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1. Introduction

Classical theories of plastic flow in metals use a yield function to separate
elastic and plastic response and assume that the flow stress is independent of
strain rate [1]. Even if one is analyzing a dynamic problem where the flow
stress is substantially increased relative to the static value, such theories may
often be used if the strain rate experienced by the metal during the relevant
portion of the process does not vary by more than about an order of magni-
tude. However, if the range of strain rate spans a few orders of magnitude
then a more accurate model of strain-rate effects may be necessary. Knowl-
edge of the temperature during the process is also important since strain-rate
sensitivity tends to increase with increase in temperature.

Malvern [2] studied the influence of strain-rate sensitivity on wave
propagation and introduced a model which is now called the overstress
model. This overstress model retains the notion of a yield function which
distinctly separates elastic and plastic response. However, it introduces
strain-rate sensitivity by abandoning the consistency condition and allowing
the yield function to be positive during plastic loading. Furthermore, the
magnitude of plastic strain rate vanishes when the yield function vanishes
and depends on the positive value of the yield function during plastic flow.
Perzyna [3] generalized this model for the linear three-dimensional theory.

Another class of constitutive equations for elastic-viscoplastic materials
abandons the notion of a yield function and assumes that plastic strain rate
depends on the current state of the material. Unified constitutive equations
for creep and plasticity of this type have been recently reviewed [4]. A
common example of this type of constitutive equation is the power law
model used by material scientists [5]. Another example which is of particular
interest in this paper is the model proposed by Bodner and Partom [6, 7]
and Bodner [8,9]. This latter class of constitutive equations has been
generalized to be consistent with continuum thermodynamics for large
deformation including high compression [10, 11, 12].
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In order to model the elastic response exhibited by metals for low stress
levels, the flow rule proposed in a unified theory necessarily requires plastic
strain-rate to be a highly nonlinear function of stress. Furthermore, since
stress depends directly on plastic strain it follows that the flow rule yields
stiff differential equations. Special numerical methods [13] have been devel-
oped to help stabilize the integration procedure. However, these numerical
procedures become less effective as the material becomes less rate-sensitive
because the flow rule becomes stiffer. In contrast, simple stable procedures
using a yield function have been developed by Wilkins [14] and Maenchen
and Sack [15] to integrate the flow rule for elastic-perfectly-plastic rate-
insensitive materials. This method has been generalized by Krieg and Key
[16] to include isotropic and kinematic strain hardening.

The objective of this paper is to develop a simple unconditionally stable
numerical procedure for integrating the flow rule proposed by Rubin [12]
which characterizes plastic deformation in an elastic-viscoplastic model
exhibiting continuity of solid and fluid states. It is shown that this procedure
remains simple even in the limit that the material response is nearly
rate-insensitive.

In the following sections we record the basic constitutive equations for
an elastic-viscoplastic metal. After presenting the numerical procedure, the
problem of compression and shear is formulated and an exact analytical
solution for steady state flow in simple shear is developed. The accuracy of
the numerical procedure is examined relative to this exact solution. In
addition, numerical examples of a corner test exhibiting the transition from
uniaxial compression to simple shear, and a simple tension test are pre-
sented. Finally, an appendix is provided which records the basic equations
associated with the small deformation theory.

2. Basic equations

For our present purpose we record the constitutive equations which
were presented in [12] and which were modified slightly in [17] and later [18]
shown to remain form invariant under change of the reference configura-
tion. By way of background, let X denote the position of a material point
in the reference configuration and let x denote the position of the same
material point in the present configuration at time z. Also, let F = dx/dX be
the deformation gradient; C=F'F be the total deformation; C, be a
symmetric positive definite tensor denoting the plastic deformation; and 6 be
the absolute temperature.

Following Rubin [17] we introduce a multiplicative separation of elastic
and plastic deformations and define the elastic deformation gradient ®, and
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related kinematics by
M,=M]=C)? &, = FM, ', (2.1a,b)
C.=®]®, =M;'CM,;', B.= ®,®7 =FC,;'F". (2.1c,d)

We empbhasize that the definition (2.1b) is significantly different from that
introduced by Lubarda and Lee [19] since M, and the resulting C, are
trivially invariant under superposed rigid body motions. Furthermore, it
was noted in [17] that Green and Naghdi [20] introduced a tensor (R; C. R,
in their notation) equivalent to C, in their analysis of the invariance
properties of the separation of the deformation gradient proposed by Lee
[21].

In general the elastic deformation tensors C, and B, may be separated
into a pure measure of elastic dilatation I;, and pure measures of elastic
distortion C. and B, such that

I;, =det C, =det B, = I/I,, (2.2a)
C, =1I3'*C,, B,=1I15'"B,, (2.2b,c)
det C, =1, detB,=1, (2.2d,e)

where the total dilatation I; and the plastic dilatation I, are defined by
Iy=detC, I;,=detC,. (2.3a,b)
Then, the condition of plastic incompressibility becomes
L,=1, L, =1I. (2.4a,b)

Furthermore, we note that although Rubin [11, 12, 17, 22] independently
introduced the exact separation into dilatational and distortional deforma-
tions for plasticity (with elasticity as a special case), Flory [23] was the first
to do so for elasticity and Simo et al. [24] were the first to do so for
plasticity.

Following Rubin [12,17] we specify the specific (per unit mass)
Helmholtz free energy  and the entropy flux per unit reference area P by

ll’ =l!/(I3,ﬁ],ﬂ2,9), (253.)
P = —[K(L3, B\, B, 0)/0)5*CT'G, (2.5b)

where B,, B, are pure measures of elastic distortion related to the nontrivial
invariants of C, and B, and G is the temperature gradient defined by

B, =C,~'-1=B,"'-1=1{’C~'- C,, (2.6a)
Bo=C,~1-C,~' =B,~' "B, =I}*C,C~' - C~'C, (2.6b)
G = 86/0X. (2.6¢)
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Throughout the text the unit tensor is denoted by I, and the notation

A - B =tr(AB7) denotes the inner product between two second order ten-
sors A, B.

Using the procedures proposed by Green and Naghdi [25, 26] and the
results in [12] it can be shown that for the class of materials under
consideration, the specific entropy #, the pressure p, the symmetric Piola-
Kirchhoff stress S, and the specific rate of entropy production ¢ are given by

n=—0y/00, p=—20,I¥*y/0L), (2.7a,b)
S=-—pIi*C~'4+8, §-C=0, (2.7¢c,d)
S’ = ~2001¥*(@y [8B,)[CT'C,C™' —(C, - CT/3)C]

— 40,1373y /0B,)[C'C,C7'C,C

- (C,C7'-C7!C,[3)C ] (2.7¢)
008 = —P -G+ ,0E’, 0o0E = (1/2)(C;”‘C)S’ . C,,, (2.71,8)

where g, is the mass density in the reference configuration. Since the Cauchy
stress T may be separated into a pressure p and a deviatoric part T

T=pl+T, T :-1=0, (2.8a,b)
T = I;?FS'F7, (2.8¢)
it follows from (2.1), (2.4), (2.7) and (2.8) that T' may be rewritten in the
form
T = —20015 (0% /0p)[B, ' — (B, ™" - I/3)I]
~ Ago I3 (2 |0B,) B, "B, ! — (B, "' - B, 7! /3)I]. (2.9)

The flow rule for determining plastic deformation C, and the evolution
equations for the hardening variables x and P are taken from [17]

C,=TA, (2.10a)
% =m (006 NZ, — k) — A (O Z,[(x — Z>)]Z,]™, (2.10b)
B = m,(000¢ NZ,U — B) — A:2(6)Z,

x [{C; /(B —B2) - (B—PB)C '} PZ1]Y, (2.10c)

where

A=[3)(C-C;HC-C,, A-C =0, (2.11a,b)
T =TI, exp[—(1/2){ZR(L5, B) /o, }"> 7, (2.11c)
o2 =3J,=(32)T - T =(3/)I;(C8 - 8C), (2.11d)

Z=x+p B=C;'p-UC,, (2.11e,f)
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UmA/(C;*A'AC;‘)”?', (2.11g)

V=F—0){C (BB (B— B)YC, '} (2.11h)

In (2.10) and (2.11): the function I' causes yield-like behavior in that is
nearly vanishes for low values of the effective stress o, and becomes
significant when o, attains values on the order of ZR; I' is a positive
constant; » is a positive function controlling strain-rate sensitivity; R is a
nonnegative function which directly influences the level of flow stress; Z1s
a scalar measure of hardening; x is a measure of isotropic hardening; Z, is
the saturated value of x; Z, is the fully annealed value of x; P is a second
order tensor measure of directional hardening; f8 is a scalar measure of the
effect of directional hardening; Z, is the saturated value of §; B, is the fully
annealed value of B; m, and m, are constants controlling the rate of
hardening; the rate of thermal recovery is controlled by the constants r, and
r,, and the functions A, and A,; the expression g,0¢" in (2.7g) and (2.10b,c)
is a measure of the rate of plastic dissipation; and the condition (2.11b)
ensures the plastic deformation is incompressible. Furthermore, we note that
the directional hardening variable p was introduced by Bodner [8] to model
the Bauschinger effect and it is an alternative to kinematic hardening.

3. Formulation of the numerical procedure

From (2.10a), (2.11a) and the form of I' in (2.11c) it is obvious that the
flow rule for plastic deformation rate is a highly nonlinear function of the
value of effective stress o,. For low values of n the material response is quite
rate sensitive, whereas for large values of n the material response is quite
rate insensitive. Also, in this rate-insensitive limit the flow rule becomes an
extremely stiff system of differential equations. For example, during loading,
if the plastic deformation rate is underestimated during one time step then
the prediction of the stress at the end of the time step is too large so the
plastic deformation rate during the consecutive time step may be grossly
overestimated causing a wild oscillation of stress.

To overcome these problems with instability of the integration proce-
dure we assume a fully implicit scheme over a typical time interval {1, th].
Specifically, we determine an estimate C,(z;) of the plastic deformation at
time t, by the formula

Cp(t?_) —'Cp(t;) :AICP(IQ), At = fg—‘tl. (3la,b)

Since the flow rule (2.10a) requires plastic deformation to be incompressible
(see 2.4a) the plastic deformation C,(z;) at the end of the time step is given
by

C,(1y) = Co(1,) = [det C,(t2)] —IBC, (1) (3.2)
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Defining the total distortional deformation C’ by

C'=I17'PC, detC' =1, (3.3a,b)
the expression for A in (2.11a) evaluated at the end of the time step becomes

A(ty) = [3{C'(12) - C; (1)} C (1) — Cp(12), (3.4a)

A() = [3/{C.(ty) - T}IC'(12) — Cp(ta). (3.4b)

In general, we may define the elastic distortional strain E; by

E, = (1/20(C. =D (3.5)

Since the determinant of the elastic distortional deformation C; equals unity
it follows that

] =detC, =1+ 2E, -1+ O(E, - E), (3.62)
B, I=0+O(E.-E), C, I=3+0O(E, E), (3.6b,0)
Bi=3+O(E,*E), B,=3+O(E, E.), (3.6d,e)

where O(E. « E/) denotes terms of order of the magnitude of E; squared and
higher. For most processes on a metal the elastic distortional strain E,
remains small. Furthermore, we expect C,{¢,) to remain close to C »(12) 80
A(t,) in (3.4) is approximated by

Alty) = C'(t;) — G, (1), (3.7)

From (2.10a) and (3.4a) we observe that the flow rule causes plastic
deformation C, to evolve in the direction of total distortional deformation
. Consequently, we assume that the value of C,(¢,) may be expressed in
the alternative form

C,(1) =C'() — 1A, A=C(1) —C,(1). (3.8a,b)

Note from (3.8) that the scalar 1 determines the extent to which plastic
deformation has evolved in the direction of total distortional deformation.
Specifically, if A equals unity then the response is elastic, with C,(1,) equal
to C,(#,). On the other hand, if 4 equals zero then C,(1,) saturates to C'(t,),
wzth deviatoric stress relaxing to zero. It follows from (3.7) and (3.8) that

C, (1) — C,(t) = (1~ DA, A1) ~ A (3.9a,b)

Furthermore, from (2.1d), (2.2¢), (2.6a,b), (2.9), (3.8) and (3.9b) it can be
shown that

T'(F(t,), C, (1), (1)) = — A200 15 '*[(0W [0B,) + 4(0Yr [0B,)]
« [B,"' —(B,~' - IDI +OA-A)  (3.102)
B, =[F'()"17'Cu)F ()™, F =1I7"°F, (3.10b,c)
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where the derivatives of ¥ with respect to f,, B, are evaluated with
L=I(t), pi=p=3 0=0zn) (3.11a,b,c)

Assuming that elastic distortional strain remains small, we neglect quadratic

terms in A and approximate the effective stress o, at the end of the time step
by

Ge[C(EE)a Cp(t2)s 9“2)] ~ )“662: (3123)
G, = 0,[C(1), Cp(11), 8(t2)], (3.12b)

where &, is the effective stress that is calculated using the conmstitutive
equation assuming that the response is elastic. In this regard, we note that
it is not necessary to use the approximation (3.10a).

In view of the results (3.9a,b), (3.12a) and the expression (2.10a), it
follows that the approximation (3.1a) of the flow rule reduces to a scalar
equation for 4 of the form

(1 =) =AAiT = 2 AtTyexp[ —(1/2(ZR[25.)*"]. (3.13)

During a typical process the evolution of the hardening quantity Z is quite
well behaved. Consequently, for simplicity we approximate Z by its value at
the beginning of the time step and specify Z, R, n in (3.13) by

Z=Z(t), R=RL), 06 n=nll)0() (3.14a,b,c)

In solving (3.13) for the value of 1 we may remove the stiffness in the
equation by inverting the exponential function and write

() = A — (ZRG)[2 In{ArToA)(1 — A)}] =2, (3.15)

where the solution of (3.13) is the root of the function f(4) in (3.13).
However, if the material melts and R vanishes (see [12]) then it is more
convenient to solve (3.13) directly to obtain

A =1/(1+AtT,). (3.16)

In any case, it is easy to see that

SOumin) = Amin— 1 <0< f(D) =1, (3.17)
so the solution of (3.15) lies in the range

Amin < A <1, (3.18)

where the values of A, is determined by requiring the second term on the
right hand side of (3.15) to equal unity

Aemin = 1/[1 + AtTo exp{ —(1/2)(ZR/G.)*"}]. (3.19)

Notice, that if R vanishes then the value of A, reduces to the solution
(3.16). Furthermore, by differentiating f(4) with respect to 4 it can be shown
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that f is a monotonically increasing function of A in the range (3.13).
Consequently, f has only a single root in this range. For the examples
discussed in this paper the root of (3.15) was determined using the simple
secant method. It was found that this method works quite well even when
the material response is nearly rate insensitive (with » being very large)
and/or large time steps are taken.

In summary, we assume that the values of all quantities are known at
the beginning of the time step (¢ = #,) and that the total deformation C and
temperature 0 are known at the end of the time step (¢ = 1,). If R is positive,
the value of A is determined by numerically solving for the root of f(4) in
(3.15) with the specifications (3.12b) and (3.14). Otherwise, if R vanishes,
then the value of 1 becomes (3.16). Once A is determined, the value of plastic
deformation C,(1,) at the end of the time step is determined using (3.2) and
(3.8). The values of the isotropic hardening x and directional hardening B
may be updated by numerically integrating equations (2.10b,c) using an
average value of Cp in (2.7g). Specifically, in the absence of thermal recovery
(4, = A, = 0), we assume that the rate of plastic dissipation g,0¢” remains
reasonably constant during the time interval and approximate the integrals
of (2.10b,c) by

k() =Z, — [Z, — k(1})] exp(—m 000" AD), (3.20a)
B(t2) = Z;U — [Z3U — P(1))] exp( —ma008L" Ab), (3.20b)
0008 At =~ (1)2)C;'CS - [C, (1) — C (1)), (3.20c)

where C, C,, S’, U are evaluated at the end of the time step (¢ = £,).

4. Compression-shear

Compression-shear is a deformation associated with modern tests used
to determine dynamic plastic properties of materials {27]. This deformation
is considered here as an example for three reasons: first, total deformation
is specified so there is no need to solve boundary conditions by iteration (see
the example of simple tension in the next section); second, large deforma-
tion simple shear can be analyzed as a special case; and third, a corner test
representing a transition from compression to shear can be used to examine
the accuracy of the numerical procedure for abrupt changes in the direction
of loading.

Throughout the text all tensor quantities are referred to a fixed rectan-
gular Cartesian coordinate system with base vectors e; (i = 1, 2, 3). Specifi-
cally let X, (4 =1, 2, 3) and x; be the components of X, and x, respectively.
Then, by considering compression in the e, direction and shear in the e,
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direction, we specify
x;=a(X,, X =yX,+ Xz, X3= X, (4.1a,b,c)

where a() controls the amount of compression and y(¢) controls the amount
of shear. It follows that for this deformation

a 0 0 1 0 0
F={y 1 0} F'=a'l—=y a 0} (4.2a,b)
0 0 1 0 0 «a
a*+y* y 0O 1 —y 0
C= ¥ ] 0}, Cl'=a"?—y a*+y> 0], (4.2¢,d)
0 0 1 0 0 a’?
13“—"(12 (4.26)

To test the numerical procedure proposed in the last section we consider
the purely mechanical theory and specify the Helmholtz free energy ¥ in the
form

2000 = ko[6(I57Y6 = 1) + 357 — D] + po (1 — 3), (4.3)

where the bulk modulus k, and the shear modulus y, may be determined by
considering standard elastic tests in the small deformation range. Using
(2.7b) the pressure becomes

p = koI5 =I5} (4.4)

Tt will be seen in the next section that this form of the pressure simplifies the
determination of the lateral stretch in simple tension.

Using the procedure described in the last section, a computer program
was developed to calculate the stress response to compression-shear for
constant rate @ and constant shear rate y. The variables a and y were
specified by

da/dt =a, a(0)=1, dyldt =%, y(0)=0 (4.5a,b,c,d)

where &, j are constant during time intervals and & jumps from a constant
nonzero value to zero and j jumps from zero to a constant nonzero value
at the transition from compression to shear.

As a first test of the computer program we attempted to recalculate the
results presented in [12] for simple shear (@ =0,a=1) which used an
integration procedure of the type proposed by Kanchi et al. [13]. Conse-
quently, for the calculations presented in this paper we specify

ko=78.0 GPa, p,=44.0 GPa, (4.6a,b)
I,=10s"!, R=10, (4.6c, d)
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m, = 100(GPa)~', m,=4000(GPa)~', (4.6¢,f)
A =A,=0. (4.6g)

The initial values of plastic deformation C,, isotropic hardening x and
directional hardening B are taken as

C, =1, x=xy, P=0. (4.7a,b,c)
Also, depending on the problem we specify iy, Z; and Z; by

n=10, x,=30GPa, Z =30GPa, Z;=0GPa, (4.82)

n=1000, xo=2,, Z =0456GPa, Z,=0GPa, (4.8b)

n=10, Ky=17GPa, Z, =20GPa, Z;=10GPa. (4.8¢)

Analyzing the results of the calculation for simple shear we observed
again that once the hardening variables saturated the components T); of the
Cauchy stress T saturated to constant values. Furthermore, it was observed
that the component C,y (=C,33) of the plastic deformation C, also
saturated to a constant value. These results suggest that it may be possible
to obtain an analytical solution which is asymptotically valid in the region
where the hardening variables have saturated and the stress has become
constant. Indeed, this is the case. Specifically, we show that in this region the
flow rule (2.10a) becomes

Cou =Tle(1+9) = Cpn), ¢ =3/C-C7Y, (4.92,b)
Cpﬂ = F[C - Cp22}: Cp33 = szzs (490,d)
CplZ =Tey — Cpial, C-'1913 = Cp23 =0, (4.9¢,f)

where T and ¢ attain constant values. Since these equations are linear and
y is specified by (4.5b) they may be easily integrated. As an example,
equation (4.9¢) yields

Cona(1) = ¢ + [Cpa(t)) — ] exp[ —(T/7)y — 7)), (4.10)

where y, is the value of y at ¢ = ¢,. It follows that for large values of y the
exponential term in (4.10) is negligible which demonstrates that the material
tends to forget certain features of its reference configuration. Similarly, it
may be shown that for large values of y we may obtain the asymptotic
solution

Cori (&) = c[1 +y2 — (25 /Ty —7/T)); (4.11a)
Cpgg(f) = Cp33(t) -, (4,11]3)

Cor2(t) = ey — (/1] (4.11¢)
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However, since we are requiring plastic deformation to be incompressible,
the value of ¢ may be determined by the condition (2.4a) to obtain

c=[1+@G/MD)7'" (4.12)

Using these asymptotic results it may be shown that B, also becomes a
constant tensor such that

1+20/T)* =G/ 0
B! - [1+ (/MDA —G/T) 1 0] (4.13)
0 o 1

It follows from (2.5a), (2.6a,b) and (2.9) that since B, is constant the
quantities B, f, are also constant so the Cauchy stress T becomes a
constant tensor for simple shear at constant shearing rate and constant
temperature even if the Helmholtz free energy ¢ is a general function of its
arguments. In other words, the exact asymptotic solution (4.11)—(4.13) is
valid for an arbitrary material in the class defined by (2.52).

Once the form of i is specified, equation (2.9) may be used to determine
the Cauchy stress T and the effective stress g, may be determined from
(2.11d) as a function of the constant value of I'. Substituting the result into
(2.11c) and using the saturated value of Z, we obtain an equation which
may be solved numerically to find the appropriate value of the constant I
for the specified shearing rate 5.

For the specific material defined by (4.3) the components T of Cauchy
stress associated with the asymptotic solution become

Ty = —pol 1l + (/1)1 2(4/3)3 /1)), (4.142)
Ty =Ty=— T“/Z, (4-14b)
T = o1 + (/1)1 7'P0/T), | (4.14c)
T3 = T3 =0. (4.14d)

Using the integration procedure described in section 3 we calculated the
response to simple shear and compression-shear. Figures 1-3 examine the
response for a constant value of the hardening Z. Figures la and 1b show
the results for simple shear of the rate sensitive material characterized by
(4.8a) using different step sizes Ay. The values of T, and T, correspond to
a final value of y = 0.1 and two constant shear rates, which differ by eight
orders of magnitude, have been considered. Notice that for both rates the
shear stress T, is quite accurate even for a single step Ay =0.1, which
corresponds to nearly 130 times the value of y at yield for the lower rate.
The value of shear stress for the higher rate is slightly low because the
numerical procedure uses the average plastic deformation rate and the rate
sensitivity of the material increases with increase in plastic deformation rate
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(see [9] Fig. 1). Notice also that the error in the calculation of the normal
stress T, increases with increased step size. However, in all cases the normal
stresses are nearly two orders of magnitude lower than the shear stress.
Furthermore, we note that the exact asymptotic results in Fig. 1 for the
lower rate are identical to the saturated values presented in [12] once we
observe that the values of Ty, T», in this paper correspond to T, Thys
respectively, in [12].

Figure 2 shows the results for simple shear of the nearly rate insensitive
material characterized by (4.8b) using different step sizes Ay. The values of
T, correspond to a final value of y = 0.1 and two constant shear rates have
been considered. The value of Z, in (4.8b) was chosen to produce a value of
effective stress o, for the low rate y = 10~*s~' equal to that associated with
the material (4.8a). Specifically, the value Z(n) of the hardening variable Z
associated with a material with rate sensitivity parameter n may be deter-
mined to produce the same value of ¢, for material (4.8a) shearing at the
rate y = 10~%s™! by requiring the argument of the exponential function in
(2.11c) to remain constant. Thus, for our case we have

Z(n) = ge(n!)[Z(nl)/ae(nl)]nima (4.15a)
n=1, Z(1)=3.0GPa, ¢,(1) = 0.447 GPa, (4.15b,c,d)

where R has been taken to be unity.

Notice from Fig. 2 that the material response is quite rate insensitive
because the differences in the curves are insignificant even when the shearing
rate is changed by eight orders of magnitude. By comparing Fig. 2 with Fig.
la we observe that the prediction of the shear stress for Ay = 0.1 is more
accurate for the nearly rate insensitive material than for the rate sensitive
material. Further, the results for the normal stress T have not been
presented because both the curves for low and high rates are nearly identical
to the one presented in Fig. 1b for y =107%s7".

Figure 3 shows the results for simple shear of the rate sensitive material
characterized by (4.8a) using different step sizes Ay. This figure shows the
ability of the procedure to calculate a jump test specified by

y=10"%s~! for (0<y <0.01), (4.162)
j=10%s~"  for (0.01 =y < 0.02), (4.16b)
5 =10"*s~! for (0.02 <y < 0.03). (4.16¢)

Notice that the results are good even when Ay = 10~? and there is only one
point calculated for each of the shear rates. Specifically, the stress faithfully
follows the increase and decrease in shear rate. Again we note that the
values predicted for the higher rate are slightly low because the rate
sensitivity is increased at the higher rate.

Figure 4 shows the results for simple shear of the rate sensitive material
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Simple Shear: Values of the shear stress calculated for A Ar=i0?

the hardening material characterized by (4.8c). The 0 00" -
influence of changing the step size Ay is shown for the 0000 0005 000 00l 0020
shearing rate y = 10~%s™". 7

characterized by (4.8¢c) using different step sizes Ay and a rate j = 1045~
Most of the hardening exhibited in this figure is due to directional hardening.
Recall that the numerical procedure updates the value of hardening Z only
after calculating plasticity based on the initial value of Z. Consequently, the
curves show a delay in the effect of hardening. However, it is important to
note that although the value of stress for the curve Ay = 10~? is underpre-
dicted for y = 0.01 the value of stress is relatively accurate for y = 0.02. This
is because the initial value of Z for the second step incorporated the fact that
the directional hardening f nearly saturated during the first step.

Figures 5a and 5b show the results for compression followed by shear of
the rate sensitive material characterized by (4.8c). During the compression

4= —10"%s~! and during the shear § = 10"*s~' For convenience the
results are presented in terms of the average strain Eg,g defined by

Eap =11 —a|+), (4.17)

_ 0.31
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Figure 5a
Compression-Shear: Values of the deviatoric stress calculated for the hardening material characterized by
(4.8¢). The influence of changing the step AE,; is shown for the compression rate ¢ = —10~*s~! and
the shearing rate § =10"*s™ %,
Figure 5b
Compression-Shear: Values of the shear stress calculated for the hardening material characterized by
(4.8¢). The influence of changing the step AL, is shown for the compression rate ¢ = —107* s~ and

the shearing rate y = 10"*s~ L.
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using different step sizes AE,,,. In general, the results f{aithfully follow the
trend that the deviatoric stress T,, decreases and the shear stress T,
increases to the values associated with simple shear (Fig. 1, eqn. (4.14)) as
the shear is being applied. The errors shown in Fig. 5a for the compression
phase are mainly due to the delay in the effect of hardening whereas the errors
in the shearing phase are mainly due to the inability of a single parameter
scheme to accurately follow the evolution of each of the components of
plastic deformation C, when C, is changing directions. In this latter regard,
the errors in the shearing phase are similar to those which have been analyzed
by Krieg and Krieg [28] for small deformations using a yield function and
the radial return method [14]. Furthermore, we emphasize the value of 71,
is obtained by superimposing a value of pressure which increases nearly
linearly from zero to 1.60 GPa during the compression phase. Thus, the
errors in 79, become insignificant relative to the value of 7.

5. Simple tension

Although simple tension is one of the easiest experiments to perform,
complications arise in its analysis because it is necessary to satisfy the
boundary condition of zero lateral stress. This influences the implementation
of the solution procedure described in section 3 because the lateral stretch is
not known at the end of the time step even if axial stretch is imposed.

The deformation quantities for simple tension may be written in the
form

x, =a(DX,, x,=0b)X;, x;=>b()4s, (5.1a,b,c)
Fy, =a, F,=Fy=>5, all other Fi; =0, (5.1d,e,f)
Cy, =a?, Cy=Cy=>% all other C, =0, (5.1g,h,i)
Iy = a’b*, (5.1))

where a(?) is the axial stretch and b(¢) is the lateral stretch. Also, Fiy and C,p
are the components of F and C, respectively. Using the flow rule (2.10a),
(2.11a) and imposing plastic incompressibility the components of plastic
deformation become

Cplg = ai, szz e Cp33 = I/ﬂp, all other CpAB = 0, (5.23,b,0)

where the value of a4, is to be determined.
It follows that for the specification (4.3) the components T of the
deviatoric Cauchy stress T’ become

1 = (215 %P 3aa,)(a® — aph?), (5.3a)
Th =T = —Th/2, all other T} =0. (5.3b,)
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Now, the value of the lateral stretch b may be determined by requiring the
lateral stress T, to vanish

Tzz = —pD }- T’zzﬂ 0 (5'4)

Substituting (4.4) and (5.3) into (5.4) and multiplying the result by I3? we
obtain

ko( 1 — IV2) + (uo/3aa,)(@® — a2b?) = 0. (5.5)

Since 7Y/ is a linear function of 5% (5.1j) it follows that (5.5) admits the
simple solution

b? = (1/a)[ 1 + (o/3ko)a/a,)|/[1 + (o/3o)(a, a)?) (5.6)

Other nonlinear forms for the pressure, different from (4.4), could be
postulated which would also yield a simple expression for the lateral stretch.
However, since the volume change for a metal should remain quite small
for simple tension and since all of these forms must yield the same linear-
ized expression for pressure, any differences that arise should remain
insignificant.

Now, to solve the problem of simple tension we first specify the axial
stretch a(7); then guess a value of b at the end of the time step; calculate g,
using the procedure of section 3; and finally iterate on the guess for & until
equation (5.6) is satisfied at the end of the time step.

Figure 6a shows the calculation of simple extension for the rate sensitive
material characterized by (4.8a), a constant rate g = 10~4s™!, and three
step sizes Aa. Notice that the solution is quite accurate even for an extremely
large step size Aa =9 (which is three orders of magnitude larger than the
value of Aa associated with yield). Figure 6b shows the calculation of simple

0.51 -0.0 LAl
I — FREAN— A o
04 i -4 {{— na=-10"*
_ i ¥ ag=-10"
Soat / S _ge| & fos90’
= ! <
~02) i D03
e pg=1073
al P * o o=l ~0 4
. A Aa=9
00— &= . ‘ sk BT : ‘
¢ 1 2 3 4 5 & 7 B 9 10 00 02 04t 06 oa 1.0
a
Figure 6a

Simple Tension: Values of the stress for extension at constant rate d = 10-%s~! of the rate sensitive
material characterized by (4 8a). The influence of changing the step Aa is shown.

Figure 6b
Simple Tension: Values of the stress for contraction at constant rate @ = — 10~% s~ of the rate sensitive
material characterized by (4.8a). The influence of changing the step Aa is shown.
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compressxon for the same rate sensitive material, a constant rate
4= -10""s"', and three step sizes Aa. Notice that the solution is quite
accurate even for Aa = —0.9.

6. Application to other models

The numerical procedure of section 3 was developed with specific
reference to a generalized version of the elastic-viscoplastic model proposed
by Bodner and Partom [6, 7] which does not use a yield function. Here, we
show that the same proceciure may be used for other models of plastic
behavior. Specifically, we consider a rate-insensitive model which uses the
notion of a yield surface as well as a form of the overstress model for
rate-sensitive response.

To this end, let g be a yield function in strain space [29] which separates
elastic and plastic response. Constitutive equations of the type discussed in
this paper may be reformulated using a yield function by modifying the
function I' in (2.10a) and neglecting thermal recovery of hardening
(4, =A,=0 in (2.10b,c)). A detailed discussion of the formulation for
anisotropic materials may be found in [16]. For our present purpose we
consider a simple yield function specified by

g=¢(C,C,, 0,1,B) =1—(ZR[o,)" (6.1)
For this model, loading into the plastic region is characterized by

g=0 and g =(dg/dC) C+(dg/o6)d >0, (6.2)
and elastic response is characterized by

g=0 and £<0, or g<0. (6.3a,b)

The quantity £ in (6.2) indicates loading by evaluating the tendency for the
yield function to increase due to elastic response only.

In the present context, the expression (3.12a) for the effective stress o,
may be used to rewrite (6.1) in the form

g =1—(ZR/15.)". (6.4)

Consequently, loading into the plastic region and elastic response may be
approximated by

A =(ZR/é,) for loading (¢, > ZR), (6.52)
A =1 for elastic response (6, < ZR). (6.5b)

The value of 4 in (6.5a) is determined by the consistency condition which
requires the yield function g to vanish at the end of the time step. Since &,
is evaluated assuming only elastic response during the time step, the
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condition that &, is greater than ZR indicates that elastic response tends to
increase the value of the yield function. Consequently, the condition (6.5a)
is compatible with the loading condition (6.2). A detailed discussion of the
compatibility of numerical procedures and the strain-space formulation of
plasticity has been given by Moss [30]. Furthermore, we note that for the
small deformation theory the equations of section 3 together with the
specification (6.5a) reduce to the radial return method [14].

In calculating the value of plastic deformation at the end of the time
step we assume that Z and R in (6.5) attain the values (3.14a,b). There-
fore, the value of Z must be updated after plastic deformation has been
calculated.

A form of the overstress model [2, 3] may be obtained by assuming the
function T in (2.10a), (2.11c¢) is replaced by

I'=Tyg™ for loading (g >0}, (6.6a)
I'=0,1=1 for elastic response (g < 0), (6.6b)

where I', and m are positive constants controlling the rate-sensitivity of the
response and g is the yield function given by (6.1) and (6.4). In this
formulation the consistency condition is abandoned and the yield function
g is allowed to become positive. Furthermore, plastic deformation rate
experiences a continuous transition from elastic to plastic response because
it vanishes when g vanishes. In constrast, the consistency condition in the
rate-insensitive model forces plastic deformation rate to experience a jump
when the material begins to yield.

Using the procedure described in section 3 and replacing the function I
in (3.13) with the expression (6.6a) we obtain

(1 —2) =4 AtTo[1 —[(ZR/A5,)1]", (6.7)

which is an equation to determine A during loading. Rearranging (6.7), the
analogue of the function f(4) in (3.15) becomes

F0) = A — (ZR[G)1 — {(1— A)/d AtTo} =12 (6.8)
With the help of the definition
Amin = 1/(1 + AtT), (6.9)
it is easy to show that
fin) = —o0 <0< f(1) =1 —(ZR/3.), (6.10)
so the root of (6.8) lies in the range
Ain < A < 1. (6.11)

Furthermore, by differentiating f(4) with respect to A it can be shown
that / is a monotonically increasing function of A in the range (6.11).
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Consequently, f has only a single root in this range. Notice also, that for
very large values of the constant m the material response becomes quite
rate-insensitive because the root of (6.8) approaches the value (6.5a).
However, if thermal recovery of hardening is retained by specifying nonzero
values of 4,, 4, then a certain amount of rate sensitivity remains even if the
evolution equation for plastic deformation becomes nearly rate insensitive.

Finally, we mention that for both of these models the notion of melting,
as represented by a vanishing value of R, causes deviatoric stress to vanish.
This result should be contrasted with the more physical result associated
with the constitutive equations of section 2 which requires the metal to flow
as a viscous fluid when it melts [12].

7. A modified estimate of hardening

It was seen in Figs. 4 and Sa that the numerical procedure of section 3
produces a delayed effect of hardening because the value of the hardening
variable Z is only updated after plastic deformation has been calculated.
Here, we consider a simple modification of the estimate of the hardening
which significantly improves the results for hardening materials. Specifically,
let k*, B*, z* be the values of «, B, z at the end of the time step estimated
by the procedure of section 3. Further, let AZ. .. be a specified nondimen-
sional error parameter and test if the change in Z exceeds the limit
determined by

lZ*mz(tl);/Z* = Azerrora (71)

where we recall that Z(t,) is the value of Z at the beginning of time step.

If equation (7.1) is satisfied then the values determined by the procedure
of section 3 are accepted without correction. Otherwise, C,, k, p are reset to
their values at the beginning of the time step and the values of C,, x, p at the
end of the time step are recalculated using the procedure of section 3 with
Z in (3.14a) replaced by a new trial value Zr. The value of Z; is determined
by the weighted average

Zy=xr+ Pr, (7.2a)
iy = (1) + [ + (1 = ) 1* = Z)(Zy — Za)e* — we(t1)], (7.2b)
By = B(ts) + [ + (1 — o) |B*|/Z51B* — B(2)) (7.26)
0, <1, 02,51, (7.2d,e)

where o, and «, are quantities to be determined. The trial values ky, fr have
the property that for any values of a;, &, they incorporate the full change in
the hardening variables «, f if x* and [ﬁ *i attain their saturated values Z,



Vol. 40, 1989 A time integration procedure for large plastic deformation 865

and Z,, respectively. Obviously, if Z5 and B, vanish then the trial value of
the directional hardening parameter (7.2c) is not calculated.

In order to motivate a form for o, it suffices to consider the small
deformation theory (see appendix), discuss the simple case of plastic defor-
mation at constant loading rate and neglect directional hardening (Z = ).
In section 3, plastic deformation at the end of the time step was calculated
using the value of hardening x(¢,) at the beginning of the time step. It
follows that during loading the plastic work done may be approximated by

T’ - AE, = T"* - AE¥, (7.3)

where AEY is the plastic strain increment during the time step and T'* is the
estimate of deviatoric stress at the end of the time step. Neglecting thermal
recovery and using Euler integration the updated value x* of x obtained
using (2.10b) becomes (see A10)

k* —x(ty) =m[T* - AEXZ, — x(8;)]. (7.4)

However, if plasticity were calculated using the final value x(¢,) then the
plastic work done would be approximated by

T - AE, = T'(1;) - [AE} — AEL] = T'(1;) - [AE} — AT /2], (7.5)

where AT’ is the deviatoric stress increment from T'* to T'(8,), T'(%,) is the
deviatoric stress at the end of the time step, y, is the reference value of the
shear modulus, and (A3) has been used. Furthermore, for proportional
loading at constant rate AT’ may be approximated by

AT = [K(t2) — k(1) T*/a (7.6)

where oF is the value of effective stress associated with T'*. Since to first
order T’(4,) in (7.5) may be replaced by T'* it follows that the updated value
of hardening x(t;) becomes

K(tz) — r(f)) = oy [ic* — k1))l (7.72)
oy = 1/[1 +m {Z, — x(t,) } A8, [31], (1.70)

where (7.4) has been used and the value ¢ has been related to &, using the
expression (A9a). Notice that for values of k* close to Z, the trial value xr
in (7.2b) is the same as the final value x(¢,) in (7.7), which is the desired
result.

For the general case when both directional and isotropic hardening are
included and the loading is not necessarily proportional or at constant rate
we continue to assume that the expression (7.7b) holds. Also, by analogy,
we specify a, by

oy = 1/[1+my{Z;— Iﬁ(fl)i}xﬁeﬁﬂol (7.8)
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The problems of simple shear and compression-shear associated with
Figs. 4 and 5 were resolved using the modified estimate of hardening
discussed above together with the specification

AZ eor = 1072, (7.9)

Figure 7 shows the results for simple shear. The modified method appears
to predict accurate results for any step size. In particular, note that the
modified solution for Ay = 5.0 x 107 in Fig. 7 is more accurate than the
solution for Ay =2.5 x 1072 in Fig. 4. Since the computational time for
the modified method associated with each step which fails the test (7.1) is
less than twice that for a step which passes the test (7.1) it might be more
efficient to use the modified method than to merely reduce the time step by
half.

Figure 8 shows the results for compression and shear. Comparing these
results with those in Fig. 5 we observe that the modified method accurately
follows the hardening during the compression phase. The curve for the
shear stress is not presented because the results are nearly identical to
those in Fig. 5b.
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Simple Shear: Values of the shear stress calculated for ¢ 05 A ar=107
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modified estimate of hardening. The influence of chang- g go#- : ,
ing the step size Ay is shown for the shearing rate 0000 06005 0Qle 0015 0020
¥ = 104! 7
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Compression-Shear: Values of the deviatoric stress cal-
culated for the hardening material characterized by
(4.8c) using the modified estimate of hardening. The ?*ﬁ—s—gze:g’
influence of changing the step AE,,, is shown for the -0 3 | ‘ :
compression 1ate @ = —10~* s~ ! and the shearing rate 000 001 002 003 G .04

y=10"%s"" Eavg
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8. Conclusions

A simple unconditionally stable numerical procedure for time integra-
tion of the flow rule for large plastic deformation of an elastic-viscoplastic
metal has been developed. Specific attention has been focused on a unified
set of constitutive equations which does not use the notion of a yield
function. Also, an analytical solution has been obtained for large deforma-
tion simple shear at constant shear rate which is valid for a general
elastic-viscoplastic metal exhibiting isotropic elastic response. Comparison
of the numerical solution of simple shear with the analytical solution
indicates that the procedure developed here accurately predicts the value of
the Cauchy shear stress even for extremely large integration steps. When
these large integration steps are used errors occur in the prediction of the
normal stresses. However, these errors are often negligible because the
normal stresses are approximately two orders of magnitude lower than the
shear stress.

Specific equations of a rate insensitive metal characterized by a yield
function as well as a rate sensitive metal characterized by an overstress
model have been considered to show how the procedure may be imple-
mented for other models.

Finally, in order to compare the present integration procedure with one
currently used for stiff differential equations [13], we reconsidered the
example of simple shear. Specifically, for small deformations, the equations
recorded in the appendix of [12] yield

TiZ = Ho¥es ’Ye(fz) - '}’e(tl) + A})e: (Slasb)
Ay, = [y(t2) — () — ATy )11 + 77 AtT{1 + n(Z[o,)*"}), (8.1c)

where 77 is a constant; I' and o, are defined by (2.11c,d); and v, T, z, 6, In
(8.1¢) take their values at the beginning of the time step (¢ = ¢;). The value
of 77 is taken in the range (1/2 < # < 1) for stability [31].

Figure 9 shows the shear stress T\, calculated for y = 107%s™!, f =1,
and three different example materials specified by (4.8a) and

n=350, k=2,, Z,=0654GPa, Z;=0, (8.2a)
n=100, kx=2,, Z,=0541GPa, Z;=0, (8.2b)

To isolate the effect of rate sensitivity, the values of Z, in (8.2a,b) were
determined using the formula (4.15) which ensures that the flow stress for
7 = 107%s~! is the same for all three materials. Using Tables 1 and 3 of [9]
we observe that » =1, 5, 10 are representative of Ti, Al 6061-T6, and Al
2024-0, respectively. It is obvious from Fig. 9 that the accuracy decreases
significantly as the material becomes more rate insensitive (n increases) and
that oscillations can occur which make the predictions unusable. In contrast,
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we recall from Fig. 2 that the procedure presented here produces accurate
results even for a large step (Ay =0.1) and an extremely rate insensitive
material (n = 100). Furthermore, we note that for this procedure the numer-
ical effort required in the limit of nearly rate insensitive response is not
greater than that required for rate sensitive response, even though the flow
rule for elastic viscoplastic response becomes extremely stiff when the
material response is nearly rate insensitive.

Addendum

Just before this paper was submitted for publication the author received
a preprint [32] which discusses a numerical procedure for viscoplasticity
which also requires determination of the root of a scalar equation (see 3.13).
However, the constitutive equations considered here are significantly differ-
ent from those discussed in [32].

Appendix: small deformation formulation

For analyzing small deformations it is convenient to introduce the total,
plastic, and elastic strains E, E,, E,, respectively, by
E=(1/2)(C-D, E,=/2)(C,—D, E =/2)(C.—1) (Alabyg)

It follows from (2.1b,c) that for small deformations and small strains

M,=1+E, M;'=1-E, E,=E-E, (A2a,b,c)
C;'=1-2E, B,=I1+2E, B'=I-2E, (A2d.e,f)

Neglecting quadratic terms in the strains and using the equations (4.2),
(5.3), (5.4) of [12] the constitutive equation (2.9) reduces to

T = 24E; = 245(E — E,), (A3)
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where E; and E’ are the deviatoric parts of E, and E, respectively, and pq is
the reference value of the shear modulus. The tensor A in (2.11a) becomes

A=2E —E,), (Ad)
so the flow rule (2.10a) reduces to
E, = T(E —E,) = (T/2u,)T" (AS5)

Furthermore, C, ' in (2.10c) and (2.11f,g,h) may be set equal to 1.
Now, the method of section 3 suggests that the flow rule (A5) be solved
implicitly over the time interval [¢,, £,] such that (see 3.1)

E,(12) —E, (1) = AtT[E (1) — E,(12)], (A6)

where I in (A6) and (2.11c) is evaluated at the end of the time step (¢ = £,).
Furthermore, since (AS5) requires plastic strain E, to evolve in the direction
of deviatoric strain E’ we assume that E,(¢,) may be expressed in the
alternative form (see 3.8)

E,(1;) = E'(;) — A[E(5,) — E, (1))}, (A7)
where A is a scalar to be determined. Thus (see 3.9)

E,(5;) —E, (1)) = (1 - D[E'(ty) — E,(1)], (A8a)

E'(t) — E (1) = AE(;) — E, (1))} (A8b)

Also, the effective stress o, in (2.11d) at the end of the time step is given by
(see 3.12)

o = 6ug[E (1) — E, ()] - [E'(1) — E,(1)] = A%62, (A9a)

67 =6u3[E (1) ~ E,(1))] - [E'(12) — E,(1))], (A9b)
where 6, is the effective stress that would be calculated if the response were
elastic. It follows by using (A8), (A9) and the form (2.11¢) that the
approximation {(A6) of the flow rule reduces to the scalar equation (3.13),
which is satisfied by solving for the root of (3.15).

Finally, we note that for the small deformation theory the rate of plastic
dissipation (2.7g) becomes

00 =T - E, (A10)

which 1s the usual expression for the rate of plastic work.
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Abstract

A simple unconditionally stable numerical procedure for time integration of the flow rule for large
plastic deformation of an elastic-viscoplastic metal is developed. Specific attention is focused on a unified
set of constitutive equations which represents a generalization (for large deformation and thermome-
chanical response} of the Bodner-Partom model {6, 7]. An analytical solution is obtained for large
deformation simple shear at constant shear rate. Numerical examples of simple shear, a corner test
exhibiting the transition from uniaxial compression to shear, and simple tension are considered which
demonstrate the stability and accuracy of the procedure. It is shown that the same procedure can be used
for a rate insensitive metal characterized by a yield function as well as for a rate sensitive metal
characterized by an overstress model. Finally, an appendix is provided which records the basic equations
associated with the small deformation theory
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