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Summary

A continuum theory of deformation and flow is presented, that is based on the
principle of conservation of mass, the first and second Iaw of thermodynamics, the
concepts of a local thermodynamic state and of a local gcometric natural reference
state, o principle of determinism and on a postulate concerning the production of
entropy. As special cases are considered gases, clastic materials, simple solids and
liguids. Stress is in this theory a thermodynamieally defined quantity.

Introduction

The mathematical theorics of deformation and flow of matter deal
essentially with the gross properties of a medium. Addition of heat and
performance of mechanical work are considered as distinct means for a
change of the state of the medium. The resulting phenomena in any
particular material are, however, not unrelated and a thermodynamical
trcatment of the foundations of the theory of flow and deformation
scems the appropriate and indeed the obvious approach, but then full

account should be given of the rato of change of all quantltles that deter-
mine the thermodynamic state.

A theory of deformation and flow, founded on thermod) namic con-
cepts, should not make use of stress as a primitive concept and of the
equations of motion, but the stress concept and the equations of motion
should follow as mathematical consequences of the theory. It is to be
understood, however, that within the context of a thermodynamic
theory the concept of stress is limited by the nature of the state variables,
that are being considered. Thus in a theory, in which the effect of chan-
ges of geometry on the state of a medium is solely represented by the
mass density as a state variable, the concept of stress will only arise
as a hydrostatic pressure. One might agree therefore with TRUESDELL’s
statement, that the equations of mechanics describe a wider range of
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A Thermodynamic Approach to Rheology 17

phenomena than do the equations of thermodynamics (TRUESDELL
1952), but it should be realized, that the equations of mechanics are
lacking in physical content as long as no constitutive equations for the
stresses are given.

It is the conviction of the author that stress as a thermodynamically
defined quantity is a sufficiently broad concept to cope with the observed
phenomena in the deformation and flow of matter, though admittedly
in many instances the equations may in an approximation be simplified
in a way, that obscures their thermodynamical content. This paper
is an attempt to show that a continuum theory of deformation and flow
can be based on the principle of conservation of mass, the first and
second law of thermodynamices, the concepts of a local thermodynamic
statc and a local geometric natural reference state, a principle of deter-
minism and on a postulate concerning the production of entropy.

The concept of a local geometric natural reference state in connec-
tion with inelastic phenomena was first introduced by Eckart (1948).
His use of a reference rate tensor, not subjected to kinematical compat-
ibility equations, has unduly been eriticized by TRUESDELL (1952,
1960), because the latter did not recognize the physical content of this
concept. The local, generally non-Euclidean metric of the natural refer-
ence state is to be considered as a thermodynamic state variable, as
it is done for instance by CoLEMAN and Nowru (1959), and its rate of
change is to be determined by a constitutive equation for the production
of entropy.

The principle of determinism put forward in this paper is in the
spirit of classical mechanics. It contends that the process of flow and
deformation shall be fully determined, if for a body, free in space, at a
any initial time the thermodynamie state and, independently of this
state, the velocity field inside the body are preseribed. From the arbitrari-
ness of the velocity field with respect to the initial thermodynamic state
then follow the equations of motion, while the requirement that interac-
tion between various regions in the body shall be such, that the equation
expressing the principle of conservation of energy is identically satis.
fied, leads to the equation for the local rate of energy dissipation.

For the postulate concerning the production of entropy no other
justification can be given than that it may be regarded as another
consequence of the principle of determinism if one refuses to complicate
the theory further by the addition of other new prineiples.

It will be shown how the theory, put forward in this paper, reduces
the problem of rheological constitutive equations to the determination

of scalar functions of state variables, which define the internal energy .

and the rate of encrgy dissipation. It should be observed that in this
theory, there is no place for pure viscosity, while volume change is

IUTAM-Symp. 1966 ' 2
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18 J. F. BESSELING

always a purcly thermo-clastic phenomenon. It may well be argued
however, that this is by no means a limitation of the theory in view of
the available data on actual behaviour of materials. The theory leads
to the Navier-Stokes equations of viscous flow if the restriction of quasi-
stationary flow is introduced. It is this restriction that obscures the
thermodynamic nature of the shear stresses in this case.

Also in the case of time-independent plasticity, particularly for the
rigid-perfectly plastic model, the thermodynamic content of the equa-
tions is obscured by the limiting process, that is te be applied to the
equations of the general theory. '

Still the author realizes that the thermodynamic approach to rheol-
ogy, presented in this paper, is open to many questions, In particular
the extension of the theory to electro-magnetic phenomena is by no
means clear, while further the rigid deterministic approach to rheology
may well fail to describe adequately the infinite complexity of actual
material behaviour.

Notation

Throughout the paper index notation with summation convention
and Kronecker delta is used.
The theory is formulated in terms of rectangular Cartesian coordi-

nates and Cartesian tensors.
We employ the superposed dot for the material timederivative in the
moving continuum:

If necessary the extent of application of the dot will be indicated by an

overbar, for instance in gd V.
The superposed — 1 indicates the inverse of a transformation, defined
by
-1
b;, baj == é,-;.

Orthogonal transformations are indicated by Ry;, where

-1
.Rg, = Rﬁ .

The superposed —‘1)— denotes the square root of a symmetric tensor,
defined by -

s

Cop = 3 VOPuP 0.

r
where C® is a principal value of the tensor C,4 and where n{” are the
direction cosines of the corresponding principal direction.
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A Thermodynamic Approach to Rheology 19

Conservation of Mass

In classical mechanies and thermodynamics mass is recognized as an
indestructible property of any closed system. The motion of elementary
particles of a system can in general not be described by the motion of a
continuum, in which each particle occupies & material point. Further-
more the system may consist of different types of particles. If, however,
at any instant the probability for a particle to be of a certain type is
independent of its location in the system, the average motion of mass
inside the system can-be represented by the motion &; = #;(z;, %y, 2, t)
of a continuum with a mass density ¢ = o(x;, s, 25, {). We shall con-
sider only systems for which this continuum approach is permitted
and which are of finite extent, with a non-vanishing mass density o
inside a moving volume V. This volume with constant mass will be
denoted as a body. :

We shall assume that for the body the velocities &; and the mass
density o are continuous differentiable functions of the coordinates.
The principle of conservation of mass is then expressed by

_{: Kk _
QdV—(e +an¢)”“°’

?

or
Do, Doy o0
o T oy i +e o, 0. (1)
First Law of Thermodynamics

“In classical mechanics and thermodynamics it is asserted that with
respect to each of certain preferred coordinate systems, the so-called
inertial systems, the quantity energy,

1
U 4 —Efg:c,«x,-dV,
172

is a second indestructible property of any closed system, where the
internal energy U is independent of the average mass velocity &; and is
an unique functional of appropriate state variables for the material
under consideration. The class of coordinate systems, with respcct to

which the kinetic energy -%— f o &;dV is to be defined, is determined
4
by the group of Galilean transformations

x=Vt+ Eii(xj - V;t), E;R—ki = b, (2)

2%
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where ¥; represents an arbitrary constant velocity and where R;; is a
constant orthogonal matrix. Since U is te be independent of &, it follows
that U must be invariant under the transformation (2).

Seccond Law of Thermodynamics

Changes of state of a material system can be due to external and
internal causes. For a closed system, where the state can only change by
internal causes, it is a fact of experience that the system will tend to
an equilibrium state, characterized by the vanishing of the timederiva-
tives of all state variables. This concept of irreversibility of the changes
of state is by the sccond law of thermodynamics formulated in terms of
a functional of state variables, the entropy S, that for a closed system
satisfies the inequality.

S >o0. (3)

. It may be observed that in an equilibrium state holds U=0 and
8§ =0, since both U and 8 are functionals of state variables only.

" The Concept of a Local Thermodynamic State

A closed material system may be broken into a number of interacting
subsystems. Now it is postulated that, like the kinetic energies, the
internal energies as well as the entropies are additive. This implies that
the internal encrgy and the entropy of a subsystem are functionals of
state variables, which refer to this subsystem only. It is clear that there
will be a limit as to the smallness of a subsystem to which this postulate
still applies. The thermodynamic approach is a-priori restricted to
systems, whero statistical averages are meaningful. However, the defini-
tion of a local internal energy « and a local entropy s, both taken per
unit mass, for a system in a homogeneous state a mathematical trivial-
ity, is a lawful artifice in the description of non-homogeneous states
of bodies, where u- and s-distributions may represent the internal
cnergy and the entropy of all subsystems up to the smallest system,
that permits a statistical averaging procedure. If furthermore the varia-
tion of state variables is small within a region that is large compared
to the smallest thermodynamie system, then we may consider the values
of u and s in a point as functions of locally defined state variables.
However, since the.entropy has been introduced to express the irrevers-
ibility of the changes of state of a closed system, the entropy per unit
mass, s, may itsclf, without loss of generality, be treated as a parameter
specifying the local state, together with other appropriate state variables
for which the rate of change is not subjected to any inequality. The
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A Thermodynamic Approach to Rheology ' 21

scalar quantity s is invariant under the transformation (2) and the

internal energy per unit mass, u, may therefore be any arbitrary func-
tion of s.

In order to indicate, that the notion of the smallest thermodynamic
system presents under normal circumstances no restriction to the validity
of the concept of a local thermodynamic state, it can be observed that
the number of particles in air at scalevel amounts to 2.7 . 1012 ¢m-3
and in iron to 8 - 6 - 10%2 ecm™3.

According to the sccond law of thermodynamics for any closed
system the rate of change of s must satisfy the inequality (3)

A5;=f9§dl’20..
7

Locally, however, § may be negative due to the interaction of various
subsystems in the body. Because of the additive property of the entropy
we can, besides an entropy production per unit mass 5 > 0, define an

entropy flux &; = hy(xy, x,, 25, t), that determines the distribution of
entropy, such that '

0 = ——~ 05, §>0. 4)
1

If the body as a whole is a closed system, its boundary is a surface
through which no interaction takes place, and hence on this surface

shall hold fe,-n; =0, where n;is the outward unit normal. The inequality

for the local rate of entropy production, §>> 0, ensures that the second
law of thermodynamics is satisfied, since

,S"—_—f(-—-—g’::—“—{— gE)dV: —fit;nidA +fg§d]’.
W - A v

Later on we shall require that the flux of interaction h; is such,
that the equation expressing the principle of conservation of energy
shall be satisfied identically, thereby establishing the connection be-

tween the flux ]'u and the flux of energy, known as the heatflux. Inequality

(4) then becomes equivalent to the Clausius-Duhem inequality of thermo-
dynamics.

Insofar as the rate of change of state variables is not defined in

terms of the velocity field of the moving continuum, representing the
average mass motion, this rate of change shall be determined by thermo-
dynamic constitutive equations, which are an expression of the proper-
ties of the material as a thermodynamic system. They constitute the
essence of the theory of irreversible thermodynamies.
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The Geometric Natural Reference State

Let the properties of the material under consideration be defined in
some reference state. The internal energy « may now be considered as
a function of state variables, that define changes with respect to this
reference state. Thus in the following s will represent the change of
entropy and will be taken equal to zero in the reference state.

It will be assumed that the physical properties of the material in the
reference state, that determine the functional dependence of « on the
state variables, arc preserved in any subsequent process, in particular
any anisotropy, that the material may possess, Anisotropic properties
can be defined with reference to orthogonal triads in each point of the
body, which without rotation are carried along by the motion of the
continuum. It is now postulated that the geometrical configuration of
the material at any instant in each point of the body is related to the
configuration in the reference state by a invertible transformation of
line elements

da, = by;dx;, det (by;) > 0. (5)

Here the da,’s define line elements in the local coordinate system, deter-
mined by the orthogonal triads, which, with their fixed directions in
space, form a base of reference for the anisotropic properties of the
material. A

By the theorem on the unique polar decomposition of a tensor with a
non-vanishing determinant the above transformation of lineclements
may be decomposed into a rigid rotation followed by a deformation
with a symmetric transformation matrix, as illustrated for the two-
dimensional case in Fig, 1. It should be realized that the configuration
of the natural reference state in a point of the moving continuum with
respect to the orthogonal triads remains always the same, though the

" identity of the material particles, that make up this configuration, is

in general subject to change. This is an allowable concept since the motion

- of the continuum describes only the average motion of mass, but not

the motion of the individual particles. So, if we consider for instance a
crystal lattice, in which a process of slip has taken place, then a unit

- cell can be made up of atoms, that before slip took place belonged with

other atoms to different unit cells. The unit cell, illustrated in Fig. 1,
in a point of the continuum, covering the lattice, is at any instant the
same, but the identity of the atoms, that make up the unit cell, may be
subject to change. '

It follows from the above that it is in gencral not permissible to
consider the system (5) as exact differentials for the corresponding func-
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A Thermodynamic Approach to Rheology 23

tions of the coordinate points in the space z;, x,, &3, because the condi-
tions of integrability will only be satisfied in special cases (i.e. in thermo-
elasticity). The tensor b,; is a physical concept, like the metric tensor
of the natural reference state, as introduced by Eckart (1948), and it
is not subject to kinematic compatibility equations derived from the

zz
—————— Instantaneous geometrical configuration
Configuration in natural reference state

Fig, 1. Two-dimensional llustration of the transformationda, = by da;

motion of the continuum, which represents only the average motion
of mass inside the body. ' :

State variables in the internal cnergy function w shall, like the
internal energy itself, be invariant under the group of Galilean transfor-
mation (2). Since the orthogonal triads in each point of the body are
conneeted with the fixed natural reference state, they arc not affected
by the transformations (2) and hence the da, ’s are invariant under this
transformation. It follows that

da, = by da; = b, By daf = b}; daf,
or

boi = bi Rji. ©)

J

A
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24 J. F. BESSELING

Since the components of the tensor b,; arc not invariant under the
transformation (2), they are not thermodynamic state variables. Thoy
define, however, a tensor C.p

C,p = byibp; = by Rybpy Ry = by, : (7)

which does possess the required property of invariance under the group
of Galilean transformations. We shall show in the following that a broad
theory of rheology can be based upon an internal energy, that is an
unique function of the state variables s and C.

u =u(s, Csp). (8)

The Principle of Determinism

From classical mechanies it is known that if, independently of each
other, initial positions and initial velocities of mass points are given,
the subsequent motion is determined. It is in the spirit of this principle
of determinism, that it is postulated here, that an initial thermodynamic
state and an initial velocity field, prescribed independently of cach
other, shall suffice to determine the subsequent motion and accompany-
ing thermodynamic processes. It follows that to all possible thermo-
dynamic states and to all velocity fields shall correspond definite rates
of change of all state variables.

It was pointed out before that in sofar as the rate of change of state
variables is not defined in terms of the velocity field of the moving con-
tinuum, this ratc of change shall be determined by the material as a
thermodynamic system. However, an element of volume d V, imbedded
in the moving continuum, does in gencral not represent one and the same
thermodynamic system at subsequent times, since the velocity field
defines only the average motion of mass. This difficulty dees not arise, if
it is postulated that the thermodynamic processes depend only on the
instantaneous values of the state variables, because at any time ! an
clement of volume d V7 does comprise a thermodynamic system within
the limitations imposed by the concept of a local thermodynamic state.

From here on therefore, we shall consider the rate of entropy pro-

duction § and the flux of interaction k; to be at any instant uniquely
determined by the thermodynamic state, as characterized by the values
of the state variables.

With respect to the geometric natural reference state it canbe observ-

ed that its rate of change, characterized by da,, may be expressed in
terms of quantities, determined by a local thermodynamic process
through the valucs of the state variables, as well as in terms of the rate of
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A Thermodynamic Approach to Rheology 25

change of the tensor J,; and the velocity field of the moving continuum:

.d_;l: = paidxi = (i)«xi + b 'a_éi) dx;,

M pxy
or
b = Pas = by | ©)
where the tensor p,; shall now be uniquely determined by the values of
the state variables. This concept of a rate of change of the natural ref-
crence state determined by a thermodynamic process, independent of
the concept of a moving continuum, is due to EckarT (1948), though by
him it was formulated in a more restricted sense in terms of a rate of
change of the reference metrie.
With the aid of (9) the rate of change of the state variables €5 can
be expressed by

C.'.xﬁ.‘: i’aibﬂi + b bpi = Pai bp; - bay g — 20, bg; dy, (10)

where d;; is the rate of deformation tensor, defined by

1 fox; | Oz
di; = —{—% . —L},
H 2 (axj + 31‘;)

Now, on the basis of an internal energy function u = u(s, C,p), a
number of conclusions can be drawn from the first law of thermo-
dynamics and the principle of determinism.

The rate of change of = is given by

. ou ou ,
@ =——Cyp+ —38,
¢ =505 Crt 5 ¢

or, according to cxpressioné (4) and (10), by
. . cu |
3Cxp

g’ll, - 29 ou « ou ahi

du
b.\ipﬁi — 29 3‘0—1; baibpidi; 40 e § — N 3; (11)

We shall define the following quantities, which are determined by the
thermodynamic state through the internal energy function u:

ou
t” i "-29—6—6‘;6“;65}, (12)

1 o
T = P (13)
The tensor £; will be denoted as stress tensor and the quantity 7' as tem-
perature, because these quantities will appear to possess all the charae-
teristics, usually attributed to quantities with these names.

TR
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26 J. F. BESsELING

For a body, that constitutes a closed system, conservation of energy
is expressed by

U +fg'b¢ (II’—fe(u-{-*v,'c,)dV

f[tiidii - tﬁbixmc + Tos — T = + o 'vi] dV=0. (14)

By means of the divergence theorem, and observing that on the bounding

surface of the body as a closed system holds #;n; = 0, we can transform
eq. (14) into

9 A I +, o7 ¢ -1 7
(— 52 + QM) x;+ Tos -+ . h; - tijbjpai |V +

V

+ ft,-,-n,-:;:,- d4 =0. (15)

According to the principle of determinism, formulated above, any pos-
sible thermodynamic state and any independently chosen velocity field
constitute allowable and sufficient initial conditions for the mathemat-
ical description of the subsequent motion with the accompanying thermo-
dynamic processes. Therefore eq. (15) must hold for arbitrary velocity
fields 2y, while all other quantities, p, z;, and the quantities determined
by the thermodynamic state, are independent of a;. From the principal
theorem of the caleulus of variations then follows the important con-
clusion, that

By a = ’
22, 0% =0in | (16)
and
i.;n, =0 onA4. (17)

Equations (16) are to be identified as the equations of motion of Cauchy,
which in our case are obtained without reference to the principle of
balance of momentum, be it in the limited sense of a thermodynamically
defined stress tensor. Further this stress fensor is symmetric, not by
virtue of the principle of balance of moment of momentum, but because of
the symmetry of the tensor Czin (12

By eqs. (16) and (17) eq. (15), expressing the conservation of energy,
is reduced to

. -1
f (m + j—“’ he — ti;bf,pa;) dV =0. (18)

T
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A Thermodynamic Approach to Rheology 27

The flux A; has been introduced to represent the interaction between
various regions in the body. So far no restriction has been imposed on
this interaction. We shall now require that the flux of interaction k; is
such, that the eq. (18) is satisfied identically, i.e.

-1
T()S + —a'x— k; —_ t{,b,xpag ={. (19)

Let us now consider a closed region of volume ¥y, , bounded by a sur-
face Ay, inside the body. For the rate of change of the energy, contained
in the volume Vi, , is found

fg(u + &@)dv uf(t,,n;'v, Tk;m)d:l (20)
Alnt.
Hence the interaction between the region Vi and the rest of the body
can be interpreted as a flux of mechanical energy (i.c. defined with the
aid of the velocity field of the continuum), ¢;n;%;, and a flux of non-
mechanical energy, — Ti"o,-n.-, through the surface 4y, . Theflux g = T I.c;
is then to be identified as the heatflux.

While according to (17) the mechanical interaction vanishes, if the
thermodynamic state is such that {;;#; =0, the non-mechanical inter-
action by the very definition of h,, vanishes only if hm; = 0. Interaction
without energy exchange is beyond the scope of thermodynamics. Hence
the temperature 7' must be unequal to zero for all thermodynamie states,
where a non-mechanical interaction is possible. Therefore the scale for T,
hitherto left undefined, must satisfy the condition 7' 2> 0; the state with
T = 0 being defined as the limiting case of a state where any non-
mechanical thermodynamie interaction becomes impossible. Incquality

(4), after substitution of the heatflux, ¢; = Ti'z,, with the so-defined
absolute temperature, is known as the Clausius-Duhem inequality.

Irreversible Thermodynamics

For the problem of rheology, as it is being considered here, the theory
of irreversible thermodynamics pertains to the determination of con-

stitutive equations for the quantities §, h, and Pai» Which oceur in eq. (19).
Tlirst we shall show that the tensor p,; must satisfy a specific con-
dition in order to ensure, that the logical requirement is fulfilled, that
the mass density, corresponding to the geometric natural reference
state, is constant and equal to a given value p,,.
The length of o line element in the natural reference stato is according
to (5) defined by

dB == da, da, = by be da; dz;. el
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28 J. F. BESseLING

The tensor
gij = ba; by g = det(gy;) £ 0, (22)

is the metric tensor, that defines the generally non-Euclidean metric of
the natural reference state in the 2, z,, z; space. By virtue of the follow-
ing equalities

-1 -1 > r
ox .
lllg == J“g‘f = G4 [(pai —_— b\l Py ) aj + b\; (7’;, b\L- a_z:—)]a

. -1
— D2
In == Gsj (P:nba; -+ bu]’a}) —-2— Bi‘ ’
k

and with the aid of eq. (1) in the form

0 0 oz
—_— ln —_— e —e ._._L.
e 2 L
we arrive at
...l -
Qo }9

QN(P«; (3] + bnpaj) = 2In

Since

-1 —-1-—1
by = (bsiba'j)_l = biab;'m
we have '

-

(/U (pm «f + bu p'!f) = Zbupat 2In (00:9) (23)

Locally the metric tensor g;; defines the relation between a material
element of volume dV in the x;, x,, 23 space and the same material
element of volume d V in the natural reference state by

o =VgdV.

’

Because the mass content of dV and dV, is the same, we have

00 dVy=0,VgdV =0dV
QBV; 1-

e

(24)

Hence according to egs. (23) and (21) the tensor p,; must satisfy the
condition

-1

2bfap.xi = 0. (25)
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If the stress tensor is decomposed into its deviator s;; and its pressure
component p,

lij = 8 — 235;';’» Sax = 0, (26)

we can observe, that beeause of condition (25), the pressure component
docs not contribute to the rate of energy dissipation. According to
eq. (19)

N a7 -1 -1
Tos =— . hy -+ 815 0;5Pa; — D iy

or by (25)

. -1
Tos = — %Z—' hi + 545054 (27)

As all three quantities, 7', 0, and 3, are non-negative, we know from
what has been postulated in the preceding paragraphs, that the rate of
energy dissipation 798 is a positive, semi-definite function of state
variables.

We note that the rate of encrgy dissipation is always the scalar
product of a vector or tensor of quantitics, determined by the thermo- .
dynamie state, and a dissipation vector or tensor. The relative magni- 1
tudes of the components of the dissipation vector or tensor shall depend
on the dissipation mechanism. We shall now postulate that sufficient
information on the dissipation mechanism is contained in the energy
dissipation function, such as to ensure that the relative magnitudes of
the components of the dissipation vector or tensor depend on the state
variables solely through the functional dependence of the energy dissipa-
tion function on those state variables, that are associated with the
dissipation vector or tensor in the expression for the rate of energy dissipa-
tion.

The quantities —ao—f— and g;; in eq. {27) are no state variables, since they
1

are not invariant under the transformation (2). We shall show, however,
that they are related to state variables through orthogonal transforma-
tions. o

~ According to tho theorem on the unique polar decomposition of a
tensor with a non-vanishing determinant, we have 3

-

s
bm’ = OaﬁRﬂ;, RaiRﬁi = 6(,‘9, (28)

Ha .
where 0,5 is invariant and where R,; obeys the transformation rule

R;i‘ = R‘,"Eﬁj . (29)
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Hence the quantities
N . du He s
t,‘;Rn'Rpj 29 ac Cﬂ_.‘ O,,ﬁ (30)
are proper state variables.
Further it can be observed that by virtue of the invariance of the
quantity
o7

T 5 .,
oz, d:c' = oz, ]{" diIJJ

the transformation rule for o reads

axi
oTYy T = ' C
('a'xT) =5 By, (31)
Therefore the quantities
eT - o7
Roi g = BBy R = (R—B;—) (32)

arc invariant under the transformation (2) and are proper state variables.
The orthogonal transformations applied to ¢;; and -:711- in(30)and (32)
t

are of importance in the case of anisotropy. Then the rate of energy
dissipation is not a function of the invariants of these quantitics and a
rotation is necessary to bring the material directions in concordance with
the orthogonal triads, specifying the local anisotropy.

We shall now assume that the rate of energy dissipation due to spatial

. interaction, represented by the first term on the right hand side of

eq. (27), isindependent of the local rate of energy dissipation, represented
by the second term, We then have

Tos =D, + D, (33)
with '
D, = 2L =p (57 R 2E) >0, (34)
1 oz Pty B a
-1
D, = sijbjpai = Da(p, T, sq5 Boi Bg;) 2 0. (33)

According to what has been postulated above the vector f.zi, as a dissipa-
tion vector in -ZTT-space, is determined by
@
. aD,

hy = —2 WETa% (30)
* (3]
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~1
and b;,p,;, as a dissipation tensor in s;;-space, by

-1
__ . 9D,
bjxPai = 22 os;;°
or
b b, 2aby Z2e (37)
Pai = «j ﬂpﬁa'— af 33;} .

Thus the directions of the dissipation vector and tensor satisfy the
so-called normality condition with respect to surfaces of constant rate
of energy dissipation in the -:—;I—j- and s;;-space respectively. This condition

L3

has by Z1eGLER been interpreted as a generalization to the nonlincar
casc of the Onsager relations (ZizcrLEr 1961). Here we have simply
postulated this condition on the basis of deterministic reasoning. It leads
to constitutive equations of a special nature, which have the advantage
that they are sufficiently specific to permit, if experimentally verified, the
definition of rheologieal properties of materials in terms of an empiri-
cally determinable scalar function for the rate of energy dissipation.

The material derivative of the tensor b,;and of the state varibles C,,
given by (9) and (10), can now be expressed in terms of the velocity
field of the continuum and the function D,

Bat = by [}2 — m] (38)

al’i \

Cop = 2o [ba, o b+ by ]—zbaibﬁ,dﬁ,

or

- o 8D,
G,p = 2baib,8j (22 "a:;' - d‘ii) . (39)

The values of the scalar factors 1, and 2,, that determine the magnitude
of the dissipation quantities, are found by substitution of (36) and (37)
into tho expressions (34) and (35)

_[er_ap, -t
=y ror ] D, (40)
. ox;
] oD, -1
%y = s;,-—a?i:—] D,. | 1)

The theory is now complete, since tho rate of change of all quantities,
that have been introduced, is determined as soon as an initial thermo-

Supplied by The British Library - "The world's knowledge"

e G e e eem e



32 - J. F. BESSELING

dynamic state and an initial velocity field are given. The material prop-
ertics and the constitutive equations are fully defined in terms of the
function for the internal energy, u = u(C.g 8), and the functions
D, =D, (p, T, R%) and D, = Dy(p, T, s;; Ry Ry). that dotermino
t
the rate energy dissipation in the irreversible thermodynamic processes.
It should be observed that the function # = u(C,4, s) need only to
define the change of the internal energy per unit mass with respect to
some known reference state, characterized by a mass density g,, an abso-
lute temperature 7', and a stress tensor (t;;),. The absolute value of the
internal energy per unit mass is irrelevant in the theory of rheology; this
in contrast to the absolute values of the dissipation functions D, and D,,
which determine the magnitudes of the dissipation quantities.

Summary of Rheological Equations

The rheological problem, according to the theory that has been
formulated in this paper, is described by the following equations:

e, e . 93 _ .
ot "o T =0 (1)
8s s o\ _ 2 DD
¢ (6t T o '1‘) = T T (), (33)
s 8D
hy = — > ﬁ ; (36)
(99’1)
Bbai | Bbai: oD, o\,
ot T o = bt (7'2 28y ax,.)’ (38)
300‘5 80043 . . 6D2 _‘_]_,‘ _6_53_ féi .
a T d; %y = 2baiby, [)"- s 2 (ax,. + E A (39)
~
Ry = Coply;; (28)
' du 1
bij = —20%0, baibpy = sij — pdij, P = —Ftus (12)
7=2% 7>0; (13)
o8
i’.‘f, — “'- — -?‘-%—i- —a——a.’:i T N )
- gy T O Q(at T oz )’ (16)

u=u(l,ps8), v=0 for pg=p, T =T, ;= (i): (8)
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D, =D, (», 1 1, LLY, ; D (34, 60)
1 1 s Ay Mg 31" H (7.‘1.". 5 aT 17 3
31‘;
5 oD,-! s
De = Dz(p, T, 3iiRaiRpi):' Lo = Sif o -D2' (30), (41)
84

These equations define a system of 30 field equations for the 30
dependent variables g, 2y, s, hy, T, by;, C.p» and t;;. Proper initial condi-
tions for this system are of the form

t=0: b; =0b,(x,, x,, x,),
s =s(xy, 7y, T),

T = (g, Ty, Ty)

The initial mass density follows then from (24)

o =00 Vo, 9 =det(gy), 9 =Dbuiby,

while the initial values of C,4 are determined by Caz = b,;b5;.
For a body that constitutes a closed thermodynamic system, the
boundary conditions are given by

tiin; =0, Iyn; =0 ondA4.
Proper boundary conditions for non-closed thermodynamic systems are

t,'i’)ll‘ = p? or 3:'; = :L“? on A
and

T=1T° or fmz.- =1° onA.

Here the super index 0 indicates a preseribed function of time.

It is clear that the boundary conditions impose certain restrictions
on the initial conditions in the boundary layer of the body. It should be
realized, however, that preseribed initial boundary conditions are an
artificial concept in the deseription of natural phenomena occuring in
infinite space, where all systems interact with adjoining systems and
where this interaction is never a one-way traffic.

Special Cases

In order to illustrate the theory we shall now consider a number of
special constitutive equations, corresponding to special forms for the
functions u, D, and D,,

IGTAM-Symp. 1966 3
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a) Gases

Let us consider the case that the internal energy per unit mass
depends only on the absolute temperature, » = f(T), or more specifi-
cally

u=c(I' —T,), c= constant. (42)

With the aid of (13) we arrive at the following equation

cu
Cos —u =cT,,

which determines the dependence of % on s

u = Lkexp (—f-) —cTy, k=1LKk(C,p). (43)

First we shall assume now that the effect of changes of geometry on the
state of the medium is solely represented by the mass density. According
to (24) we may then put & = k(g). More specifically we shall consider
(¢ =0forg =1and s =0)

© =cT, [g" exp (—%) — 1]. 44
The stress tensor and the temperature are then given by
du ou
by = "29‘55;; b,ibp: = —20 'g'g'ﬂ’éii

= —2cyeT,q" e\p( ) 0ijs ' (45)
7 =22 _ 7g7exp(L (46)
i T s oI exP 1
l
,i Stress arises in this casc only as a hydrostatic pressure, which by elimina-

tion of the entropy from (46) and (45) is found to obey the equation of
state for a perfect gas.:

! ‘ p =2cyo.

I‘ The constant c is to be interpreted as the specific heat at constant volume,
¢;» while the introduction of the specific heat at constant pressure, Cps
through the enthalpy or heat function #.

|| ‘ dh = d(u + 'g‘) = (¢, + 200‘/) aT = cﬂdT’

shows that the constant 2¢,y is the gas constant R =¢, — ¢,.
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The simplest example of an equation for  of the type (43), that leads to .
shear stresses, is offered by
8 -
o(2) -1] )

For the stresses and the temperature follows

u=cT, [

ou . 2 8
bij = "29%:; byibg = _39611“ exp (7) Gijs (48)
=2 % C,, exp (%) (49)
Since
Jit = Cax:

the expression for the pressure component may, after elimination of s,
be written in the form

'Lt"" == ncT exp (—z—) Jii = '%‘GQT. (610)]

pP=—73 9 ¢

This is the equation of state for a mono-atomie gas with

2
R=-c=cp—¢,=

3 =y

3

For a complete description of the mono-atomic gas the dissipation
functions D; and D, must be specified. We shall examine the simplest
forms, that satisfy the conditions D, > 0, D, > 0.

oT oT

Dy =« a—xi"a;;, x=u(p,T)>0, (81)

D, = Bsijsij, f=ppT)>0. (52)

We then have according to (36) a heatflux ¢; = Thy, determined by
| T -

q; = —aT "a?l (03)

which is equivalent to Fourier’s law of heat conduction. The dissipation
function D, can be used to determine the stress rate

. é o 2
bij = ty; (—;— -+ —E-) -— -J—cToo exp ( ) gii
or, according to (1) and (38)
. & .
bij = l.x 3 £t tu'a—— + ti} 3 - t;i—c' = Bty + tipsui).  (54)

3%
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- This rather unwieldy expression may be replaced by a considerably

simpler constitutive equation in the case of quasi-stationary, small
distortions with respect to the natural reference state.

Small distortions with respect to the natural reference state can be
defined with

C»\ﬁ

= 6'\13 + eaﬁ’ leaﬂl < 1. (55)

L

C.
gs 28
ey

} ~ ok [ Ca oD, .,
g® 'ﬁ‘—( ﬁ) + 2b,:bg; [7-2 %s" —dij + dkk(st'."] .
: if
But according to eqgs (1) and (24) we have

=2 4
3oy A 9%
g + 3 g 32". 0.
Ience the rate of distortion is given by
Cop\ _ 2buiby [, 2D t
2| _ Zbiby [;2 2t~ dy + g da éﬁ], (56)
g3 g3

or, after substitution of the expressions (48), (49), (60), and (52)

' 1
T _ c s Coy — = Cos9py
Lag — 0 ﬁ < * .
1 Cixx
g3 93
2b.\' b ¥ 1 -
—_ —‘—ll—@- (dii — —3— dkk 15,-5) . (OI)
g? .

Introduction of the tensor e, from (65) leads to

1
o epy — ~ o Oy
Lot ) =iy = —2pBlosy + ) | ——— | —
9—3_ 1+ "é”e.\x
2b,:bs; i s
— ——MT-@L (dii —_— -g'd“» 5,'1') . (03)
gs
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If we neglect the tensor e,, with respeet to 6,,, because the distortions
are assumed to be small, we have

- 1 2ba'b j 1 P
Cxp -+ 2])ﬁ (eaﬁ - '§' ewé,,ﬂ) Rz —'—*'%—5-)- (di,' -_ 3‘(1“; (S”). (09)
It follows from the theory of differential equations that

2b.;bgj

. 1
[ap] K (dii — E‘dkk 5:';)

e : (60)
g3 ‘

provided in the gas flow the following conditions are satisfied

d® T 2b,;bs; 1 2b.:bs; 1
Et,_;[ —““lﬁ} (dii — 3 du 51:‘)} < 2ph) _'j_ﬁ(dii — 5 0 5:;) . (61)
g3 g3
By virtue of (60) we may then put according to {50)
1 oD,
dij — 5 dwbij = 2 38; = Psy. (62)

Thus we are led to the equations of viscosity of Navier-Stokes without
volume viscosity. The shear stresses are in our case still thermodynam-
ically defined quantities, though their thermodynamic origin is fully
obscured in the eqs. (62).
' In most gas flows the conditions (61) will be satisfied. Shock waves
may be an exception, and it is just in connection with the calculated and
measured thickness of shock waves, that the need for the existence of
volume viscosity was felt (GiLsare and Paorucct 1953). Perhaps the
explanation for the discrépancy between theory and experiment must in
this case be sought in the fact, that for shock waves the conditions (61)
are not satisfied. The decisive quantity is here the value of
erT

2pf = P (63)

where u represents the viscosity (s,-,- =2u(dy — 1/3dk,,.é,-,~)).

b) Elastic Materials

An elastic material will be defined here as a material, for which the
dissipation tensor p,; (9) vanishes. The geometric natural reference
state can then always be defined such that the system (3), da, = b,;d=y,
represents exact differentials for functions a, = a,(z,, x5, x;), or

by =2 (64)

0 x;
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Hence the motion of clementary particles in an elastic body can be

described by the motion of a continuum, in which each particle occupies a

material point. The displacement tensor -%%‘- describes the change, which
i

the displacement from the state of the body at time ¢ to the reference

state induces in the relative position of any two points as these points

draw together.

For the material of a body, that as a system frec in space will not
desintegrate, the stress-free state must correspond to a thermodynamic
cquilibrium state with non-vanishing mass density. Besides on the
temperature, the internal energy function » for such a material will
depend on the inter-particle distances, and thereby on g = (d V,fd V)2.
The simplest form of such a function is presented by

u=cl +cTo(g¥ —2)
or, according to
ou
w— et = oTo(g7 —2),
by
u=cT, [L' (0;5) et + g — 2]. (65)
Let us consider an elastic body for which there exists a state, to be
taken as reference state, which is completely stress-free. Any choice for

%(C,p) in the function u, defined with respect to this reference state, must
satisfy the following requirements:

19 the stresses t;; vanish for T = Ty and C,p = 0,4,
29 y is positive definite for all isentropic deformations (s = 0) from
the stress-free reference state.
If we restrict ourselves to isotropic materials, and if the first in-
-1
variant of the inverse of C,z is denoted by C,,, the following expression
for u satisfics the requirements, formulated above.

1 (1 -1 1 -1
u© = CTO [-3—{(? —ﬁ)g 3 Cax + (_2"'!' ﬁ)gi& Ca:} X
xwwﬁﬂ+w—4. : - (66]
Hcre ¢, B, and y represent material constants with the restriction: —-;—_<_

i
<L 5

-1 -1
It can be observed that, since Det (g 3 Caﬁ) =1, the tensor g 30,
is a measure for distortion at constant volume, while g represents the
influence of change of volume.
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Expression (66) appears to lead to some of the thermo-elastic effects
obscrved in rubber-like materials, where the ‘“compression modulus”,

docy? To., is large compared to the “shear modulus”, % gcT. Fory-—>o0

we arrive at the Mooney-Rivlin theory for rubber, in which the pressure
component is treated as a thermodynamically undefined quantity and the
deformations are subjected to the subsidiary condition g = 1.

ITowever, the three material constants in expression (66) prove to be
inadequate to cope with the experimental data on rubber-like materials.
A'better quantitative description is expected from a five constants theory,
based on the following expressions for u:

W = o(T — Ty) + Culg — 1) (©7)
and
1 11 s
et s (a4
toroler —1) 4ol —neF + v —1] (09)

Here the isothermal bulkmodulus of elasticity, C, the shear modulus
of clasticity, ¢, and the cocfficient of cubic thermal expansion, «, all
defined with respect to small deviations from the natural reference state,
are related to the specific heat at constant volume, ¢, and to the constants
Cy, C,, and y by

G

2 __G_ =2
0'— 80)’ Ol[ 2CT0]’ G - 3 902’

« = 1 . (69)

G
49T, [l —_ 26,1,0]

¢) Simple Solids

A material will be denoted here as a solid, if the stress-free state
corresponds to a thermodynamic equilibrium state. As it already follows
from this definition of a solid, and as it will be shown in the following,
it may be difficult to distingiush between a solid and a liquid.

The adjective “simple” will be used here to indicate that the same
functions u, D; and D, apply to the material in all points of the body
Unfortunately all real solids are to some extent non-simple solids, as
for instance all metals with their polycristalline structure.

In contrast to an elastic material, in a general solid the dissipation
tensor p,; shall vanish only under special conditions of stress and tem-
perature; and hence the system (3), da, = b,; dz;, after an arbitrary
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40 J. F. BESsELING

thermodynamic history from a certain reference time ¢, will not repre-
sent exact differentials for functions «, = a, (2, «,, 23).

For the internal energy function u of a simple solid we could con-
sider expression (68). However, since for most solids, as for instance all
metals, only small deviations from. the natural reference state can be
realised, it usually suffices to consider the theory for this case.

We shall first consider the theory for small deviations from the natu-
ral reference state as it is applied in the field of structural analysis. There
the theory is usually further restricted by the condition that the devia-
tions of the configuration in the natural reference state from a certain
reference configuration of the continuum remain small.

If we denote the coordinates of the material points of the continuum
in a certain reference geometry by §,, &, &, then we can define the
motion of the continuum by three single-valued functions

Xy = &y ('5"1: ‘:"2: 53: t)- (70)
We can now write
d[l»a = b“i d:r,- = bai % (15;;. (71)
08,
If we put
a
bi e = ok + Paks (72)

then we can express the condition, that the deviations of the configura-
tion in the natural refercnce state from the reference configuration of the
continuum remain small, by

|Bax] < 1. (73)

Here it should be observed that we wish the quantities f,; to be invariant
under the Galilean transformation (2) in order that condition (73) may be
fulfilled, irrespective of the choice of the inertial system. The coordinates
£ 80 &y should then be invariant under the transformation (2), which
implies that the axes of the coordinate system & must concur with fixed
material directions in the reference geometry of the body, like the orthog-
onal triads, that serve as a base for the du,’s.

If we introduce as a measure of deformation of the continuum the
Lagrangian strain tensor

+ 1 [0z, dx -
By = (5 5%~ ) ()

and if we take as geometric state variables the components of an “elastic”
strain tensor, defined by

L, _ 1 13 5
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then we have the equality

b

ox; ox; 1 :
i 6‘ — Upi o =';'(2Ek! + S — by b

a5 bai 3"" M 35:)

From (72) and (73) we conclude that

11! l
By — Efj = Eipdu0p = By,  |Ef =;|ﬁai5a,— + B0 + BuiBajl L 1,
(76)

17

where Ef is called the inelastic or plastic strain tensor,

The state of the matcrial is now at any time ¢ determined by the
-ariables Bj; and s, while according to (74) and (76) the tensor Ej; is
defined in terms of the three functions (70) and the six independent com-
ponents of the symmetric tensor E7;. The internal energy per unit mass
may then be given by

u = u(Ey, s). (77)

If we let the natural reference state at some instant coincide with the
reference geometry of the continuum, then the mass density is the same
for the natural reference state and for the reference geometry of the
continuum and is equal to g,. Accordingly, we have

ox Gk ’ -
pw@ma;mfﬁﬂ._l or B = 0. (78)

In this case, by taking &, &, £, as the independent space variables and
performing all ealculations in the reference geometry of the body, we
satisfy the principle of conservation of mass automatically, while the
principle of conservation of energy for the body as a closed system is
expressed by

f%m+@mdv

7o
) au 7 Y * 2] —
= [QoEE;E-- _an, b,;—i— °a s+o°a,;m}dl 0
7

We introduce the temperature T' by (13) and, instead of the stress tensor
t;; (12) of Cauchy, the pseudo stress tensor of Kirchhoff, oy;

ou
oy = eua—%j- (79)
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i Further we have according to (4) and (70)

005 = — R Lk 0k, (80)

i !
i ' On the surface of the body as & closed system hyn; = 0 holds. With the
|’ . aid of the divergence theorem the equation for conservation of energy can
; i now be written in the form

K 2 .
f H ae,( o ) + oo:w}:t'f + Teof+ 5 (9*’ a—%T) i — a,-,.Eg-] av 4+
J

+f'€ﬂ0’g,"ll-"fifi dA =0. (81)
&
4

By similiar reasoning as applied to eq. (15) we may deduce from eq. (81)
the following equations

7] 33:,- - . y c
3;;;(65‘. ak,) — 0% = 0 in V,, (82)
! w0 o0 08 )3 . .
E Ted+ 4 ( o oL T) hi+ ayEG =0 in V,, (83)
b

‘ a& —Loyn; =0 on 4,. (84)

' ‘ If we rewrite the expression (83) for the rate of energy dissipation in the L
\ form i
. | §m 2 (e 2 ) 2 25
‘ TQOS — 35; (9 oz, T) 28, - ]l( +- O‘HE,‘;,

we observe, that the rate of energy dissipation is given by the sum of two :
N scalar products. One is the product of the vector of state variables, i
i invariant under the transformation (2),

v (o 2 g) o
i | o8 \g 0% [ o8

and the dissipation vector f—-k,. The other is the scalar product of s
z

the stress tensor oy;and the dissipation tensor E}. After introducing

) 1
i =0y + %0y,  P* = —7 Guxs (85)
Ly - ( 25 ) (86)
0¢; % \o ox;

R e e
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D, = (e ax‘T)h —-Dl( A )>0, (87)
o .
n D = a‘:f‘hll = S*E” = D2(p*’ T: S:;) 2 0: (88)
*
hi= —2, al;‘;——, PR s T (89)
! 2 (a % o8 (aTk,-)
8¢; i 2%,
- oD, . aD, 11
) h=tngr /.2=[s}'} RS (90)
1) The rheological problem for a certain material is again reduced to the
determination of three scalar functions: the internal encrgy function, «,
and the two dissipation functions D; and D,. The restriction that the
2) inclastic strains shall remain small, (73), is indeed a natural one in a
theory of deformation, where all changes arc a priori to be defined with
respect to a geometric reference state of a body. The internal energy
3) function ean no longer be considered as a funetion of the Langrangian
strain tensor if the condition |B,:| <€ 1 is not fulfilled. Consequently
) the geometric reference state of a body then loses its meaning with-
respect to the thermodynamic state of the material. A theory for large
o inelastic strains is a theory of flow rather than of deformation.
It can be shown that for small deviations from the natural reference
state of the material ( Byl <L < 1 < ) the expression for the internal
energy for an isotropic materml is given by (BEssErING 1960)
0 ' {
2 v )
X (E:j - —Enéﬁ)—— CaTy Eus + _(ﬂ'_o_ s2. (91)
3 2¢,
Here is € the isothermal bulk modulus of elasticity, & the shear modulus
of of elasticity, o the cocfficient of cubic thermal expansion, and ¢, the
specific heat per unit mass at constant volume.
Though for j 74l < € 1 the difference between go and g may be neglect-
5) a¢; ij play
an essential role in the determination of the stability of structures. If we
6) neglect the deviations of 32:" from d;; with respect to d;; and put o = g,,
5
e ——i
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and using further the notation and assumptions, underlying (33) through
(37), we may write
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we arrive for the isentropic and the isothermal case with Ej} = 0 at the
classic lincar theory of elasticity.

A non-vanishing dissipation function D, leads to a theory of creep,
from which the theory of plasticity may be derived by a limiting process,
as indicated by ZIEGLER (1962).

From the experimental fact that even for small strains the stresses
sf; cannot exceed certain values, depending on the material, we may
conclude that with increasing stresses s} the rate of energy dissipation,
given by D,, tends to infinity. As the relation between rate of dissipation
and stress is more strongly non-lincar, surfaces for equal difference in
rate of dissipation will lie closer together in sjj-space. In the limit a sur-
face of indefinite rate of energy dissipation may be conceived, that sepa-
rates the region of rate of dissipation = 0 from the region of rate of
dissipation = co. It is the yield surface of the so-called elastic-ideally
plastic material. It can be defined by an equation of the form

p(p*, T, sf) = 0. (92)

For values of sj; inside the yield surface the material is thermo-elastic

( ’;; = 0). At the yield surface, as a surface of indefinite rate of energy
dissipation, the rate of inelastic strain is given by

Eff =1, :zj- (93)
The positive scalar 2, which determines the magnitude of the rate of
cnergy dissipation, now depends on the rate of total deformation, E‘U, or
follows from the rate of stress. In order that the state of stress does not
leave the yield surface, which would imply E,’} =0, the following con-
dition must be satisfied.

29 3 2
—-a:’ &+ °’p*+ L7 =0 (94)
or
. 4 1 4 ] a _
@ = a:: 2@ [Eu - -3-1511. 04 — L,,] , a; p¥ + 'p T =0. (93)

By substitution of (93) into eq. (95) we arrive at the following expression
for 2,

fg = bp fg bg S 69 -5 09,
lg = [Q’G 38}} 38}’}-] [38,*, 2G(L !'Ji:kan) + Bp*p + a7 T])
(96)

subject to the condition 2, 2 0.
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If the thermal effccts, and the influence of the hydrostatic compo-
nent of stress, p*, on the yield condition, may be neglected, the plasticity
equations given above are equivalent to the Prandtl-Reuss theory of
plasticity (PraxpTL 1924; REUSS 1930).

In the mechanics of metal-forming we have to deal with large in-
elastic strains and, as it has alrcady been pointed out above, the theory
will then be a theory of flow rather than a theory of deformation. In
principle the general rheological equations, derived in this paper, present
such a theory of flow. They are, however, so complicated that rigorous
solutions of practical problems scem to be out of the question, cven if the
deviations from the natural reference state remain small. If, however, the
latter condition is combined with the condition of isotropy of the mate-
rial, a simplified version of the theory can be formulated.

We consider as a measure of deviation from the natural reference
state the quantities.

1
g =5 (0 — i), . (97)
which we subject to the condition

lefl < 1. (98)

Because of (24) and (98) we may negleet the quantity &—22 with respect
to unity. @ :
Though the components of ¢}; are not invariant under the transforma-
tion (2) and are, therefore, themselves not stato variables, the invariants
of ¢f; do possess the required invariance properties of state variables
for an isotropic material. '
If we introduce the dovlator of the tensor ¢},

1 .
8;)' = 8:')' _— 3‘ Si.l. 6"!.’ (99)

and if for small deviations from the natural reference state (|e§;| <1,

<1) the cvprcssion for the internal energy is limited to terms

quadratlc in ef; and —, we arrive for an isotropic material at the fol-
c
lowing result v

Co2T,

Co

CaTy ,

ou="Toos +— G’(l+ )Eu + Gejel— — ek +~ To o {100)

Here again € is the isothermal bulk modulus of elasticity, ¢ the shear
modulus of elasticity, « the coefficient of cubic thermal expansion, and
¢, the specific heat per unit mass at constant volume. It should be ob-
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served that < and -g- arc the proper material constants, but since

4
e ; % £ 1, ¢ and @ are themselves nearly constant.

We observe that, because of (98), &f; may be neglected with respect to
d;;. Consequently we have

du c')u e e 8
bj = —20 2005 baibgi =0 Dep, THiu ™ '5%
The expressions for the stresses and the temperature, that can be dedue-
ed from (100), read then as follows
ou Ca?T,\ , CuT,
ty =0y =20+ 0L+ % °2)ehaty — a0y, (101
Qu CaT
PT="=1T — 2 g —~s 102
” 0" ou + o (102)

The rate of change of the tensor &} is according to eqs. (22) and (38)
determined by

1 . .
€l = '_‘“'gti = — (baibaj + bs;b4y),
' aD, oD, :
ij = _—_Jl) (}2 sy - d!l) - —Jll. (} 75 - dk;) —
_I_ _L 8:;:, _ 8:21 ..1_. . i axy _ 8.77:1
29"2(axk 8x;)+ 2"‘2(51, oz |’

= L(2% 2
=3~ %) (09

is known as the spin’tensor. We can now rewrite eqs. (103) as follows

&y = dy;.  (103a)
h 4 ’ ’ 1 : aD -
€ij — €rjWir -+ € Wy == dz'j —_ "é"d“é;i 2y -—a?— (100 b)
i
Thoe left-hand side of eq. (L05b) represents the so-called Jaumann deriv-
ative (Jaudaxx 1911) of the tensor ej;. It differs from the ordinary

[

_-,__.
'
'
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material derivativc only in case |w;| is by an order of magnitude larger

than ld,, dnéq iy Bory
ij

In order to complete the thcory of flow with small deviations from the
natural reference state expressions should be given for the dissipation
functions D; and D,. Since the material must be isotropic we have

éT oT
D, = Dl(p T o aa‘) (106)
Dy = D,(p, T', 8ijiis SijSit ki) - (107)

An expression of the form (51) leads again to Fourier’s heat conduction
law, while Dy = D, (1", 8;;84;) furnishes the creep equations, proposed by
ObQvisT (1936). When we consider time-independent plasticity againasa
limiting case of creep, a yield surface

(T, s48ij) =0 (108)

leads to equations of the form
v 4 ’ ' 1 .
€ — €jwy + ey = de’}' - E‘dﬂ'éii — 28, +~20, (109)

which are a generalization of the Prandtl-Reuss theory of plasticity.

. In view of the difficulties, encountered when we try to salve in practi-
cal plasticity problems the equations for small deviations from the
natural reference state, the theory is often simplified further by neglect-
ing these deviations from the natural reference state altogether. The
constitutive cquations arc then reduced to

dij =0,

@«%@%:Mm (110)
where
2>0i p=0¢=0,

s=0ifp<Oorg=0and p<0. (111)

In this theory for the rigid-ideally plastic model the thermodynamic
origin of the stresses is fully obscurcd. The pressure component is an
undefined quantity, subjected only to boundary conditions and the
cquations of motion for the stresses (16), while the deviator components
of stress have to satisfy the boundary conditions and the equations of
motion, as well as the flow eqs. (110) in those regions, where the yield
condition {108) is satisfied.
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d) Liquids

Liquids are usually defined as materials in which shear stresses are
necessarily accompanied by motion of the continuum. However every
material with a dissipation funetion D,, that vanishes only for s = 0,
complies with this definition, in particular those materials, which we
have called simple solids, if they are subject to creep for non-vanishing
84j. The distinction between a solid and a liquid thus can only be a quan-
titative one in terms of the time constant in the dissipation function D,.

Since liquids offer great resistance against compression, while shear
stresses remain small, a theory of flow for liquids, based upon the as-
sumption that the deviations from the natural reference state remain
small, will usually be adequate. FFor the internal energy, the stresses and
the temperature we may then employ the expressions (100), (101) and
(102), as liquids will generally be isotropic. In many flow problems the
constitutive eqs. {105) can for liquids be simplified considerably, however.

If we consider a dissipation function of the type

D, = Bsijs:js

then we have according to (56) the equation
. 2b,;b 1
~—‘1-ﬂ = ._:Y_.L’l. [ﬁsii —_ d{f + —é‘ dkkéii]'
] 4° '

From the equality
(Cnﬂ - 6.\13) R‘\{Rﬁj = —28:-}-
and the condition (98) we can conclude that
lo:q')' - 6.1;‘7“ < 1:
and
el By = —2e.

Hence, according to s; = 2Ge}; and (28)

Yy Yy s s
c..0 C. R.;Coy Ry; 1 ‘
bop A2 —2Q =t g — 2 S ALY (d.'; ey ¢lx~c5ii)
g3 g3

or, if C,; — 4,; is neglected with respect to 0,

; 1
€p T 200 s~ — 2B, By (dii -3 (Iu-au)- (112)
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If the flow is such, that the following condition is satisfied

| (n

1
E [2% R, (d;, ~= d“.(sf,-)]

< (2ap)" l 2R,; Ry (dii — é‘ ‘lkk‘sii) I’

then it follows from the theory of differential equations that )
ol <€ |21 Ry (dy = 5 st (114)

In that case the eqs. (109) may be replaced by
—~GPe,y By Ry =Py = diy — — duby. (115)

These are the usual constitutive equations for shear viscosity of aniso-
tropic liquid, in which the thermodynamic origin of the stresses is fully
obscured. )

Whether a flow problem may be treated as a problem of liquid flow
with the aid of eqs. (115) or should be treated as flow of a solid with the
aid of eqs. (105b) will depend on whether or not in the solution of the
problem the conditions (113) are satisfied. However, in thé decisive
quantity

where p is the viscosity (si,- = 2u (d;, —_ —:-1; d,,.;,.é,-,-) , appears the shear

modulus of elasticity, which does not lend itself to a dircct measurement
for liquids with a small value of p, just because for such liquids the con-
ditions (113) will be satisfied in practically all flow phenomena.

Concluding Remarks

Whether stress as a thermodynamically defined quantity, subjected to
cquations of motion as a consequence of the principle of determinism, is a
sufficiently broad concept in the theory.of rheology, should ultimately be
decided by experiments. Mathematical abstractions in physical theories
can only find their justification in so far as they provide a basis for
the correlation of observable phenomena.

In author’s opinion a sharp distinction should be made between
theories, in which distribution of stress vectors is introduced as the action
of the material outside upon the material inside a closed surface, and
theories in which a description is given of a material as a thermodynamie
system. Since the response of the material will in general depend on
tho history of the external action, in theories of the first kind materials

IUTAM-Symp. 1906 4
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have to be characterized by a response functional. On the other hand in
theories of the second kind the state of the material is at any moment
supposed to be fully determined by the values of the state variables and
the response of the material will be known as soon as the internal energy
function is known and constitutive equations are given for the rate of
change of the state variables, where these equations are independent of
the history of the process, if the set of thermodynamic state variables
is complete for the phenomena under consideration.

In some special cases the theories of the first and second kind are
cquivalent. Such is the case in the theory for ideal creep and ideal
plasticity of an isotropic material with small deviations from the natural
thermodynamic refcrence state. Then the thermodynamic state is
assumed to be fully determined by the temperature and the state of
stress (BEsSELING 1966). The constitutive equations of the theory of
the second kind may then be interpreted as response functions in a
theory of the first kind. The theory of elasticity on the other hand must
be considered as a theory of the second kind, if it is based upon GREEN’s
concept of a natural state of the continuum (TRUESDELL 1952). Recent
papers on materials with fading memory (TRUESDELL 1965) deal again
with theories of the first kind. Though they present a perfectly valid
approach of the rheological problem, it must be doubted, whether it
will ever be possible to determine for a specific material by laboratory

~ experiments the tensorial functionals, that appear in these theories.
In author’s opinion a more promising approach is offered by theories"

of the second kind, in which new state variables are introduced as the
need for them arises, as for instance in the case of non-simple solids.
Though in principle one could try to treat a polycristalline metal as a
conglomeration of differently orientated anisotropic bodies of a simple
solid, where the physical properties might even vary from one body to
another, this approach is only feasible if the configuration of the various
bodies is simplified to such an extent, that it becomes doubtful, whether
the analysis has some bearing on the behaviour of the actual material.
Author prefers a representation of the non-simple solid, in which the
internal energy distribution is the weighted sum of a small number of
distributions, each depending on its own set of state variables and
representative for a portion of the material imbedded in the moving
continuum together with all other portions. By assigning different
dissipation functions to the various portions we can obtain a description
of phenomena like primary creep, creep-recovery, anisotropic strain
hardening and Bauschinger effect (BesseLixe 1953, 1958).

There remains the difficult and laborious task of the experimentalist
to show which is the proper theory for the analysis of rheological prob-
lems for real materials, ' ' '
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Discussion

Oxar: The number of state variables C,; which you have in your theory is
six?

BesseriNg: Six, becanse you eliminate three rotatxons. But the three rotations
arc always there because you have to return to the natural reference state, So there
are really nine quantities geometrically and one for the thermodynamics.

Onar: It seems to me that at least in linear viscoelasticity six would be too
small a number for state variables. ;

Besseriya: I agree, of course. This is just the simplest case and it leads only
to the theory of secondary ereep and ideal plasticity. But you can improve on the
representation by taking more state variables.

Nacup1: If I understood you corrcctly 3011 defined the stress tensor in terms
of internal energy as partial derivative of .

BEssELING: Yes.

Nacupr: That is a constitutive assumption. It is the same point as discussed

’ )caterday that constitutive equations should be scparated from the basic field

equations.

BesseLing: I only look at it differently, You start out from an a-priori concept
of stress.

Naonpi: The stress tensor is introduced (in the usual way) through the stress

vector which acts across a surface of the body.

Besserixa: 1 do not introduce this stress vector.

Nacnpr: But you use it!

BesseLixG: I call it stress tensor. That is just a quantity that appears in my
equations but I nowhere introduce the equation of balance of momentum or some-
thing like that where you have to introduce the a-priori concept of stress.

NAG]IDI In your energy equation you hzwe to state what is the rate of work
done by surface forces.

4%
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Besserning: No, I have no surface forces, I consider a closed system in an empty
universe. And of course, inside this closed system I can then turn to a non-closed
system. It would be more usual to introduce the stress at the surface but then, at
a later point, you find the stress in terms of the internal energy and somewhere
vou have used two definitions of stress, I think.

Naaubr: No.

Besser1xa: Maybe you can say I have not introduced the more general concept
of stress. T consider a special case, in which the stress is related to the internal energy.

Nacup1: The constitutive assumption for the stress tensor is scparate from
the basic field equations.

Besseuinag: Yes, you may introduce stress as separate from the basic theory —
but I don’t sco any real objections against not doing that.

Kestix: Perhaps it is worth remarking here that the derivation of Cauchy’s
cquations of motion from the assumptions on the slides was achieved about three
years ago by GREEX and RivLiN. The assumption of the invariance with respect
to a Galilean transformation together with tho additivity of internal and kinetic
energy yields the equations of motion. It is also worth mentioning, I think, that
the argument can be inverted and is normally inverted to state that the use of
the equations of motion together with the principle of invariance with respect to
Galilean transformation yiclds the statement that internal energy is additive to
kinetic energy.

BEessening: With respect to the paper mentioned I think there is a difference.
GREExN and RivLix introduce stress as a stress vector at the surface, Then, from
that the stress tensor inside is derived. I think, in that argument you are not
allowed to do the step which is done in the paper to say that the equations shall
be satisfied for any volume and thercfore also for a volume d V. I think, in order to
have these arguments you should really introduce stress as a quantity, determined
by the internal state, and not as some kind of abstract a-priori concept.

Nagop1: Greex and Rivry start with a balance of energy together with in-
variance requirements under superposed rigid body motions. Then, they derive
Cauchy’s equations of motion and the equation for conservation of mass. You
objected to the introduction of the idea of the stress vector. The stress vector is
introduced as part of the balance of energy and the arguments they use about the
integrand are the usual arguments based on the continuity of the functions. This
time it is applied to the balance of energy.

BesseLxg: You have introduced the internal energy and you have not stated
what things this internal energy depends on. ’ '
re Nacup1; It does not matter, as long as they state that it is invariant under

: ' superposed rigid body motions. This is precisely an argument that one would use
[ in the construction of any type of constitutive equations.
! BesseLIrG: I think, we should talk about it in private.
R KLUITENBERG: You do not derive the entropy production but you suggest it.
' Can you generalize this idea, so that you have also volume-viscosity?

Besserixag: No. In this approach there is no place for volume-viscosity. But I
am still wondering whether there are convincing experimental data that there
is volume-viscosity. As long as this is not settled I don’t sce why we should compli-
cate things by introducing it. Now, of course, I know of some instances where you
can get better correspondence between theory and experiments by introducing
volume-viscosity. But on the other hand maybe you may equally improve on the
correspondence by introducing the kind of relaxation effects that are associated
with highly non-stationary states. As long as this point is not settled I would like
to consider volume-viscosity as not existent.
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Kruitexszra: I think, there is a paper by KariM and Rosexuean? where
they agree, that volume-viscosity does exist.

OxaTt: But certainly there is relaxation phenomena observed in linear visco-
elastic solids in the presence of pure volume changes.

Brsserixe: Of course, you can get relaxation cffects by the thermodynamic
phenomena of heat conduction and convection.

Kestix: It can be shown that if a system performs work in a reversible way
which is deseribed by the pressure multiplied into the total derivative of volume
and does not possess internal variables of state then the bulk-viscosity is zero.
This is the normal assumption that we make when we study gases. In the case of
liquids the statement carries through but it becomes somewhat trivial by the fact
that in liquids we normally also introduce the assumption that the density remains
constant. Now, in a solid, in a viscoclastic solid, we have the case where internal
variables operate and under those conditions bulk-viscosity has a non-vanishing
value,

Bessering: I agree that by introducing certain internal variables it will be

possible to obtain a non-vanishing bulk-viscosity.

1 L. M. Karny and L. RosexsEaD, Rev. Mod. Phys. 24 (1952), 108.
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