
A continuum theory of deformation and flow is prcscnted, that js based on thc 
principle of conservation of mass, the first and sccond Iaw of tllcrmod~namics, tllc 
concepts of a low1 tllcrmodpamic state ancl of a local gcomctric natural rcfcrcncc 
stnte, n principIo of determinism nnd on a postulate concerning tho production of 
entropy. A s  special cases arc considcrccl gases, clastic materials, simple solids and 
liquids. Stress is in this theory n tl~crmodynnmically dcfirlcd quantity. 

'l'llc rnathcn~aticnl tllcorics of dcforrnation ancl flow of matter deal 
cssentinll~ \tit11 tllc gross properties of n nlccli~~rn. Addition of lieat and 
performance of mechanical work nrc considered ns distinct means for n 
clinngo of tlle state of tlic medium. Thc resulting pllenomenn in any 
particular material arc, ho~~ct-er, not unrelated and n thermodynamical 
treatment of tlm foundations of the tlicory of flow and deformation 
sccrns tlic appropriate, and incecd tlic obvious nppronch, but then fit11 
account should Lc given of thc rntc of change of all clunntities that deter- 
mine the t hcrmodynamic stnte. 

A tlleory of deformation and flow, founded on tlicrmodgnamic con- 
cepts, should not make use of stress as n primitive concept and of the 
equations of motion, but tflc stress concept and the equntions of motion 
should follow ns rnatllcmatical consequences of the theory. It is to be 
undcrstood, irowcver, that jvitliin the contest of R tllcrmoclynnmic 
theory tlic concept of strcss is limited by the nature of the statc variables, 
that nro being considered. Thus in a theory, in 1~11icli tlio effect of chan- 
gcs of geometry on the state of n, mediuln is solely represented by the 
mass density as n statc variable, tho concept of stress 11-ill only arise 
as R iiydrostatic pressure. One might agree therefore with TRUESDELL'S 
stntcinent, t h n t  the cquirtions of mechanics describc a wider rnngc of 
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plkenomona tlinn do tlrc equations of thermodynnmics (TIIUESDELL 
1932), but it slloulcl bo realized, thnt the equations of mechanics are 
lacking in physical content as long ns no constitutive equations for tlic 
strcsses arc given. 

It. is the conriotion of tlic author that stress as a t l i e r rno~n~~nica l ly  
clefincd qunntitx is n sufficiently broad concept to  copc with tllo observed 
l~licnomena in the deformntion ~ n d  flow of rnnt,tcr, though admittedly 
in many instances the equations may in nn approsimntion bc simplified . 
in a \my, thnt obscuircs their thermodynamical content.. Tl~is papcr 
is nn attempt to sliolr. that a continuuin theory of deformation and flow 
can bc basecl on the principle of conservation of nmss, the first and 
second law of thermodynamics, the concepts of a local tticrmodynarnic 
stntc nnd a local geoinetric natural reference stato, n principle of deter- 
iuirlisni and on a postulate concerning tllc production of entropy. 

Tlic concept of r locnl geometric natural reference state in co~inec- 
tioil with inelastic pllenoinenn was first introduced by Ec~r.m~ (194s). 
His use of a rcfcrcncc rate tensor, not subjected to kinemnticnl compa t- 
iWlity equations, has unduly bccn criticized by TRUESDELL (1052, 
19GO), because the latter did not rccognizc the physical content of this 
concept. Tlic locnl, generally non-Euclidean metrio of tho natural refer- 
ci~co state is to be considered as n tllermodynamic state variable, as 
it is done for instance by COLEJIAK and NQLL (1950), and its rate of 
cliangc is to be determilled by a constitutive equation for tllo procluction 
of entropy. 

The principle of dctcrminism put forward in this paper is in the 
spirit of classical mecllnnics. It contends that the process of flow and 
dcforn~ntion sliall bc fully determined, if for a body, free in space, at a 
any initinl time the thermodynamic stntc and, independently of this 
statc, the velocity field illside thc body arc prescribed. F ro~n  tllc nrbitritri- 
ness of the &docity field wit11 respect to tho initial thcrmorlynarnic statc 
then follo~v the equntio~is of motion, ~vllile the requircmcnt t'ltat interac- 
tion botween various regions in tlie body sliall be such, tlint thc equation 
cspressing the principle of conservntioil of energy is identically satis- 
fied, Icacls to tlio equation for tllc local rate of energy dissipi\tion. 

f i r  tho postulate concerning the production of entropy no otlier 
justification can be given than that it may be regarded as another 
consequence of tlie principle of clotenninism if ono rcfuses to eo~nplicatu 
tho theory flirtller by t the addition of otlier new principles. 

It will be sho~vn how tlm theory, put forward in this pnpcr, reduces 
tllc problem of rl~eolo,nicnI constitutisc cq~~ations to the det erinination 
of scalar functions of state variables, wliicll clefinc tllc internal qncrgy . 

allcl the rato of energy dissipation. It should bc observed thnt in this 
theory, there is no place for purc viscosity, while 1-olume ellango is 
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always a purely thcrmo-elastic phenomenon. It lnny ~vo l l  be argued 
ho~vovcr, tshut this is by no nleans a, limitation of the t llcory in view of 
tllo ~vnilablc data on actual behaviour of materials. The tl~coly lends 
to the Navier-Stokes equations of viscous flow if the restriction of quasi- 
stationary flow is introduced. It is this r~strict~ioll that obscures tllc 
thermodynamic nature of t l ~ c  sllear stresses in this case. 

Also in the cnsc of timc-independent plasticity, par tic~ilarly for the 
rigid-perfect Iy plastic model, tllc ttl~crmodynamic content of tlio cqua- 
t,ions i s  obscured by the limiting process, that is to be npplicd to the 
cq~iations of the general tllcory. 

Still tllc autlior realizes that the thcrluodynamic approach to rlieol- 
ogy, presented in this paper, is open to Inany questions. In particular 
tllc extension of tho theorj~ to olectro-magnetic phcnomens is by no 
means dear, while furtllor the rigid deterministic approncli to rhcology 
may well fail to ilescribo adequately tllc infinite colnplesity of actual 
material behaviour. 

Notation 

Througliout the pnpcr indcs notation with summation coi~vcntion 
and ICronecker delta is used. 

The theory is formulnted in terms of rectangular Cartesian coordi- 
llntcs and Cartesian tensors. 

l ITa employ the superposed dot for the material tirnededvat4i~*c in 'lie 
moving continuum: 

a A  aa . A =, +-xi. 
axi 

If necessary the extent of application of the clot ~vill be indicated by an - 
ovcrbar, for instance in ed V. 

The superposed - 1 indicates the inverse of a tmnsiormation, defined 
bs 

--l 
bil b&j = d i f .  

Orthogonal transformations ore indicated by Ril, ~vhero 

1 The superposed - denotes tllc square root of o sj~mmetric tensor, 
defined by 

S 

- 
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X Thermocljmamic Approach to Rlleology 

In clnssicnl mechanics and tller~nodynalnics mnss is recognized as an 
indestnictiblo property of any closed ssstotn. The motion of olomcntary 
particles of a system can in general not bc described by thc motion of n 
continuum, in ~vlvllich each pnrticlo occupies n material point. Further- 
more the system may consist of different types of particles. If, ho~vever, 
at any instant tllc probability for a particle to bo of s certain type is 
indcpcndcnt of i t s  location in the system, the averagc motion of mass 
insidc tho system can.bo reprcscnted by the motion 2i = di  (X,, X*? x3, t )  
of a continuum \tit11 a Inass density' e = p (xl ,  x2, x3, t ) .  \lTc sllall con- 
sider only systems for wvhich tllis continuunl approach is permitted 
and wvhich aro of finite extent, 116th a non-vanishing mass density 9 
illside a moving volun~c V. This rolume with constant mass will be 
denoted as a body. 

11% shall nssuruc that fur the body the velocities gi and the mass 
density L, arc continuous differentiable functions of the coordinates. 
Thc principle of conservation of mass is then espressed by 

First Law of Thermodynamics 

In classical mechanics and thermodynamics it is asserted thn t with 
respect to each of certain .preferred coordinate systems, tlie so-called 
inertial systems, the quantity energy, 

is n second indestructible property of any closed system, where the 
internal energy U is independent of the average mnss velocity gt and is 
an uniquc functional of appropriate state variables for the mnteriaI 
under consideration. Thc class of coordinate systems, wit11 respect to 

which the kinetic g& d V is to be defined, is determiried 
k 

by the group of Galilean transformations 

- 

I 
I 
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where IT1 represents an arbitrary col~stn~l t  velocity and ~vlierc aj is n 
constant ort hogonal matrix. Sincc U is to bc independent of et, it  follo~vs 
that U must bc invariant under tllc transformation (2). 

Second Law of T h c r m o d y n o m i c s  

Changes of statc of a material ~j~ststcin can bc duo to external and 
internal causes. For a closed system, nTllcrc tlio stnto can only cllangc by 
internal causcu, it is R fact of cxpcriencc tlint tho system \rill tcncl to 
an equilibrium state, charnctcrizcd by the vanishing of the timedcrivn- 
tives of all state varinMcs. Tliis concept of irreversibility of tlic chntlges 
of stnte is bjr tllc secoiid law of ther~nodynamics fori11~11atcd in terms of 
a functional of stnte variables, the entropy S, tllnt for a closed system 
sn tisfies the inequality. 

i 2 0. (3) 

It may be observed tbnt in an equilibrium state holds U = 0 and 
= 0, sincc both U and S arc functionals of state variables only. 

Tho Concept of a Local T h e r m o d y n a m i c  State 

A closed material systcm may be brolion into n number of interacting 
s~ibsys terns. XOIY it is postulated tallat, like the kinetio energies, the 
internal oncrgics as 1 ~ 1 1  as the entropies arc additive. Tl& implies that  
the internal energy and tho entropy of a subsystem are functionnls of 
stato variables, which refer to this subsystem only. It is clear that there 
will bo a limit as to the sxnnllness of a subsystem to \!*hicl~ this postulate 
still applies. The thcrmodynomic approach is a-priori restricted to  
systems, wlierc statistical averages are meaningful. Ho~scver, the dcfini- 
t.ion of n local internal cncrgy zc and U local entropy s, both taken per 
unit mass, for a systcm in n l~omogeneous state a rnathcmntical trivial- 
ity, is R 1a~r~ful artifice in the description of non-l~omogeneons states 
of bodies, wllero U- and S-distributioiis Inay represent the internal 
energy and the entropy of all subsystems up to the smallest system', 
tha t  pbrrnits n statistical averaging procedure. If furtllormoro thc mrin- 
tion of state ~~arinbles is small mitllin n region that is large col~lpared 
to tllc smnllcst thermodynamic system, then we 111ay consider tlie values 
of u and s in n point as functiolls of locally defined statc variables. 
However, since tho  cntropy has been i~ltroduccd to express the irrevcrs- 
ibility of the changes of statc of s closed sjTstem, tllc entropy per unit 
mass, S, may itself, ~vithout loss of gcncmlity, be treated as a parameter 
specifying the local stnte, together with other appropriate state variables 
for wliicll tho rate of cllnngc is not subjected to any inequality. Tlic 
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scalar quantity s is invariant under the transformation (2) and the 
internal energy pcr unit mass, W ,  n ~ a y  therefore bc any arbitrary func- 
tion of s. 

In order to indicate, that tlic notion of thc smollcst tl~crmoclynamic 
system presents under normal circumstances no restriction to the validity 
of tlic concept of a locitl tlicrmodpitn~ic stnte, it can be obscn-ed that 
the number of particles in air at seale1-el amounts to 2 5 1019 cm-3 
and in iron to 8 G 1OZ2 (3121'~. 

According to t llo second lnlt- of tllcrrnodynamics for any closed 
system tllc rate of cllangc of s mast satisfy tllc inequality (3) 

1 and 
:c by 
1cl to 
:rilTc?. - 
i nges 
us of 
,st enl 

Locally, lioweever, S may be negativc duo to the interaction of various 
subsystems in tho body. Because of the additivo property of the entropy 
wc can, bcsidcs an entropy production per unit mass g 2 0, define an 
entropy flux hi = (X,, z2, z,, t ) ,  that dctcrmines thc distribution of 
entropy, such that 

and 

If the body ns a 1~2iole is a closed system, its boundary is a surfncc 
tlirough ivhich no interaction takes place, and hcncc on this surfacc 

shall llold iiif == 0, ~vllerc ni is the outward unit norrnnl. Thc inequality 
for the local rate of entropy production, 0, ensures that the second 
law of thermodynamics is satisfied, since 

m 

Later on wve dlall require t l ~ a t  the flux of interaction hi is such, 
that tlic equation expressing the principle of conserration of energy 
shall bo satisfied identically, thereby establishing 6110 connection be- 
tween tllc flux ifit and tllc fiux of energy, known as the l~entflus. Inequality 
(4) then becomes equivalent to t l ~ c  Clausius-Duhem inequality of thermo- 
dynamics. 

Insofar as the rate of cllnngc of state variables is not defined in 
terms of the velocity field of the moving continuum, representing the 
average innss motion, this rate of change sliall be dcterlnined by thermo- 
dynamic constitutir-c eq~iations, nd~ich are an expression of the proper- 
ties of the material as a thcrmodynarnic system. They constitute the 
essence of the theory of irreveniMe thermodynamics. 

ared 
lues 
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The Coometric Natural Rcfcrcncc S t a t c  

Let the properties of the material under consideration bc defincd in 
some reference stnte. The internal energy .rc Inay now be considered ns 
a function of state varinblcs, thnt define cllangcs 'with respect to this 
reference state. Thus in the following s will represent the change of 
entropy and will bc taken cqunl to zero in tllo reference stnte. 

It wil l  be assumed that the physical proportics of the material in the 
refcroncc state, that  doterminc thc functional dependence of 21 on the 
stato variables, arc preserved in any subsequent proccss, in particular 
any anisotropy, tllnt the material may possess. Anisotropic properties 
can be defined wit11 reference to orthogonal triads in each point of tlte 
body, wvhicli ~\-itl~out rotation are carried along by the inotion of the 
continuum. I t  is now post#ulnted that tllo geolnetricnl configuration of 
the material at any instant in each point of the body is related to tlic 

* 

configuration in thc reference state by n invertible transformation of 
line clcmsnts 
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Here the da,'s dcfino lino clcrncnts in the local coordinnte system, deter- 
mined by tthc orthogonal triads, which, ~-14th their fixed directions in 
space, form n base of reference for the anisotropic properties of t h e  

7.  
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n~atcrial. 
By the theorem on t-he unique polar decolnposition of R tensor wit11 a 

non-vanishing doter~ninnnt the above transformation of 1incelement.s 
may be decomposed into a rigid rotation follo~ved by n deformation 
with a symmetric transformation matrix, as illustrated for thc t~w-  

i I climcnsional case in Fig. 1. It should be realized that the configuration 
of the nntr~ral reference state in n point of the moving continuum wit11 

1 
l respect to the ortliogonnl triads remains always the snruc, though tllo . 

I 

; 
identity of the mnterinl particles, that make up this configuration, is 

I .  in general s~tbjcct to ehange.Tllis i j  nn nllowablc concept since tllc motion 
of tlic continl~~un describes only tlie arorngo motion of mass, but not 

1 
I 
i otllcr atoms to different unit cells. Tllc u~l i t  cell, illustrntcd in Fig. 1, 

tho motion of the indivirlual partielcs. So, if uvo consider for instance a 
crystal lattice, in which n proccss of slip has taken place, tllcn n unit 

- cell can bc tmde up of atoms, thnt before slip tool< plncc belonged 1vit21 

l 
I 
I' 

I 

1 

in n point of the continuum, corcring the lattice, is a t  any instant the 
same, but the iduntity of tllo atoms, that make up the unit cell, Inay bc 
subject to  change. 

It follow-s from the nbow that it is in gcnornl not  pcrmissiblc to 
consider tlic system (5) as exact differentials for tlic corresponding func- 

/ 
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tions of the coordinate points in the spacc q, X,, 23, because tlic concli- 
1 tions of integrability will only be satisfied in apccinl cases (i.e. in thermo- 

elasticity). T l~c  tensor bSi is a physical concept, like t.hc mctric tensor 
of thc natural refcrcncc statc, as introduced by E C K - ~ T  (19iS), and it 

I 
I 

is not subject to kiilornntic compatibility equations clcrived from the 

I 
. x~ 

~ j g .  1. Two-dimensional il1rustratIon of the transformntion d n, = bai d q  

X2 

i 

motion of tho contin~iom, which represents only the nvorago motion 
of mass inside the body. 

State variables in tho internal energy fiiilction v shall, like the 
internal energy itself, be invariant under the group of Gnliloan tnnsfor- 
ination (2). Sinco tllc orthogonnl triads in each point of the body arc 
ca~ulcctod wit11 the fixed natural refcrcnce statc, they arc not affected 
by the transformations (2) and hence tllc da, 'S arc invariant ~lncler this 
transformation. It follotys that 

-----m Instantaneous gcometrScn1 contiguration 
Conflgwration In natural refcrcncc state 
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Since tlic conlponcnts of the tensor bai arc not invariant under tlic 
trnnsfornlation (2), they arc not tllern~odynnmic state ~xriables. They 
define, however, a tensor C,@ 

wllich does posscss the req~iired property of iuvnrinncc under tlic group 
of GaIilean trmsforrnntions. We s11all show in the following that a broad 
theory of rheology can bo based upon nn internal energy., that is an 
uniqx~o function of the stntc variaMes s nnci Cop. 

llllc Pri~~ciplo of Det cr~ninlsln 

From classical ~necllnnics it is known that if, independex~tly of each 
otller, initinl positions and initinl celocitics of mass points are given., 
tllc subsequent rnot.ion is determined. It is in the spirit of this principle 
of determinism, that it is postulated here, that an initial thermodynamic 
statc and an initial velocity field, prescribed independently of each 
other, shall suffice to determine the subsequent motion and accompany- 
ing thermodynamic processes. It follo~vs that to all possible tllcrmo- 
dynamic states and to all velocity fields shall corrcsponcl definite rates 
of chango of all stato variables. 

It was pointed out bcforc that in sofnr ns tile rotc of cilnngo of stato 
variables is not defined in tcrms of the rclooity field of tllo moving con- 
tinuum, this ratc of change shall bc detcrnlined by the ~nntelial ns n 
thermody~lamic system. Ho~vevcr, an clement of volame d IT, imbedded 
in the moving cont in~~um, does in gencrnl not represent one and the same 
thermodynamic system n t subsequent times, since tho volocitj~ field 
dofines only the average motion of mass. This difficulty does not arise, if 
it is postulnted that tlie thcrmodjmnmio processes depend only on the 
instantaneous values of the statc vnriablcs, because a t  any time t an 
clement of volume cl P does comprise n thermodynamic system within 
the limitations imposed by the coliccpt of a local tliermodynnmic stato. 

From llcro on therefore, we shall considcr the rate of entropy pro- 
duction $ md t.he flus of interaction I E i  to bo at  any instant uniquely 
determined by the thermodynamic state, as chnractorized by the vnlucs 
of the state variables. 

\VitSh respect to tIic geometric natural reference state it call be observ- 

cd that its ratc of chango, chnmcterized by dn,, may be expressed in 
terms of quantities, determined by a local thermodynamic process 
tlrrough tho values of tile state variables, as well as in terms of the rate of 
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X Thcrmo~namic Approach to Rheology 25 

clmngc of the tcnsor and tllo vclocity field of the moving continu~nn: 

where the tensor psi shall now bc uniquely determined by the values of 
the state variables. This concept of n rate of change of the natural ref- 
ercncc stntc dctcrmined by a tllermodynnmic process, independent of 
thc concept of a ~noving continuum, is due to ECKART (19-18); tliough by 
liinl it was formulated in ,z more restricted sense in terms of a rato of 
chango of tlie reforoncc metric. 

115th thc aid of (9) the ratc of change of the state variables Cab can 
bo csprcsscd by 

where d i j  is t.lm rato of defornlntion tensor, defined by 

Now, on the basis of an internal energy function U = U (S, COP), D 

iluinbcr of conclusions can be drawn from tho first lnw of thcrmo- 
dyna n~ics and t llo principle of determinism. 

The rate of clinllgc of u is given by 

or, according to espressions (1) and (10), by 

I\'c sl~all dcfinc tlie following quantities, wllich arc dctcrmhmct by tho 
tilern~odynamic stntc t.lirough internal energy function U: 

Tllc tensor tij\~ivill be denoted as stress tensor and the quantityT as tern- 
perntnre, bocauso these quantities will appear to possess all tho charnc- 
teristics, nsunlIy att.ributed to quai~tjties with these names. 
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For a body, that constitutes n closed system, conservation of energy 
I 

is csprcsscd by 

I U +  e ~ i & c l I ' =  e ( i c + i $ & i ) d l T  
1- S 1' S 

l 

1 

S 

' 

I 

I 

1": 
l 

i 

-1 sit 
; i 

l =J[tijdij - - t i j b j S f i i  + T ~ $  -T- +p&&,  d 1 7 = 0 .  (14) 
! 

3' 
axi 

By means of the divergence theorem, and obserw~i~lg that  on tlio bounding 
surface of the body as a closcd system holds itr 11 = 0, n.c can t rnnsform 
eq. (14) into 

i 
I 
I 

I ' 
I 

1 
i' 
! 

I BT 
I S[(-% + & + !I'c; + - hi  - Iijbj3p&i d l' + 
I a xi 

1' 
ax,  

I 

I 

I + fij?Zjki d A  = O .  

- l  l 
A S [l61 

According to  the principle of determinism, fonn~ilnted above, nny pos- 

) 

siblc thermodgnnrnio state and any independently clloscn ~clocity field 
constitute allontable and sufficient initiaI conclitions for tllc mathemat- 
ical description of tllc subscqucnt motion wit11 the accomnpanying thcrmo- 

I '  dynamic processes. Thcreforo eq. (15) must llold for nrbitritmry veIocity 
fields ki, while all other' quantities, ,g, if, and the quantities detcrminecl 

l 3 - ,Gi = 0 ill v a xj (16) 
l and 

l 
I t , p r j  = O on A .  (17) 

! 

, 

I 

I 

by the thermoclyllnrnic stntc, nm independent of ii. From the pri~~cipnl 
theorem of the calcnlt~s of variations then fo1lo11-s the important con- 
clusion, that 

Equations (16) arc to be identified as the equations of motion of Cnuchy, 
wldcll in our case arc ol~tnincd without reference to the principle of 

I l 

I 

. i  
I 

j /  bnlnllce of momcntam, bc it in the lirnitcd sci~so of n thermodynamically 

1 .  
defined stress tensor. Further this stress tensor is sy~nmotric, not bg 
virtue of the principle of balance of lnomont of rnorncntum, bnt bccausc of 

1 1 1  

* 

the symmetry of the tensor CaB in (1%). #\ 

l 
\ 

By eqs. (10) nnd (17) eq. flfi), oxprcssil~g the cons er^-ation of energy, 
! 

I 
i 

I 

j is reduced to  

I 

' 
1 (18) 
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A Thcrmodynnmic Approach to Rhcologg 27 

T h e  flux has bccn introduced to rcprcsont thc interaction bctveen 
vnrious regions in the body. So far no restriction lias been imposed on 
this interactiol~. ?VC shall now requirc that the flux of interaction hi is 
such, that the cq. (18) is sntisficd identically, i.e. 

Let us now consider a cIosed region of ~~ulumc VInt., bounded by a sur- 
face insido the bodr. For t h e  mte of change of tllo energy, contained 
in the volume Vint., is found 

IIelice the interaction bctwccn the region and tko rest of tllc body 
can be interpreted as a flux of mcclianical energy (i.e. defined with thc 
aid of the velocity ficld of the continuum), t i jn i j i ,  and a fius of non- 
mechanical energy, - T jLilli, through tlic surface Alnt.. The flux q, = T& 
is then to bo identified as the heatflas. 

l1711ile according to  (17) the mecl~anical interaction vanishes, i f  the 
thcrmodpomic state is such that  tii 7 t j  = 0, the non-meclln N C ~  inter- 
action by the very definition of &, vanishes only if hrni = 0. Interaction 
witllou t energy exchange is bcyond thc scope of thermodynamics. Hencc 
tile temperature T must bc unequal to zero for all tliermodynamio states, 
where a non-mecllanical interaction is possible. Thcroforc the scale for IT, 
llitllerto left ~mdefined, must satisfy the condition X 2 0; the state with 
T = 0 being defined as the limiting caso of a statc +here any non- 
lnechnnical t~hcrmodynainic interaction becomes impossible. Inequality 
(4), after substitut.ion of the lieatflus, qi = T&, nit11 tlic so-defined 
absolute tcmperntnrc, is known as tlio Clausi~~s-Dudlom incq~~ality. 

For the problem of rllcology, as it i s  being considered here, the theory 
of irro~*ersibic tllermodynamics pertains to the determination of con- 
stitutive cojuations for the quantities ;, j i ,  nnd hi, ~vliicl~ occur in c q  (19). 

First we shall show that tlic tensor %i must satisfy n specific con- 
dition in orcler to ensure, that the logical requirement is f~dfilled, that 
tllc mass density, corresponding to the geometric natural reference 
stato, is constant and equal to a given \-due Q,. 

The length of a lino clement in the natural referonce stato is according 
to (6) defined by 

d g  da, da, = be( baj dzi d z j .  
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The t ensor 

is tlic mctric tcnsor, that defines the generally non-Euclidean ~notric of 
tlic nntuml reference stntc in the 2,, X,, X, space. By ~ir tuc  of the follo~v- 
ing cq~lnlities 

and with the aid of cq. (1) in tllc form 

Locally tlic mctric tcnsor gij defines the relation between n material 
elc~ncnt of T-01umo d Y in the X,, x2, x3 apace and tho same ~nzterial 
element of volume cl TT, in tlic natural refcrcnce state by 

Becnusc tlic xllass content of d T7 and d 17, is tlie snmc, IVC have 

Hence according to eqs. (23) and (24) the tensor nlust satisfy tlic 
condition 

-1 
2bh.p,i = 0. (25) 
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If the stress tcnsor is decomposed into its deviator and its pressure 
component p, 

tij = t ~ i j  - pJij, S,, = 0, (26) 

we can obserrc, tha t  becnuso of condition (25), the pressure component 
cloes not contribute to tllc rate of encrgy dissipntion. Accolrling to 
ecl. (19) 

As all t-hree quantities, T, 9 ,  and g, are non-negative, ~ v o  know from 
what has been postulated in tllc preceding paragraphs, that tllo rate of 
energy dissipation T?? is a positive, semi-tlefinito function of state 
\*a riablcs. 

JJTc note tliat tllc rate of energy dissipntion is always tllc scalar 
ploduct of rt vector or tensor of quantities, c~ctcrminccl by tthc thermo- 
clj*t~amic state, and s dissipation rector or tensor. Tllo rclntivc magni- 
tucles of thc co~nponcnts of the dissipation vector or tensor sllnll depend 
on the clissipation rnecllanism. JITc slinll now postulate that sufficient 
information on the dissipation meclmnism is contnined in the enerEy 
dissipation function, such as to ensure that tlic relative rnagnitudes of 
tlic components of the dissipntion vc-cotor or tensor depend on tllo stnte 
rrrinbles solely through the functional dcpcndcncc of tIio energy dissipn- 
tion function on those stntc mrinbles, that are associated \rvitll the 
clissipntionvector or tensor in the espressio~i for the rate of energy dissipa- 
t ion. 

6T 
Tflo quantities - rind sit in oq. (27) are no statc variables, sincc they 

a xi 
are not invariant under the transformation (2). ]To slinI1 sho~~*,  however, 
that they arc related to stntc variables tllrough orthogonal tronsforma- 
t ions. 

According to the theorem on the unique polar decomposition of a 
tensor wit11 a non-vanislling determinant, ~ v c  llavc 

T 

' I *  
bsi = Cab Ifpi 9 f ia iRBi  = fiaB J (28) 

' I  a 
~shero C4 is invariant and where Rai obeys 'tl~c transfomation rule 
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Hencc the quantities 

nro proper state variables. 
Further it can be obscrvecl t.hnt by virtue of the in\-miinncc of the 

01. tlic transformation rulo for - reads 
axi  

Tllcrefore thc quantities 

a27 - aT - 
Itai - = Itaj R{) - = B&i - 

axi a xk ( a":)' 
nrc invariant under tho transformation (2) and arc proper state variables. 

aT Tlio orthogonal transformations applied to f i t  ancl - in (30) and (32) 
axi 

arc of importance in the case of anisotropy. Then the rate of energy 
dissipation is not a function of tlic invariants of these quantities and a 
rotation is necossnry to bring the rnntcrinl directions in concordance with 
the orthogonal triads, specifying the local nnisotropy. 

\JTc shall n o r  assume that the rate of energy dissipation duo to spatial 
. interaction, represented by the first term on the right hand side of 
eq. (25), is independent of t he  local rate of cnergy dissipation, represented 
by the second term. 1% then have 

-1 

s i j b j t ~ d  = D, (P, T, ~iI~aiRBj) 2 O* (35) 
* 

ilccordi~lg to what has been postulatecl above the vector hi ,  as a dissipa- 
aT tion vector in --space, is determined by 
ax, 
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A Tlicrmodynarnic Approach to RIrcology 31 

-1 

I ~ ~ 1 1 ~ 1  b j ~ p * l i ,  as a clissipat ion tcnsor in sij-spacc, by 

l Thus the directions of the dissipation vector and tensor satisfy tllc 
so-called normality condition with respect to surfaces of constant rntc 

aT of energy dissipation in the -- and sij-spaco respectively. This condition a xi 
has by ZIEGLER been interpreted as n genonlization to the nonlincar 
cnsc of the Onsager relations (ZIEGLER 1DOl). IIere ao Lavc simply 
postulated this condit.ion on the basis of deterministic reasoning. It loads 
to collstitutivc equations of a special nature, ~ ~ I l i c l l  have t.ho advo~~tagc 
tllnt they are sufficiently specific to permit, if experinlent ally verified, the 
definition of rlicological properties of materials in terms of an empiri- 
cally determinable scalar function for the rato of energy dissip c~ to ion. 

The material derivative of the tensor bai,,iand of the state varibles Cse, 
given by (0) and (IO), can now be expressed in terms of the velocity 
field of the continuum and the function D, 

Tlio values of the scalar factors I.1 and that determine the magnitude 
of the dissipation quantities, nro found by sub~titut~ion of (30) and (37) 
into the expressions (34) and (35) 

I Tho theory is now complete, since tho rate of change of all quantities, 
\ that have been introduced, is determined a3 soon as an initial thermo- 
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clynamic state and an initial rclocitg field arc gircn. The Inaterin1 prop- 
erties and the constitutir-c cql~ations are fully defined in tcrll~s of tllc 
function for tbc internal energy, 24 = 11(CO8, 8),  and thc functions 

aT 
D, = 4 ( p ,  T, R,,-) and D, = D2 (p ,  T, s U i i l i p j ) -  tllnt dcterlnino a X, 

tlrc rate energy clissipit ion in t lre irrorcrsiMe tlrcrrnodynamic processes. 
It sllould be obscrred that the function ir = 11 (Ca8, S )  need 01119 to 

define the clinnge of tllc intcrnal energy per 1111it mnss with respect to 
some lrnown reference state, cllnrncterized by n mnss clcllsity g,, an abso- 
lute temperature TT0, and a stress tensor (tdi),. Tile absolute r~a1.lluc of the 
internal eilcrgy per unit ninss is irrclcvnnt in thc theory of rllcology ; this 
in cont fast t u t ha absolute values of the dissipation functions I '  and D,, 
wllicl~ determine the magnitudcs of the dissipation qunntities. 

Summary of Rl~eologienl Eq~irf ions 

The rl~cologienl problem, according to the theory tlint kns been 
for~nulnted in this poper, is described by the following equations: 

ab,li ab,i - + - Xk = bSj 
a t .  ax,. 

zr = a (Cap, S ) ,  26 = 0 for e = eo, T T ,  l j j = ( t i j ) o :  (8) 
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X Tl~cnnod~~~nmic  Approncll t o  Rlicology 33 

aT aT all ,  -1 
D I  = ~1 ( p ,  T, fi.i %) t 2 ,  = [% n] D,; (3419 (40) 

azi 

D, = D2 ( p ,  T, s ~ ~ R , ~ R ~ ~ )  i2 = [ Sij 7 Q (3% (41 ) 

Tlleso equations define n system of 30 field cquntions for tlic 30 
clepelident variables c, ki, S, hi ,  TT, Laj, CAD, and l i j .  Proper initinl corldi- 
tiolls for this systcln arc of the foml 

t = 0: bai = boi(~17 x2, x3),  

S = $ ( x 1 , x 2 , x 3 ) ,  

;i = k i ( ~ , ,  X,, 

Tllc initial mass density follo~m then from (24) 

r 
F CO ]!7, !7 =clctr(gij), gi j  = b . x i l a j t  

wldle tliu initinl ~ a l u e s  of Cos arc dctcrrniilcd by CnP = beihpi. 
For n body thitt constitutes a closet1 tl~cr~norlynnmic system, tlic 

boundary col~ditions arc given by 

t i j ' l l j  = 0, ] l i l t i  = O all A. 

Proper boundary conditions for non-closed t llermotlynninic systems nro 

tii" = Or ki = $ 0x1 d 
nnd 

T = ! P o .  or I t 1 9 i i  = h 0  onA.  

Hero tlic supcr index 0 inclicntcs n prescribed function of time. 
It is clear tllnt thc boutldnry conditions impose certain restrictions 

on t l ~ c  initinl conditions in the boundary layer of the body. It sllould bc 
icnlized, liowc~*cr, that prcscrib~rl initial bomldary conditions arc an 
artificial concept in the description of natural pllenolnenn occnring in 
ii~fillitc space, ~vlicre fill systems intcrnct wit h adjoining systoms n~i t l  
~rllcrn this interi~ction is never n ono-way tmffic. 

Special Cases 

In order to illustmte tllc tl~eory IYC sllall now consider n aumbcr of 
special constitutive equations, corresponding to spccinl forms for tllc 
fu~lctions a, Ill nnd D2, 

I UTAJI-SY~P. 19GG 3 
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a) Gases 

Let us consider the casc that the internal cncrgy per unit mass 
dcpends only on the absolute tcmpernturc, u = j(T), or morc spccifi- 
ail1y 

zc = c(T - TO), C = constant. (42) 

whicll determines the dcpcndencc of u on 6 I 
First ~ v c  sIla11 assumc now that thc effect of changes of geometry on tlic 
state of the mcdi~~rn is solely represented by the mass density. According 
to (21) 11-c may tl~en put X: = k(q). AIorc specifically we shall consider 
(it = 0 for g = 1 and S = 0) 

Thc stress tensor ind thc! temperature arc then given by I 

Stress nriscs in this casc only as n llydrostntic pressure, \vhicI:h by climinn- 
tion of the entropy from (46) and (45) is found to obey the equation of 
state for n perfect gas.: 

p = 2 c y p T .  

The constant c is to bc interpreted as tlio specific heat at constant rolumc, 
c,, iihile the introduction of the specific heat at  constant pressure, c,, 
tlirougl~ the cnthalpy or heat function 71. 

sllo~vs that the constant 2e,y is the gas constant R = c, - C.. 
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Thcrn~od~namic  Approach to Rllcology 35 

Tlic si~nplcst osttmplc of an equation for zi of the type (431, that leacls to . 

shear stresses, is offered by 

For t tllc strcsscs and tllc tompcraturc f ollo~ss 

the osprcssion for tlic pressure component may, after elimination of S, 

Lc written in the form 

TIlis is the eql~ntion of state for n mono-atomic gas with 

For a coll~pletc description of the mono-atomic gas tlio dissip r? t' -1011 

functions D, and D2 ~nust bc specified. \Ire sllall examine the simplest 
forms, tllnt satisfy the conditions D, 2 0, D, > - 0. 

which is equivnlc~lt to Fouricr's law of heat conduction. Tllo clissipation 
function D, cnil be used t o  determine the stress rate 

or, according to (1) and (38) 
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J. F, ~ E S S E L I S C ~  

This rather un~sieldy csprcssioil Inay be rcploced by n considerably 
simpler constitutirc equation in the case of quasi-stationary, small 
distortions with respect to the natural reference stntc. 

Slnrll distortions with rcspcct t o  tllc nnturnl rcfcrcncc stntc can be 
clcfincd with 

\JTe note that eq. (30) can be written in the form 

-- 

But according to eqs ( l )  and (24) I S ~  h n ~ o  

IIenco tllo rate of distortion is given by 

or, after substitution of the csprcssions (M), (49), (50), and (52) 

Introductio~l of t l ~ c  t cnsor cap fro111 (65) leads to 
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tl Tlicrmodpnmic Approach to Rlieolog~ 37 

If wc neglect the tensor e,, with respect to 6,,, because thodistortiolls 
arc nssumccl to be snlall, \re Ilavc 

It f01lo11-s from tlic theory of differential equations that 

provided in tllc gas flow the follo~ving conditions arc satisfied 

By virtue of (00) WC may then put according to (56) 

Tlius wc are lccl to tlic equations of viscosity of X~I-ier-Stokes ~vitllout~ 
~ o l u m c  ~iscosit~y. Tlic shear stresscs arc in our case still tl~ennoclynnm- 
icnlly defined quantities, though their tliertnoclynamic origin is fully 
obscured in the cqs. (62). 

In rnost gns flo~ss the conditions (01) will bc satisfied. Sllocli wares 
nloy be nil exception, and it is just in connection with tIic calculntcd and 
~ncasurccl tliickncss of shock ~ ~ ~ a v c s ,  that the nced for tIlc cxistcnce of 
volume viscosity was felt (GILDARC and PAOLWCCI 1063). Perliaps tllc 
esplanntion for the discrepancy bct~vecn thcory and esperirnent must in 
this cnsc be sougllt in tllc fact, that for shock I'GVCS tlie conditions (GI) 
arc not* satisfied. The decisi~rc quunntity is liere the value of 

where p represents the viscosity (si j  = 214 (dil - '13dkkdij)). 

An elastic material wilI Bt. dcfined here as a material, for which the 
dissipation tensor (D) ranislies. Thc geometric natural reference 
state can then always be defined srwh that the systenl (5), da ,  = bai art, 
represents esiict differentials for frmctions a, = a, (X , ,  x2, X&, or 

- .- - -- 

Supplied by The British Library - "The world's knowledge" 



Hencc the tnotion of elcmentnry particles in an elastic body call be 
dcscribcd bjT the motion of a continu~~m, in wliich each particle occupics a 

aa, material point.. The displnccmcnt tensor - &scribes tllo change, ~diich a xi 
tlic clisplacemcnt from the stntc of tlio body at time t to the reference 
stnte induces in the relative positiorl of any two points as tliesc points 
dmw together. 

For tllc material of n body, that ,ns n system frcc in space will not 
desintcgratc, the stress-frco stnto must correspond to r thermodjmamic 
cquilibriu~n state wit11 non-vanishing mass density. Bcsidcs on the 
temperature, the internal energy function u for such a material will 
depend on the inter-particle distances, and thereby on g = (d V,/d V)2 .  
Tlie simplest form of sucli a function is presented by 

zr = cT + cT,-,(q+ - 2) 
or, accoiding to  

Lot us consider an clastic body for ~ ~ l i i e l i  therc esists R stnte, to bo 
tnken ns reference state, which is completely stress-free. Any choice for 

(Ceg) in the function u, defined wit11 respect to this reference stntc, must 
satisfy the following rcquircmonts : 

l0 the stresses til vanish for !i? = To and C,o = 
20 14 is positive definite for all isentropic dcformntioiis (S = 0) from 

the stress-free reference state. 

If we restrict ourscl~~cs to isotropic materials, and if the first in- 
-1 

variant of the inverse of CM is denoted by C,,, the follolring cspression 
for satisfies the requirements, formulated above. 

1 
Here c, p, ant1 represent material constants with tlic restriction : --2< 

* 

It can be observed that, since Dct ( O - ~ ~ a S ]  = 1, the tensor 9 -3~ ,8  
is a measure for distortion at constant volume, ~vhilc g represents tllc 
influclice of change of volume. 
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Espression (06) appears to lend to ~ o m e  of tllc tlicrmo-clnstic effects 
observed in rubber-like mntcriols, where t l ~ a  "compression moclulus", 

2 4 c y2T,, is largo compared to the "shear modulus", - Q c To. For y 4 co 
3 

we arrive at  tlic AIooncy-Rivlin tlieory for rubber, in which the pressure 
cornponcnt is treated as n thcr~nodynamienllg undcfincd q~mntit~y and thc 
deformations nro subjected to the subsidiary cox~dition g = 1. 

IIowcver, the three mnterinl constants in espression (66) proyc to Lc 
inntlequatc to cope 1~it.h the experimental data on rubber-like materials. 
A'bctter quantitntil-c clescriptiorl is cxpccted from a five constants theory, 
based 011 the fol lo~vi~g esprcssionk for 11 : 

IIcrc tllo isotllermal bulkmodulus of elasticity, C, the shear modulus 
of elasticity, G, and the coefficient of cubic thermal expansion, oc, all 
dcfinecl wit11 respect to slnaIl deviations from the natural reference state, , 
arc related to tlic specific heat a t  constant 1-olurne, c, nncl to the constants 
C,, C?, and y by 

c) Simple Solids 

A material. will. be denoted here as n solid, if the stress-free state 
corresponds to a thermodynamic equilibrium state. As it nlroady follows 
fro111 this definition of a solid, and as it \rill be sllown in the follo~ving, 
i t  nlny be difficult to distingiush bctn-ecn a solid and a Liquid. 

The ndjcctivo "si~uplc" will bc used liere to indicate that the same 
functions U, D, and D, npplg to tllo material in all points of tlic body 
UnfortunnteIy all renl solids arc to some cxtcnt non-simplc solids, ns 
for instance all metals with their polycristnllinc structure. 

In contrast to m1 elastic material, in n general solid the dissipntio~l 
tensor p,; shall vnnisll only under special conditions of stress and tern- 
pcmturo; nntl hence the system (j), da, = bai d x i ,  after an arbitrary 
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tllcrmotlyl~amic history from r ccrtnin referoncc time I,, \sill not rcprc- 

i 1 sent csnct differcntinls for fullctions (t, = a, (xl, 33, x3). 
For the internal cncrgy fi~nction rc of a simple solid ~ v c  col~ltl con- 

sider csprcssion (68). IIo~~crcr, since for most solids, as for instance all 
metals, only small deviations from, the nntuml reference state can be 
realised, it usually s~ifficcs to consider the tl~eory for this case. 

lfi shall first consider tlic tlicory for snlnll de\-iations from the nnttl- 
m1 rcfcrcncc state as it is applied in tlie field of s t ract t~ri~l  nnalysis. Tlicrc 
the tlicory is usually furtllcr rcstrictcd by the conclition tha t  the tlcvin- 
tions of the config~~rlration in tllc nntuml reference stato from n. ccrtnin 
rcfcrcncc configuration of tlic continuum rcmnill smnll. 

If we denote the coordinntes of the lnnterinl points of the contiiuuunl 
in n ccrtnin reference geometry by f,, f 2 ,  f 3 ,  then m*e can define tllc 
motion of tllc continuuln by tllrcc? single-mlucd functioils 

If we put 

t llcn \so can csprcss the conilit ion, t l ~ i t  the deria  t ions of the conf gum- 
tion in the natural reference stato from the rcferencc configuration of the 

I: I continuum remain small, by 

IIcrc it should be obserrcd thn t  i re ~~-is l l  the qunntities to  bc in~xriant 
llndcr the Galilcnn transformntion (2) in order that condition (73) may bc 
fulfilled, irrespective of the choice of the inertial system. Thc coordinates 
fl, E2, f 3  should then be inmrinnt mlder the transformation (Z), ~vllich 
implies tllat the axes of tlic coorclinatc system 5( must. concur with fixed 
lnatcrinl directions in the reference geometry of the body, like thc ortllog- 
onal triads, that scrt-c ns R base for tllc clas's. 

If WC introduce as a illeasure of rlcfornlation of the coiltinll~tin the 
11: Lagrnnginn strain tensor 

and if JSC take as geometric stutc \-nrinblcs tllc coniponents of an'%lnstic" 
strain tensor, defined by 
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A Thcrmorlynamic Approach to Rlicology 

axi  ax-  Ei:bRbL.i- b f i+  = a a;, 3 

(76) 

~ v ~ ~ e r e  E;; is calldci tho inclastic or plastic strain tcnsor, , 
The state of tlre material is 1101~ a t  any tillto t tleter~uincd by tllc 

variables E$ a~ltl  S, wltilc accorcli~lg to (74) and (76) tllc tensor Eij is 
defined in terms of tllo tl~rec functions (70) nnd tlic sis independent co~n- 
poncnts of tlic sy~ll~netric tensor E;;. Tlic i~~temul eiicrgy per unit mnss 
Inny t1le11 bc given by . 

11 = U S ) .  (77) 

If !VC Ict thc ~ratural rcfcrencc stutc at sornc instant coincicic wit11 the 
rcfcrc~lce geometry of the continuum, tlren tlic mnss density is tlie same 
for tllc nnturnl rcfcrcncc statc and for tllc rcfcrencc geometry of tlic 
continuum and is equal to g,. Acconlingly, WC llnvo 

In this case, by taking [l, t2, t3 ns t l ~ c  ir~dependent space variables and 
performing all cnlcu~lations in tlie reference geometry of the body, WC 
satisfy tlic principle of conservation of mass nutoinnticnlly, w11iIc the 
principle of conserration of onergg for the bocly ns a closed system is 
expressed by 

introduce the tcrnpernturc T by (13) nnd, instead of the stress tcnsor 
t i j  (12) of CRUC~Y, the ~ S C U ~ O  S ~ ~ C S S  tensor of I<ircIllloff, q j  

--p 

Supplied by The British Library - "The world's knowledge" 



Further 1 ~ 1 . c  have according to (4) nnd (70) 

On the surfnec of tllc body as ;i closcd system hi ~ t i  = 0 I~olds. With the 
aid of tllc divergence theorem thc equation for conscrvntion of energy can 
now bo -t\~it-tcn in t l ~ c  form 

By silniliar reasoning as applied to  cq. (15) we may dedlicc from eq. (81) 
R Ions tmhO following cqu t 

on A,. (81) 

If WC rcwrito the oxpression (83) for tha n t c  of ei'crgy dissipation in tho 
form 

a- a Q a" a;rr a,t, e 
p e o g  = -- 'AT -- 

at ,  ( c  axi ) a t k  art 
hr + uljE$, 

we observe, thnt the rat c of energy dissipation is gircn by the sum of two 
scalar products. One is the product of the vector of state mdables, 
invariant under tlie transformation (Z), 

agi. and the dissipation vector - hl.  The otlwr is tlia scalar product of 
3x1 

tllc stress tensor orj and the dissipation tcnsor %. After iiltroducing 
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A Tl~ermodjnamic Approach to Rhcolog- 43 

and using further t,lio notatio~l and ass~ul~lq~tions, underlying (33) tllrorigh 
(371, wc may writo 

The rheological problem for a certain material is again reduced to thc 
determination of tllrcc scalar functions : tlic int ornnl cncrgy function, u, 
and tllc two dissipatiou fulictions DI and D2. Tltc restriction that  tllc 
inclnstic strains shall rc~nnin small, (73), is indcctl n natural ono in n 
tlleory of deformation, where all clinnges arc a priori to bc defined 115th 
respect to n. geometric refcrcnco stntc of n body. The internal energy 
function can no longer be considered as a function of the Lnngrnngian 
strain tensor if thc condition 1 1 1 is not fulfilled. Consequently 
the geometric referanco stnto of n body then loses its meaning ~sitith 
respect to the tllermodynnmic stntc of the material. A theory for largo 
inclnstic strains is n theory of flow rather tllan of dcforinntion. 

It can be shown that for small cleriations from tho natural reference 

state of tlic material the expression for tllo internal 

c~icrgy for an isotropic material is given bg (BESSELIXG 1960) 

Hcrc is C tllc isotllcrmnl bulk modulus of ~lasticit~j*, G the shear modulus 
of elasticity, a the coefficient of cubic thermal expansion, and c, the 
specific heat per unit mass at constant volume. 

Though for JZ3ijl 1 tllc diffcrcnco bctrrcen go nnd 9 lnng be neglect- 
a x  

ed, tlic geometric non-linenritios duo to a deviation of --I from di j  play 
atj 

an csscntial role in the determination of the stability of struct.ures. If 1.e 

i3 xi negloct the deviations of y from diiwitll respect to d i i  and put 9 = g,, 
aej 
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we arrive for tllc iscntropic and tllc isothernlal case 11~itll E; = 0 a t  the 
clnssic linear theory of eIssticity. 

L\ ~lon-~+anislli~l,o dissipation function D, leads to R tlieory of creep, 
fro131 wliicll tllc t l ~ ~ r y  of plastic it^. Inay be dcrivccl Ly n limiting process, 
as  indiwtcd by ZIEGLER (19G2). 

From tllc cspcrimcntnl fact tlint even for small strnills tlic stresscs 
s$ cannot oscced certain ra l~~es ,  depending on tllc material, \\-c lnny 
conclude that ~ritll incrcnsing strcsses si; tlic rate of energy tlissiption, 
given by D,, tends to  infinity. As tlic rcla tion bct\~ccn rnto of dissipation 
and strcss is more strongly non-lincnr, s~rrfnccs for eclual difference in 
rate of dissipation will lic closer togctlier in 8;-space. 111 the limit R sur- 
face of indcfinitc rate of energy dissipation inay be conccivcd, that scpn- 
rates the rcgio~l of rnto of dissipation -- 0 from the region of rate of 
dissipation = m. It i s  tllc yield surface of the so-called elastic-ideally 
plastic mntcrial. It can be clefincd by an ccluation of tlic form 

For "or-nltlcs of sij inside the  yield surface t,hc material is thenno-elastic 

(&; = 0). At tlic yield surface, as a surface of indefinite rate of cnergy 
dissipation, thc rate of inclastic strain is given by 

The positive scalar j.,, which determines tllc n~ngnituclc of tllc rate of 
energy dissipation, now depends on thc rate of total deformation, Ell, or 
follo~vs from the rate of strcss. In order that the state of stress does not 
Icavc the yield surfncc, n*hicli ~ ~ o u l d  imply E;; = 0, the following con- 
dition rn~tst bc satisfied. 

By substitution of (03) into eq. (9s) W arrive at  the follo~ving expression 
for 

(96) 
snbjcct to the condition i2 2 0. 
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If tile thcrmnl effects, and thc influence of the hydrostatic eompo- 
nent of stress, p*, on tlic yield condition, may Le neglected, the plnsticit~. 
equations given nborc nrc equirnlcnt to tllc Prandtl-Rctiss tllcory of 
plasticity (~'RAXDTL 1024 ; REUSS 1030). 

In t,hc mechanics of mctal-forming 1-c llavc to deal ~vitll large in- 
elastic strains and, ns it has nlrcady been pointcd out above, t h e  theory 
will then hc a t l ~ e o r j ~  of floli* rather than R theory of deformntion. In 
principle t l ~ c  gc?ncr:~l'rlicologicnI equations, derived in this paper, present 
sucll n tlicory of flo~r-. Thcy arc, ho~rcver, so complicated that rigorous 
solutions of practical problems seem to bc out of thc question, cl-en if the 
deviations from the natural reference state remain snlnll. If, hen-erer, the 
lr t t er conclition is colnbined \sit11 tllc condition of isotropy of t llc mate- 
rial, a simplified version of the theory can be formulntecl. 

We consider as n measure of c1c1-iation from the natural reference 
state t . 1 ~  quantities. 

P 7  

is, 

~viiicl~ I\-a subjcct to the condition 

Because of (24) and (08) 1-e may neglect the quantity ea wit11 respcot 
to unity. &I 

Tliougll tho coiilponcnts of nro not invariant under the tmnsforms- 
tioil (2) and are, therefore, tlicmselres not stato variables, the inl-nrinnts 
of e;, do possess the required inmrinncc properties of state rariables 
for an isotropic material. 

If 1 ~ c  introduce the clcviator of the tensor E;,, 

and if for small dcviativns from thc natural reference statc (l~ijl 1, 
\ 

1 the esprcssion tor the internal energy is limited to tcrms 111 8 
quadratic in eij and -, we arrive for at1 isotropic material a t  the fol- 
lowing result C, 

l Here again C is the isothermal bulk modulus of elnsticitj~, G tlrc sllear 
modulus of elasticity, a the coefficient of cubic tlicrmal cspnnsion, and 

I 
c, the specific 11ent per unit mass a t  constant volume. It should be ob- 
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C-& 4 1 ,  C nnd C arc themselves nearly constant.. 

IVe observe that, bccausc of (!B), E& may bc ncgIcctcd wit11 respect to 
bij .  Conscquc~ltIy WC llnvc 

Thc csprcssions for tho stresses and tlie tcnlpernture, that can he dedoo- 
ed from (loo), read then as follows 

The rate of change of the tcnsor is according to eqs. (22) and (3s) 
dc t ermined by 

Tho skem-symmetric tensor 

is knov-11 as the spin'tensor. IlTe can now rc~vritc cqs. (103) as follo~vs 

Tilo left-hand sicto of cq. (l05 b) represents the so-called Jaumann derir- 
ativc (JAUJIXSX 1911) of the tensor eh. It differs from the ordinary. 

I 

I 
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I ll~ntcrinl derirntivc only in case /tutj[-is by an order of mng~~itudo larger 

111 order to co~nplotc the tlleciry of nolv ~r-it l l  s n l i i ~ ~  ~Icvintions from tile 
natural rcfcrencc state cspressions should be given for t,lic dissipation 
functions D1 nncl D?. Sincc the n~nterial rn~lst irc isotropic \VC hare 

An esprcssion of tho  form (51) lcnds again to Fourier's lieat conduction 
law, while D2 = D,! (F, srjsrr) f urnislles the creep equations, proposed by 
ODQVIST (l 936). \lTlicn 11*c consider t imc-iudependcn t plasticity again ns a 

I limiting case of creep, n yield si~rfncc 

i leads to equations of thc form 

\cTllich nrc n genenlizntio~l of tlrc Prandtl-Reuss tlrcory of plasticity. 
. In vicrv of the difficulties, encountered when wc try to solve in practi- 

cal plasticity problems the equations for small deviations from the 
natural rcfcro~cc state, tllc theory is often simplified fr~rthcr by ngloct- 
ing t hcso deviations from the natural reference stato altogether. Tllo 

, constitoti~~c cq~luations &re then reduced to 
I 

I i. = O  if 9 < O  or 9 = Q  and @ <  0. (111) 
! 
I In this theory for tllc rigid-ideally plastic lnodel tllc tlicrnlodynnluic ; 
I origin of the strcsscs is fully obscured. The pressure colnponent is an 
I unclefi~ieed quantity, subjected only to boundary conditions and the 

ccluntions of motion for the stresses (IG), ~rhilc the deviator co~nponcnts 
of stress h a w  to satisfy the boundary conditions and the  equations of 
motion, as 1 ~ 1 1  as tllc flow cqs (110) in those regions, ~ ~ l l c r e  tllc yield 

\ canclition (108) is su tisfied. 

l 
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I I d) Liquids 
t 

I ' i  Liquids arc l~s~lnlly definecl ns lnntcrials ill ~vllicli stlenr strcsstts arc 
necessarily nccompnniecl by motion of tllc continrmm. IIo~verer every 
mnterinl with a dissipation function D?, tlint I-nnislles only for stj = 0, 

! complies with this definition, in particular tliosc mntorinls, 1vhic11 \VC 
1m1-c called siinplc solids, if tlicy arc subject to crccp for non-ranishi11,o 
scj. Thc distinction bet1ween n solid ant1 n liquid thus call onlr be n quntl- 

- titativc ono in terms of t l ~ c  time constnt~t in the dissipation function D,. 
Sinrc liquids offer g e n t  resistance against compression, wllilc sliear 

stresses rellmin small, ;l tlleory of flow for liquids, based upon tlic as- 
sumption that tllo deviations fro111 tlic natural refercncc stntc rernni~i 
small, will usually bc adequate. For tllc internal encrg>*, tho strcsses and 
tllc temperature \\-c Illay tllc11 cnlploy tlic cspressions (loo), (101) ancl 
(102), as liquids will generally be isotropic. In Inany flow problems tllc 
constitutive eqs. (105) can for licluids bc simplified considcmbly, liowcver. 

If we consider a dissipation function of tlic type 

From the equnlit.~- 

(Cnn - ROiRBj = -2d. V 

and the condition (OS) ~ v c  can conclude that 

or, if C,8 - bkIB is neglected ~vititll respect t o  daB, 
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If the flow is such, that the following condition is satisfied 

(113) 
tlicn it followvs from thc theory of differcntiol eqtiations that 

In that case tlic cqs. (100) may be replaced by 

Tliesc nro the usual constitutive equations for sliear viscosity of nniso- 
tropic liquid, in whiclr tlio therruodynamic origin of the stresses is fully 
obscured. 

JIT1~other a flow problem may be treated as a problem of liquid flow 
wit11 the  aid of cqs. (115) or should bc treated as flow of a solid ~vitli tlie 
aid of eqs. (105 b) wiI1 depend on whether or not in tllc solution of tllo 
problem the conditions (113) ore satisfied. IIowcver, in tllc decisive 

~vlicre /c is the viscosity , appears the shear 

modulus of elasticit+y, which does not lend itself to R dircct measurement 
for liquids with n small valuc of p,  jusb because for such liquids tlie con- 
ditions (113) will h satisfied in practically all flow phenomena. 

Concluding Remarks 

l\7hetlicr stress as R thermodynamically defined quantity, subjected to 
equations of motion as a co~lsoquoncc of tlie principle of dctcrminism, is a 
sufficiently broad concept in the theory of rheology, should ultimately bc 
decided by csperiments. Nathematioal abstractions in physical theories 
can only find their justification in so far as they provide a basis for 
tlie correlation of obserr.nb10 phenomena. 

In author's opinion a sl~nrp distinction sliould be made between 
theories, in which distribution of stress vectors is introduced as the action 
of tlic material outside upon the matcrial inside n closed surface, ancl 
theories in which a description is given of n materinl as 11 thcrmodynrmic 
systom. Since tllc response of tlie inntcrial mill in general depend on 
tlio history of $he esternal action, in tlieories of the first kind materials 
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llnve to bc cllnrnetcrizcd by a response functional. On tllc other lmnd in 
theories of tlic second kind the stntc of tlic material is a t  any ~noment 
supposccl to be fully determined by tthc ~~alucs  of tlic st ate vnriables ancl 
tllc response of material will bc known ss soon as tlic intcrnal energy 
function is known and constitutir~c cq~~untions arc giren for tho rate of 
chango of tho statc variables, ~vllero tllcso equations are independent of 
tllo history of the process, if tllo set of thermodynnmio statc variables 
is complete for the pllonomcna under consideration. 

I n  some special cases the tllcories of tho first and scconcl kind arc 
equirnlent. Such is tllo case in the theory for ideal creep and ideal 
plasticity of an isotropic ~nnterial ~ s i t l ~  small cleviations from tllc natural 
thermodynamic refcrcnce state. Then the tllcrluodyna~llic state is 
assumed to  be fully deterillincd by tlic tolnperaturo and the stnte of 
stress (BESSELISO IDGO). Tllc constitutive equations of the tllcory of 
the second kind tllny tllen bc interpreted as response functio~~s in a 
tl~eory of the first kind. Tlic theory of elasticity on the other hand must 
bc considered as n theory of the second kind, if it is based upon GEEEX'S 
concept of n natural stnte of the continu~~m (TRUESDELL 1952)). Recent 
papers on materials with fading luelnory (TRUESDELL 1005) deal again 
wit11 theories of the first kind. Tllougll they present a perfectly valid 
approach of the rheological problem, it must be doubted, ~vhether it 
will ever be possible to determinc for a specific mat'crial by laboratory 
experiments the tensoriai functionals, that appear in these tl~codes. 

In  author's opinion a more promising approach is offered by theories8 
of the second kind, in rvhich new state variables are introduced as the 
need for them arises, as for instance in the case of non-simple solids. 
Though in principle one could try to treat a polycristalline metnl as o 
conglomeration of differently orientated nnisotropic bodies of a simple 
solid, where the physical properties miglit even vary from ono body t o  
another, this approach is only feasible if tllo configuration of the various 
bodies is simplified to such an extent, that it becomes doubtful, wl~ether 
the analysis h a s  some bearing on the behaviour of t l ~ c  actual matcriol. 
Autllor prefers a. representation of the non-simple solid, in wsliich the 
internal energy distribution is the weighted sum of a small number of 
distributions, cach depending on its own set of stntc variables and 
representative for a portion of thc material ilnbedded in the moving 
c~nt~inuum together ~vitlith all other portions. By assigning different 
dissipation functions to the various portions we can obtain s description 
of phenomena like primary creop, crccp-recovery, nnisotropic strain 
hardening and Bnusckinger effect (BESSEUX~ 1053,1958). 

There remains the difficult and laborious task of the erpcri~~lentnlist 
to slio~v ~ v l ~ i c l  is the proper theory for tlic analysis of rheological prob- 
lems for real materials. 
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Discussion , 

ONAT: Tllc number of stoto mriables .Ge9 which you have in your theory is 
sis? 

BESSELIX~: Six, becanso you climinata thrco rotations, But tho threc rotations 
arc al\vays thcrc because you have to return to the natural reference stntc, So there 
are really nine quantities geomcfrically and one for the thermodynamics. 

ONAT: It seems to mc that at least in linear viscoolasticity six U-ould be too 
small n number for stato variables. 

BESSELIS~: I agree, of course. This is just the simplest case and it Icads only 
to tIic theory of secondary crcep nnd ideal plasticity. But you can improve on the 
representation by taking more state variables. 

NAGITDI: If I understood you correctly, you defmcd tho stress tensor in terms 
of intcrxlal energy as partial dcrivativc of . . . 

DESSELIXQ: Yes, 
NAGIIDI: That is a constitutive assumption. It is tha same point as discussed 

yesterday that constitutive equations should be separated from the basic field 
equations. 

BESSELISU: I only look at it differently. You start out from an a-priori concept 
of strcss. 

NAGEDI: TIie stress tensor is introduced (in the usual way) through the strcss 
vector wkich acts across a surface of the body. 

BESSELIXQ: I do not introduco this stress ~ector. 
Nxam~:  But you use it l 
BESSELI~G: I call it stress tensor. That is just a quantity that appears in my . 

equations but I nowhere introduce tha equation of balance of momentum or some- 
thing liko that mllcrc you have to introduce tho a-priori concept of strcss. 

I NAQIIDI: In your energy equation J-ou have to state what is tlic rate of I{-ork 
I 

b done by surface forces. 



BESSELISG: KO, 1 l ~ n r e  no surfncc forces, I consider a closecl system in an cmpty 
~rnivcrsc. And of course, insidc this closed srstcrn 1 can then turn to a non-closed 
sj-stem. It ~rould bc mom usual to introduce the stress nt tlic surfncc but then, a t  
n later point, J-otx find tile strcss in terms of the internal energy and s o m e ~ ~ l ~ r r c  
you hare uscc1 two definitions of strcss, I think. 

NAOIIDI: SO. 
BESSELIXG: Jlnybc you can say 1 hnvo not introtIuccri the more general concept 

of strcss. I consider a special case, in whicll the stress is rclatcd to  the internal energy. 
~ ~ 0 1 1 ~ 1 :  Tho constitutivc nssumpt ion for the stress t c~lsor is separat c from 

tllo basic field equations. 
BESSEC~O: Scs, you may introclucc stress as scpamtc from tlie basic theory - 

btrt I don't sco any real objections against not doing that. 
KESTIX: Perhaps it is \vorth remarking here that tllo derivation of Cauclly's 

equations of motion from the assumptions on the slides ~vas achiercd about three 
p a r s  ago by GREEX and RIVLIN. TIE assumption of tllc ill\-arianco \r.ith respect 
t o  a Grrlilean transformat ion together wit11 tho additivity of internal and kinetic 
energy yields the equations of motion. It is also I$-orth mentioning, I think, that 
tlic argument can bc inverted and is normally inverted to stato that t l ~ c  use of 
ttic equations of motion together wit11 the principle of invariance with respect to 
Galilean transformation yields tlic statement that int crnal energy is ndditivc to 
kinetic energy. 

BESSELIXU: 7I7ith respect to tllo papcr mcntioncd I tIrink there is r\ difference. 
GREEX and RIYLXX introduce stress as a stress vector at the surface, Then, from 
that tllc stress tensor insidc is derived. I think, in that argument yotl arc not 
allowed to  do thc step which is dono in tlie papcr to sax that the equations shall 
bo satisfied for any I-olume and tlicrcforc also for a volume d 1'. I think, in order to 
h a m  these arguments SOU should really introduce stress as a qunnt i ty, clctcrrni~lccl 
by tlio internal state, and not as somo kind of abstract a-priori conccpt. 

XA~HDI:  GREES and RLI-LIX skirt with n balnncc of energy together wit11 in- 
variance requirements under superposed rigid body motions. Then, they derive 
Cauchy's equations of motion and the equation for conservation of mass, You 
objected to thc introduction of the idea of thc strcss rector. Tile stress vector is 
introduced as part of the balincc of energy and thc arguments tlloj* lac about thc 
intcgrand arc tho usual arguments bnscd on the continuity of the functions. This 
timo it is applied to the balance of energy. 

BESSELXXO: You Ilavo introd~~cccl the internal energy and you 11nve not stated 
what things this internal energy depends on. v 

R~AGIIDI: f t  does not matter, as long as they stato that it is invariant under 
superposed rigid body motions. This is precisely an argument that. one would usc 
in  t!io construction of any type of constitutive eq~~ntions. 

BESSELIKG: I tliink, n-c should talk about i t  in pril-ate. ' 

IICLUITEXBERQ: You do slot derive tho entropy productiotl but you suggest it, 
Can you generalize this idea, so that you hare also volume-viscosity? 

BESSELISQ~ Xo. In this approach thero is no placo for volume-viscosity. But I 
am still wondering ~f*hotlier there arc convincing cqerimental data that there 
is volurne-viscosity. As long as this is not settled X don't see wlly \VC should compli- 
cate things by introducing it. Xow, of course, I know of some instances ~ v l ~ c r ~  you 
can get better correspctndcnce between theory and expcrimcnts by introducing 
~olomc-viscosity. But on tllo other hand rnayba you may cqually improve on the 
corresp~ndenco by introducing tho kind of relaxation effects that arc associated 
~ ~ i t h  higllly non-stationary states. AS long as this point is not scttlcd I would like 
to consider 1-olume-viscosity as not existent. 
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KLUITESBERGI: I think, thcro is a papcr by KARIJI and BOSEXZIEAD~ \\-here 
tlicy agrcc, that vol~zmc-viscosity docs exist. 

OSAT : B i t  certainly t llcrc i s  rclaxatio~l phcnomenn obscrved in linenr visco- 
elnstic solids in tllc presence of pure voIumo el~~nges.  

BESSELISO : Of COIITSC, JOU can get relnxrtt ion cffcct S by the t l~ennorl~namic 
pllenomc~m of llcat conrluction and convection. 

KESTIS: It can be shown that if a system performs work in a m\-ersiblc wag 
which is clcscribcd by tllc prcssurc multiplied into the tot a1 derivnt ivc of volunlc 
and docs not possess iiltcrnal variables of state then the bulk-viscosity is zero. 
This is the normal assumption that V-c mako ~vhcn ~ v c  study gases. In tllo cnso of 
liquids tllc statement carries through but it bccomcs somewhat trivial by tllc fact 
that in liquids wc norxnallr also introduce the assumption that the density remains 
constant. Xow, in a solid, in a viscoclastic solid, 11-c liarc the case \vI~erc internal 
variables opcratc and under those conditions bulk-viscosity has a non-vanishing 
valuc* 

BESSELISG: I agree that by introducing certain internal tarhblcs it will be 
possible to obtain a non-vanishing bulk-~iscosity. 

L. 31. hn1:3r and L. ROSESHEAD, Rev. Nod. Pllxs. 22-1 (IOS?), 108. 
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