 
elastic energy using the effective stress and the undamaged stiffness is given by : 

w(6,o) = :a:(~“)-’ 18 = +KM~(E”)--~ :~:a. (77) 

The PEEE implies that the two preceding forms for the stored energy are equivalent which 
results in the following form of the damage stiffness tensor : 

E- ’ zr M7 : (E”) ’ : M 

E = M ’ : E”: M ‘. (78) 

Implicit in this hypothesis is that the same procedure for deriving the average elastic 
properties (stiffness tensor) is applicable for determining the effective stresses. Recall the 
effective stress is the mechanism for coupling plasticity with damage, and the effective stress 

operator, M, should be derived based on a proper effective-stress tensor as it relates to 
plasticity. In contrast the stiffness tensor, which corresponds to the elastic process, may or 
may not follow the same derivation. Hence the implicit assumption may not be appropriate. 
Whatever the method of derivation, a stiffness tensor as a function of a damage measure 

is the only required entity in addition to the effective-stress operator as a function of damage 
for incorporation in the thermodynamically consistent framework. Additional postulates 
and relations, such as a relation for the effective strain, may lead to contradictions. A 
common approach is presented below to illustrate these inconsistencies. 

Typically, one of two equivalent assumptions is employed to determined an effective- 
elastic strain. Either the constitutive relation between the effective stress and effective-elastic 
strain is assumed to be (PEEE postulate #2a) : 

ii = E” .i” - . (79) 

or an equivalent assumption is (PEEE postulate # 2b) to apply the strain form of the PEEE 
and use the form of the damaged stiffness given in eqn (78) such as : 

From either postulate, the relation for the effective-elastic strain is given by : 
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2’ = M-T:~ee (81) 

Damage theories employing the PEEE require one final postulate for application to coupled 
formulations. This postulate is that all strain-space variables are assumed (PEEE postulate 
# 3) to be mapped by the same operator as given in eqn (81) for example, 

sp = M-T:eP. 0-Q) 

The effective-strain relations of eqns (81) and (82) are incompatible with the transformation 
relations for effective strain given in eqn (25). Formulations that employ the principle of 
equivalent elastic energy may still be incorporated in the thermodynamic framework with 
the restriction that only the PEEE postulate # 1 is allowed because the additional postulates 
yield a contradiction in the effective strains. 

3.2.2. Principle of strain equivalence. The second class of damage representation 
theories employ the principle of strain equivalence, as postulated by Lemaitre (1971) and 
subsequently used by Simo and Ju (1987) and Ju (1989). This hypothesis states “The strain 
associated with a damaged state under the applied stress is equivalent to the strain associated 
with its undamaged state under the effective stress”. In essence, the effective material 
behavior is represented in effective-stress and actual-strain space. With this principle, an 
equivalent energy state does not exist and effective strains are not employed. Then the 
damaged stiffness and the effective-stress relations take the following forms : 

E’=M-‘:E” &’ = E” :&I. (83) 

The difference between these principles is further illustrated in Fig. 1. The undamaged 
portion of the response is from points @ to 0. This is followed by a regime in which the 
damage continually evolves up to the maximum damage state, point 0. Point @ denotes 
the effective continuum state using the equivalent strain approach, where the effective stress 
is denoted by 6’. The effective-stress and effective-strain state, denoted as point 0, is 
determined by equating stored energy. The stored energy associated with the actual state 
variables, given by the area (i-O-8, is equated to the area in the effective space using 
the undamaged modulus, which is given by the area @-Q-0. Note that the effective 
stress for the principle of equivalent strain is considerably higher than that for the equivalent 
energy approach. Since the effective stress is utilized in the yield function, the choice between 

3 
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Fig. I. Difference between equivalent energy and equivalent strain hypotheses. 
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the principle of equivalent energy and principle of equivalent strain has a marked difference 
on the behavior of the model. 

In summary, two popular phenomenological hypotheses employed by various damage 
representation theories have been evaluated relative to their applicability to the derived 
thermodynamic framework. Additional postulates to determine the effective strains were 
shown to be at variance with the effective strains given in Section 2.2.2. based on the form 
of the dissipation rate. Therefore, for the present thermodynamic framework, the relations 
for the effective strains are a consequence of the form of the dissipation rate and may not 
be postulated or derived separately. 

In the next subsections, three specific damage formulations are presented and evaluated 
using the general framework. The principle of equivalent elastic energy with the restrictions 
as discussed in Section 3.2.1 is employed for the specific formulations. A similar set, with 
similar results, could be developed using the principle of equivalent strains, but are not 
presented. All three damage formulations are found in the literature and have been 
developed using a phenomenological approach to damage representation. First, a simple 
scalar isotropic formulation is considered. Then a second-order anisotropic damage theory 
is evaluated. Finally, a class of damage models where the damage measure is directly 
associated with the damaged stiffness tensor is formulated; hence, this is a fourth-order 
anisotropic damage theory. Due to their phenomenological origins, each of these for- 
mulations is shown to possess deficiencies. 

3.2.3. Sculur isotropic damage. Isotropic scalar damage theories are the most common 
models found in the literature. The scalar variable, d, represents the amount of volumetric 
material damage. The effective stress is postulated to be of the form : 

With the use of the principle of equivalent elastic energy, the damaged stiffness relation is : 

E = (1 -d)‘E”. (85) 

The thermodynamic damage variable is selected as d and all other damage related variables 
are scalars. For easy comparison with other models, neglect the surface energy contribution 
to the Helmholtz function and the damaging shift variable. The damage energy release rate, 
y, or the variable conjugate to the thermodynamic damage is : 

y = (l-d)C:EO:C. (86) 

Recall that the damage function is constructed using HOD0 functions. For scalar damage 
variables, the damage function degenerates to the following : 

%LY,y”) = y-(yH+Q) d 0. (87) 

The resulting evolution relations and a postulated constitutive relation for yH(dH) are : 

d=l* J” = -&, y” E -ti,,d”, (88) 

where ti,, is a scalar material parameter. Only two material parameters, o,, and K, are 
required for this formulation. The inability to model the anisotropy associated with damage 
is the major weakness of isotropic theories. As shown by Ju (1990) an isotropic damage 
model implies that the Poisson’s ratio does not change, a feature at variance with some 
experimental data. In addition, compressive and tensile loads cannot be differentiated. 
Hence, equal damage states would be predicted for uniaxial tension and compression load 
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paths of the same magnitude. A hydrostatic pressure dependence in the damage function 
could be incorporated to differentiate between tension and compression in some sense but 
this would not be sufficiently general to properly represent all load paths. These deficiencies 
render scalar theories ineffective for the modeling of some materials. 

3.2.4. Second-order damage measure. In this section, an anisotropic damaged-elasticity 
theory initially proposed by Cordebois and Sidoroff (1979) is considered. This has since 
been used in one form or another by several investigators including Chow and Wang (1987a, 
b). First, introduce a second-order symmetric damage tensor, D. A symmetric second-order 
tensor as the damage measure implies that the most complicated anisotropy that can be 
represented is orthotropic, a rectangular symmetry with axis aligned with the principal basis 
of the damage tensor. This orthotropy is not fixed in the material but the orthotropy 
rotates with the principal basis of the damage tensor. From a micromechanical derivation, 
Kachanov (1987) showed that even for high crack densities with interacting cracks, the 
effective elastic properties remained orthotropic with good accuracy. Therefore, this limi- 
tation on the type of anisotropy does not appear to be too restrictive. 

Cordebois and Sidoroff (1979) postulated the effective stress to be of the form : 

& = (i-D)~“2.a.(i-D)~‘~2 E M(D):u (89) 

which also defines the fourth-order effective-stress operator M(D) as : 

Mijk[ = (6i~-Di~)‘~‘(6j,-Oj,)“‘. (90) 

By employing the principle of elastic energy equivalence the damaged stiffness tensor is : 

where the symmetry of the damage tensor causes E to possess all the symmetries of E”. 
The logical choice for the thermodynamic damage variable is the second-order damage 

measure, D. The damage energy release rate associated with this selection is : 

(92) 

where 

IR = (i-D)“2. (93) 

Unfortunately, a thorough evaluation reveals that Y is nor a symmetric second-order 
tensor unless the damage and the strain tensors have the same principal bases. A damage 
tensor which is nonsymmetric is a direct violation of the assumed symmetry for D. A simple 
change in the selection of the thermodynamic variable will remedy this dilemma. Instead 
of D, let L! be the thermodynamic damage variable. Physically, R is more of a measure of 
the material integrity than a measure of the damage, but the selection as a thermodynamic 
damage measure is allowable. The following consequences hold : 

D =OD=!&R’)~ =i. 
1=0 t=0 

(94) 

By taking advantage of the symmetry of the individual tensors and noting that 8, = 
E~ikiklRk,,,~,,,,,Q,Znl, the damage energy release rate, Y, associated with Q is given by : 

SAS 31:3-6 
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Y =-~~-(B.R.s’+e’.R.~)+2y,(D.*+R.D). (95) 

The credibility of the damage function is based on how well it correlates with exper- 
imental observations. Consider some observed phenomena in brittle materials. Exper- 
imentally, it is observed in uniaxial tension that the microcracks develop perpendicular to 
the loading direction or the damage is in the direction of loading. Therefore, in uniaxial 
tension the damage evolves in the direction of tensile stress and tensile strain. Conversely, 
in an unconfined uniaxial compressive stress state, the microcracks develop in the direction 
parallel to the loading axis. This then corresponds to damage perpendicular to the direction 
of loading. No stresses are present in this off-axis direction in uniaxial compression but the 
Poisson effect produces tensile strains in the off-axis direction. Based on these observations 
it appears reasonable, to postulate that damage evolves in the direction of tensile strains. 
Define a fourth-order projection operator, P+, such that only the tensile strain components 
of E are extracted : 

E+ SP+:&. (96) 

This projection operator can be constructed by following a procedure introduced by 
Ju (1989). The proposed projection operator is constructed in a series of steps as outlined 
below. First consider the spectral decomposition of the strain tensor. 

E = i E,(Pi O Pi), 
i= I 

(97) 

where si is the ith principal strain, the unit vector pi is the corresponding ith principal strain 
direction (or eigenvalue and eigenvector of&). The positive (tensile) spectral tensor is defined 
as : 

Q’ - i h(&i)(pi 8 pi), 
i= I 

in which h( ) is the Heaviside function. The positive projection operator (a fourth-order 
tensor) is then defined as : 

P&E Q;Q;. (99) 

By inspection, if all eigenvalues of E are negative (compressive) then P+ will be the null 
tensor and, conversely, if all eigenvalues are positive (tensile) then P+ corresponds to the 
fourth-order identity. The various combinations of positive and negative eigenvalues pro- 
jects or annihilates the appropriate components of a second-order tensor in the cor- 
responding principal directions of E. 

For both functions, 4,,(Y, Y”) and 4D2(Y”), it is proposed that the quadratic form 
of a HOD0 function be employed where the tensile strain operator is used in place of the 
positive semi-definite tensor A. The damage function can then be expressed as : 

@,(Y,YS,Y”) 3 J(Y-Y"):p+ :(Y-YS)-(JyH:P+ :YH+m,) < 0. (100) 

The anisotropic nature of the problem is preserved due to the directional dependence of 
the projection operator and the anisotropy of the damage variables. From eqn (37), the 
damage (or integrity in this case) evolution is : 

* = j Pf : (Y-Y”) 

“n 4”,(Y,YS) 
(101) 

Due to the negative sign in eqn (95), as the damage evolves the eigenvalues of Cl 
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decrease, which is equivalent to an increase in the eigenvalues of D according to eqn (94). 
Hence, the damage does evolve in the direction of the tensile strain projection of the damage 
energy release rate, as intended. The evolution relations for the damaging variables are : 

(102) 

If the initial value of YH = 0 then DH will remain zero. Therefore, a nonzero initial value 
must be assumed in order to get the evolutionary process started. An appropriate choice 
might be an initial isotropic value such as YH = li where r is a “small” constant. 

The constitutive relations for the damaging variables must be constructed to complete 
this formulation. Unlike plasticity theories where isotropic hardening is often representative 
of the observed phenomenon, damage is generally observed to be anisotropic. As a con- 
sequence the scalar degeneration of the damaging variables Y” and D” would not be 
appropriate. A linear, but rather general, constitutive relationship could be postulated of 
the form : 

YH(DH) = -G : D” (103) 

where C is a fourth-order tensor to be specified. In the absence of experimental data, simpler 
relationships for the damaging variables are postulated of the form : 

Y”(D”) 3 -u,D", YS(Ds) E -IQD’ (104) 

where K,, and IQ. are positive scalar material parameters. 
Consider the case where 6, Q and E all have the same principle bases and examine the 

damage energy release rate of eqn (95). Under a uniaxial tensile stress load path, the tensile 
strains are in the direction of the tensile stress, while in the off-axis direction the stresses 
are zero. Hence, the only nonzero component of Y is in the direction of the loading. This 
produces damage evolution in this direction as was intended. A further evaluation of Y 
reveals some problems. For the load path of uniaxial compression stress, the only nonzero 
component of Y is again along the loading axis by the same arguments but the strains are 
compressive in the loading direction. The positive strain projection operator eliminates 
components in the direction of negative strains and hence no damage evolution is predicted 
for uniaxial compression. This is the first deficiency for this formulation. 

The second is illustrated by considering a triaxial compression load path. For sufficient 
axial loading, the strains in the directions of the confining pressure will eventually become 
positive due to the Poisson effect from the axial load. The difference in signs between the 
stresses and the strains in the off-axis direction causes Y to have positive eigenvalues which 
then causes the principle values of R to increase, which implies a decrease in the principle 
values of the damage. A decrease in damage is the same as “healing” of the material 
which is not allowed based on physical considerations. This condition can be remedied by 
redefining the positive projection operator used in the damage function with one that is 
based on both tensile strains and stresses. For this modification, no damage evolution is 
predicted for the triaxial compression load path. 

A remedy to the first deficiency does not follow as easily. Basically, there are two 
areas that can be modified in the preceding formulations. A new form of the Helmholtz 
thermodynamic potential could be postulated and/or a new damage function could be 
constructed. No satisfactory resolution to the above dilemma has been obtained. For tensile 
loading conditions, the formulation does well, however, for compressive type loading this 
formulation appears to be deficient. The inability to predict lateral damage due to an 
unconfined compression results from the form of the damage energy release rate which is 
actually a consequence of the damage representation theory as postulated by Cordebois 
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and Sidoroff (1979). This model is a simple approximation to damage based on volume 
averages of the effective-areas which does not contain sufficient detail to predict the complex 
mechanisms occurring on the sub-scale. Until a refined damage representation theory is 
employed, this is probably the best that can be expected from this formulation. 

3.2.5. Fourth-order dumup meusure. A class of anisotropic damage theories is cvalu- 
ated in which the damaged stiffness tensor evolves directly. This approach has been followed 

by a number of researchers, including Simo and Ju (1987), Ju (1989), and Yazdani and 
Schreyer (1990). The thermodynamic damage variable is taken to be the damaged stiffness 
tensor, E. Since the damage variable is a fourth-order tensor, all damaging variables are 
assumed to be fourth-order tensors. The damaging variable associated with shift and the 

surface energy term are neglected for comparison with the formulations of others. The 

fourth-order damage energy release rate, Y, is given by : 

y = -,-I(E(.OEC). (105) 

A damage function based on tensile strain projection is again postulated : 

@,,(Y,Y”) = JY-rIP- ::Y-(JY”::p+ ::YHfq,) 6 0, (106) 

where P+ is now an eighth-order tensor. The damaged stiffness evolution is then : 

(107) 

The components of the damaged stiffness tensor are degraded corresponding to the 

directions of principal tensile strains, which correlates to the observations in brittle 
materials. However, this fourth-order theory also contains inherent deficiencies. Consider 

a uniaxial tensile load path, where the specimen is taken to the state of significant damage. 
Now release the load and reload in pure shear. The previous degradation of the stiffness 
tensor leaves the shear components of the damaged stiffness tensor unaltered, and hence, 
a shear loading responds as an undamaged material. This may not be physically realistic. 

The preceding approach is formulated independent of an effective-stress relation. 

Recall that the effective-stress relation is the crucial mechanism by which the effective-stress 
plasticity and damage theories are coupled. Therefore, to calculate the effective stresses, the 
operator, M, must be extracted from the evolved damaged stiffness tensor. A method for 
performing this extraction is outlined below. For any damage representation where the 
principle of equivalent elastic energy is employed, the damaged stiffness is related to the 
effective-stress operator by : 

E=M-‘:E”:M-T. (108) 

Next perform a Cholesky decomposition of the damaged and undamaged stiffness tensors : 

E=G:GT, E” = H: HT. (109) 

These results can be combined to obtain a relation for the effective-stress operator : 

G:Gr = Mp’:(H:HT):Mm7>M-’ = G:H-‘. (110) 

For plausible evolutions of the stiffness tensor, the effective-stress operator that is 
extracted using eqn (110) does not always produce a symmetric effective-stress tensor, a 
result which may not be physically plausible. In addition, the computational effort required 
to perform this decomposition is extensive and considering that at least one decomposition 
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would be required for each load step, the practical utility of this approach becomes cost 
prohibitive. The difficulty in extracting the effective-stress operator may render this 
approach ineffective for a coupled formulation. 

An alternate fourth-order approach which does not require a Cholesky decomposition 
of the stiffness tensor is proposed. Introduce a fourth-order damage tensor, D, and unlike 
the previous fourth-order theory which used E, this tensor is also the thermodynamic 
damage variable. The damage tensor is required to possess the symmetries D,ik, = 
Dklii = Diik, = D,,. An effective-stress relation is postulated to be of the form : 

& 3 (I-D)-’ :o, (111) 

where I is the fourth-order identity tensor. This also provides the definition for the effective- 
stress operator which is M = (I-D)- ‘. Then with the principle of equivalent elastic energy 
the damaged stiffness is : 

E = (I-D):E”:(I-D). (112) 

This implies a damage energy release rate of the form : 

Y = ~[ci@&‘+&“@i+]. (113) 

The damage function is that given in eqn (106) and the resulting damage evolution is : 

P+:Y 
D = h4D,(y). (114) 

The problem associated with the extraction of the effective-stress operator is thus 
avoided using this approach. The effective-stress operator is constructed using the damage 
tensor as it evolves. Unfortunately, the inability to predict the observed evolution of lateral 
damage from unconfined compression is exhibited, similar to the results associated with 
the use of a second-order damage tensor. The problem related to the undamaged shear 
components of the stiffness tensor, as discussed for the previous fourth-order theory, is again 
exhibited. Although this fourth-order theory can now be utilized in a coupled formulation 
because a relation for the effective stress is available, some deficiencies are still apparent. 
In summary, each of the three phenomenological damage formulations possess an inherent 
deficiency that results from approximation of the complex microscale mechanisms. 

3.3. Specific coupled models 
The utility of the thermodynamically consistent framework developed in Section 2 is 

highlighted when considering specific coupled models. A coupled formulation is thermo- 
dynamically consistent if both the elastoplasticity and the damage portions are developed 
using the framework such as those presented in Sections 3.1 and 3.2, respectively. Therefore, 
any of the specific plasticity models presented in Section 3.1., or others developed in a 
similar manner, can be coupled without further derivations to any specific damage model 
such as those given in Section 3.2. 

To illustrate the ease by which different elastoplasticity and damage formulations can 
be coupled, a specific example is presented. For the elastoplasticity model, the JZ plasticity 
model with linear isotropic hardening and linear kinematic (Prager) hardening is selected. 
The damage model selected is the damage representation theory of Cordebois and Sidoroff 
(1979) with the anisotropic damage function based on tensile strain projections, as presented 
in Section 3.2.2. Using these specific models, the pertinent relations for the coupled for- 
mulation are summarized as follows : 

Damage energy release rate : 

Y = -f(O.n.~~+~~.R.6)+2y~(D.n+n.D) 
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Damage function : 
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@,(Y, YS, YH) = Jjy-yv+ : (Y-Y”) -(JT~~~+wu) < 0 

Damage evolution relations : 

Damaging constitutive relations : 

Damage : 

YH(DH) = -K,D~, YS(DS) z - rckDS 

D = i-n2 

Damaged stiffness : 

Yield function : 

ap(ii,P,6H) = J(O-ii”)“: (6-OS)“-(ci”+r7i,.) < 0 

Plasticity evolutions relations : 

$P =I 1, 
(&cis)d 

(&@)d: (&@)J 
6” = -p, pf = -.I, 

Hardening constitutive relations : 

&“(a”) 3 -K&P, c?“(P) E -Kp 

Effective strain rate mapping : 

ip = M(D) : 4’. 

In addition to the undamaged elasticity parameters, the number of material parameters 
required for this coupled formulation is at most seven: (yo, wO, K,, IQ, CJ),, K,, K,), while 
the minimum required is four material parameters (oO, K,,, CT,., K,). 

4. SPECIFIC APPLICATIONS 

Most metals behave in a ductile manner, which is typically represented by plasticity 
models, although given sufficient load metals will eventually damage and break. Therefore, 
both plastic and damage processes occur, and hence, a coupled formulation is needed. To 
demonstrate the applicability of coupled formulations to ductile failure, a method of 
evaluating the individual mechanisms must be established. As part of the experimental 
procedure, a technique for the direct measurement of the damage is required. Other than 
fatigue damage, little experimental effort has been dedicated to the investigation of the 
damage in ductile materials such as metals. 

The term “direct” measurement does not imply that the size, distribution, and orien- 
tations of the microcracks are measured throughout a test. Instead, the state of the material 
integrity is determined in an averaged sense by easily measured parameters. For example, 
the change in elastic modulus, which is an explicit function of the damage state, is the 
direct damage measurement employed by Cordebois and Sidoroff (1979), Chow and Wang 
(1987b), and Lemaitre (1983). Elastic unloading at periodic intervals in the test sequence 
is used to determine the changes in the elastic modulus. This approach is in contrast to 
other investigators that correlate a material state parameter just prior to rupture as a 
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measure of damage. For example, a measure of the plastic-strain is sometimes used to infer 
the failure. This is an example of an indirect measure of damage. 

At least for some materials, the damage process appears to only occur in the post-peak 
or softening regime of the stress-strain response. In this response regime, a specimen may 
separate or localize into two distinct material domains. In a relatively small region as the 
load (strain) increases the material cannot sustain the previous value of stress because of 
damage, a feature often called material softening. It is within this localized zone that 
extensive amounts of damage occur. The remaining material that surrounds the localized 
zone unloads without further plastic flow or damage. The determination of how the localized 
region is established and the evolution of the region is still a very active research area. A 
completely satisfactory method for experimentally evaluating the damaging process as it 
occurs within the localized zone has yet to be established. 

Once a material localizes or softens the boundary value problem becomes ill-posed as 
exhibited by lack of convergence with mesh refinement for numerical solutions. Some 
researchers, e.g. Chen and Schreyer (1990) and Bazant (1990), have proposed nonlocal 
approaches as a means of circumventing these problems. This particular subject was not a 
part of this research. For now, assume that the materials data considered in this section are 
correct for a representative volume element and that it is understood that an incorporation 
into the constitutive formulation of softening requires an additional feature such as nonlocal 
terms. 

4. I. Aluminum alloy 2024 
Fortunately, all three sets of data provided by Cordebois and Sidoroff (1979), Chow 

and Wang (1987b), and Lemaitre (1983) contain results for the aluminum alloy 2024. These 
are the data to be considered for comparison with the models. Chow and Wang (1987b) 
indicated the alloy temper as 2024-T3 but the others did not specify the temper. Results are 
similar using independent testing techniques ; thus, either the tempers were the same, or the 
temper had little effect on the results. The first explanation is the most probable. 

Unfortunately, all the authors presented incomplete descriptions of the test setup and 
results. All samples were tested using a load path of uniaxial tensile stress. Chow and Wang 
(1987b) used sheet stock aluminum in a “dog-bone” shape. The samples were marked with 
reference lines for inferring strains. Lemaitre (1983) conducted tests using cylindrical tensile 
bars, and the material strains were measured using small (0.5 mm) strain gages. Cordebois 
and Sidoroff (1979) did not describe their test setup. It is assumed that all tests were 
conducted at room temperature. With respect to the test results, none of the researchers 
presented a corresponding stress-strain response, but all provided results relative to the 
damage evolution (either a damage measure or the change in the elastic modulus). Chow 
and Wang (1987b), along with Cordebois and Sidoroff (1979), also presented results on the 
evolution of the lateral strains which is used to determine the apparent Poisson’s ratio. 
None indicated whether or not a zone of localization appeared. 

Since no stress-strain data were provided, typical full-range stress-strain response data 
for 2024-T3 aluminum alloy were taken from a standard metals handbook (MIL-HDBK- 
5E, 1987). A slight inconsistency between the handbook and the experimental data was 
observed. The maximum strain from the handbook was approximately 0.19, while the 
experimental results indicated maximum strains of at least 0.25. It is assumed that the 
experimental results up to a strain value of 0.19 are consistent with the handbook data. 

Two different coupled formulations are used to simulate the experimental data. The 
J2 plasticity model of Section 3.1. with isotropic hardening is used for both coupled 
formulations. The nonlinear hardening relation ofeqn (73) is employed because it represents 
the shape of the hardening response for this alloy better than the linear relation. No 
kinematic hardening is incorporated since the load path is strictly monotonically increasing. 
The difference between the two coupled formulations is the damage portion of the model. 
The scalar isotropic damage model of Section 3.2.1. and the second-order damage model 
of Section 3.2.2. are considered. The latter is identical to the coupled formulation sum- 
marized in Section 3.2.3. with the inclusion of the nonlinear isotropic hardening. For both 
of the damage models the surface energy contribution to the Helmholtz function and the 
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Table I. Parameter list for room temperature 2024-T3 aluminum alloy 

Parameter name Nomenclature Units Value 

Elasticity parameters 
Undamaged elastic modulus 6, (MPa) 74.500 
Undamaged Poisson’s ratio “,a None 0.33 

Plasticity parameters 
Initial yield strength 

2, 
(MI%) 250 

Linear isotropic hardening modulus (MPd) 200 
Isotropic hardening exponent % None 0.4 

Damage parameters 
Damage threshold value (‘J,, (MPa) 1.9 

Linear damaging parameter K,, (h’if’d) 15 

kinematic damaging are neglected by setting y. = 0 and IQ = 0, respectively. The fourth- 
order damage model was not considered because for this one simple load path the response 
would be indistinguishable from the model using the second-order damage. 

On the figures. the experimental data of Cordebois and Sidoroff (1979), Chow and 
Wang (1987b), and Lemaitre (1983) are referred to by “C&S79”, “C&W87”. and 
“LEM83”, respectively. To distinguish the damage model, the nomenclature of “Zero” and 
“2nd” is used to indicate theories based on zeroth-order (scalar) and second-order damage 
tensors, respectively. 

The experimental and the handbook data are simulated using these two coupled 
formulations. The set of simulation parameters, presented in Table 1, was deduced using 
manual trial and error. Both formulations represent the behavior with the same set of 
material parameters. The simulation of the stress-strain response corresponding to the 
handbook and experimental data is given in Fig. 2. The correlations between the simulated 
and the experimental evolution of the elastic modulus is given in Fig. 3. The model 
simulations are representative of the material behavior, especially considering the scatter 
in the experimental data. 

The correlation for the apparent Poisson ratio is given in Fig. 4. The apparent Poisson 
ratio is defined by : 

For the scalar model the apparent Poisson ratio remains constant with increasing damage. 
This is contrary to the observed behavior that is represented well by the anisotropic model. 
This deficiency is inherent in a model based on scalar damage as explained by Ju (1990). 
Other deficiencies would become evident for other load paths. 

0 
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 ( 

Axial Strain (m/m) 

Fig. 2. Stress-strain response of 2024-T3 aluminum alloy. 
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0 0.05 0.1 0.15 0.2 0 
Axial Strain (m/m) 

?5 

Fig. 3. Evolution of the elastic modulus for 2024-T3 aluminum alloy. 

An alternative, but not independent, representation of the model performance is 
illustrated by the damage measures. One damage measure using the measured elastic 
modulus is defined by : 

EMeasured 

fJj_ I---- 
Eoriplnal . (116) 

For the scalar isotropic model the damage variable, d, is related to the measured damage, 
w, by: 

(l-d)2 =&l-d)* =(1-o). (117) 

Similarly, by suitable manipulation of eqn (91) for uniaxial stress, the only nonzero com- 
ponent of the damage tensor, D, is given by : 

(l-D,,)* +(1-D,,)*= (1-w). (118) 

Hence, the change in the elastic modulus is directly related to the respective measures of 
damage. The correlation between the simulated and the measured damage is shown in Fig. 

0.36 

a 

3 0.26 
2 : - Model: 2nd 

gO.24: _ _ _ Model: k 
< 

0.22: 0 C&S79 

: L C&W87 
0.2 I, ” I ” ” I ” ” I.“’ 

0 0.05 0.1 0.15 0.2 0 

Axial Strain (m/m) 
.5 

Fig. 4. Evolution of the apparent Poisson’s ratio for 2024-T3 aluminum alloy. 
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- Models: 2nd &Zero 

0 C&S19 

0 0.05 0.1 0.15 0.2 0 

Axial Strain (m/m) 

Fig. 5. Evolution of the damage for 2024-T3 aluminum alloy. 

!5 

5. The agreement is similar to the correlation with the elastic modulus because of the 

dependencies given in eqns (117) and (118). Overall, the anisotropic coupled formulation 
correlates well with all measured quantities especially considering the scatter in the exper- 
imental data. The scalar isotropic model correlates with all quantities except the change in 
the apparent Poisson’s ratio. These data sets represent a significant fraction of the available 
data on the direct measurement of damage in ductile materials, yet additional experimental 
investigations are warranted. 

4.2. Temperature-induced duc~tile4wittl~ transition 

It is generally observed that the ductility or amount of strain to failure (total damage) 
decreases with decreasing temperature of the material specimen or conversely increases with 
increasing temperature. In addition, the ultimate strength has an inverse relation with 
temperature. Therefore. a single material can at one temperature (cold) behave as a brittle 

material with relatively little strain to failure, while at another temperature (hot) the same 
material can have significantly greater strains to failure. This temperature-induced transition 
from ductile to brittle can have significant engineering implications but the transition is not 

always considered in design and analysis. 

The intent of this section is to show that with some easily measurable material par- 
ameters, such as the initial yield strength and the undamaged elastic modulus as a function 
of temperature, the trends observed in the temperature induced ductile to brittle transition 
are replicated using the coupled elastoplasticity and damage formulation. Although the 
specimen temperature for each simulation is different, the process is still considered iso- 

thermal as was assumed in the theory formulation. In other words, the simulations are of 
a specimen already at a constant temperature. 

Building on the results of the previous section, the aluminum alloy 2024-T3 is con- 
sidered again. The coupled formulation with a second-order damage tensor is used exclus- 
ively in the remaining simulations. The previous parameters (Table 1) and results (Fig. 2) 
were at room temperature and are used as a baseline. The yield strength and the elastic 

modulus arc tcmpcraturc dcpcndent. The ratio of these parameters to their values at room 
temperature (27-C) are taken from a handbook (MIL-HDBK-SE, 1987). and shown in 
Fig. 6 and Fig. 7, respectively. Both parameters are monotonically decreasing functions of 
the temperature. 

The stress-strain response at two excursion temperatures, one lower and one higher 
than room temperature, are considered. The upper temperature selected is 160 ‘C and the 
lower temperature is - 160 C. At the lower temperature, the yield strength and the Young’s 
modulus are I 16% and I 10% of the room temperature values, respectively. At the upper 
temperature, the yield strength and the Young’s modulus are 88% and 94% of the room 
temperature values, respectively. Other material parameters including the damage par- 
ameters may possibly exhibit a temperature dependency but are considered to be tem- 
perature independent here. 
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Temperature (C) 

Fig. 6. Yield strength temperature dependency for 2024-T3 aluminum alloy sheet. 
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Fig. 7. Elastic modulus temperature dependency for 2024-T3 aluminum alloy sheet. 
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The stress-strain simulations for the reduced and elevated temperature excursions are 
given in Fig. 8. Notice the trend of increased ultimate strength with decreasing temperature 
is preserved. This is as expected due to the variation in the yield strength. Of greater interest 
is the terminal values of the damage. All simulations were performed to the same maximum 
strain values. The terminal value of the damage tensor component D, , is noted on the 
figure for each simulation. For most materials the specimen breaks in the post-peak or 
softening regime at a nonzero stress state. Although the experimental data in this regime 
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Fig. 8. Stress-strain response simulations of 2024-T3 aluminum alloy for various temperatures 
(constant total strain). 
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loo 
D11=0.086 is the Maximum Damage 

Value for All Simulations 

‘11 
0 0.05 0.1 0.15 0.2 0.25 

Axial Strain (m/m) 

Fig. 9. Stress-strain response simulations of 2024-T3 aluminum alloy for various temperatures 
(constant damage value). 

are scarce, at some point the damage becomes so intense that any further loading results 
in a catastrophic failure of the material. Therefore, a critical state is defined that, if exceeded, 
will result in drastic change in the material behavior. As opposed to the complete and 
immediate failure of the specimen at this critical state other phenomena may occur, for 
example the microcracks coalesce into dominate macrocracks and/or additional damage 
mechanisms are activated resulting in accelerated growth of damage. For the current 
simulations, if the critical damage value at room temperature is 0.086, then at the lower 
temperature the critical damage value is achieved before the terminal strain value, and for 
the higher temperature, additional loading is required before this critical value is reached. 
Hence, the strain corresponding to the critical damage value is less for the lower temperature 
and greater for the higher temperature. This trend is consistent with the observed phenom- 
enon in many materials. An alternate presentation of the data is given in Fig. 9, where the 
simulations are terminated when the damage value of 0.086 is achieved. The variations in 
the strains to achieve the critical damage value are clearly exhibited. 

Based on this simple analysis using handbook material parameters it is clear that the 
use of a coupled elastoplastic and damage formulation has potential utility for predicting 
the ductile to brittle transitional behavior as induced by the change in the temperature of 
the material specimen. Either theory used separately would not indicate trends such as 
these. Additional research into areas such as the temperature dependence on the damage 
evolution parameters is warranted. 

5. SUMMARY 

A rigorous thermodynamic framework for coupled elastoplastic and damage theories 
has been developed. This unified framework is sufficiently general to encompass elastoplastic 
and damage separately, in addition to coupled theories. General forms of effective-stress- 
space yield functions and damage functions were constructed using homogeneous functions 
of degree one. With Lagrange minimization and the principle of maximum entropy, the 
evolutionary relations were derived. In addition, the convexity of the undamaging elastic 
domain was shown. For plasticity the resulting evolution of the plastic strains corresponds 
to an associative flow. The satisfaction of the first and second laws were demonstrated. 

This general framework was shown to be sufficiently general to describe many of the 
popular theories for both plasticity and damage. The broad class of J2 plasticity with 
linear isotropic and kinematic hardening was presented. The procedure for extending this 
formulation to other hardening relations or adding a pressure dependence was discussed. 
Three common damage theories were considered. Theories using a scalar, a second-order 
tensor, and a fourth-order tensor as damage measures were formulated using the framework. 
Limitations of these damage theories were discussed. The utility of the framework was 
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demonstrated by formulating a coupled model using the specific elastoplasticity and damage 
models. 

Two coupled formulations involving scalar isotropic damage and the second-order 
anisotropic damage were then used to replicate the experimental data for 2024-T3 aluminum 
alloy. The anisotropic formulation was shown to replicate all of the observed behavior. As 
expected, the scalar isotropic model did not correlate well with data exhibiting a change in 
the apparent Poisson ratio. In addition, the observed trends for temperature induced ductile- 
to-brittle transition was replicated using easily measured material parameters. 
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