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Abstract--This paper presents a thermodynamic formulation of a model for finite deformation of 
materials exhibiting elastoplastic material behaviour with non-linear isotropic and kinematic 
hardening. Central to this formulation is the notion that the form of the elastic constitutive relation 
be unaffected by the plastic deformation or transformation in the material, as commonly assumed 
in particalar in the context of crystal plasticity. When generalized to the phenomenological context, this 
implies that the internal variable representing plastic deformation is an elastic material isomorphism. 
Among other things, this requirement on the plastic deformation leads directly to the standard elasto- 
plastic multiplicative decomposition of the deformation gradient. In addition, a dependence of the 
plastic part of the free energy on the plastic deformation itself yields a thermodynamic form for the 
centre of the elastic range of the material, i.e. the back stress. Finally, we show how this approach can be 
applied to formulate thermodynamic forms for linear, and non-linear Armstrong-Frederick, kine- 
matic hardening models. © 1998 Elsevier Science Ltd. All rights reserved 

I. INTRODUCTION AND NOTATION 

Over the years, many  thermodynamical ly-based formulat ions o f  inelastic material 
behaviour  have appeared (e.g. Coleman,  1964; Green and Naghdi ,  1965, 1971; Valanis, 
1967; Coleman and Gurt in,  1967; Kratochvi l  and Dillon, 1969; Rice, 1971; Mandel,  1972, 
1974, 1982; Halphen  and Nguyen  Quoc  Son, 1975; Lubliner, 1973, 1984, 1986, 1987; 
Chaboche ,  1993). Most  o f  these involve invariably, in one way or  another  (as does the 
approach  taken in this work),  the concept  o f  internal variables to represent the history 
dependence o f  such material  behaviour.  In the context o f  large deformations,  the most  
notable o f  these is perhaps the representation o f  inelastic deformat ion  as an internal 
variable. The most  c o m m o n  approach  here, o f  course, is the elastoplastic multiplicative 
decomposi t ion  o f  the deformat ion  gradient (e.g. Lee, 1969; Clifton, 1972; Haup t ,  1985), 
which forms the basis o f  mos t  recent formulat ions  o f  elastoplastic material behaviour,  and 
in part icular  those aimed at numerical  simulation o f  such behaviour  (e.g. Simo, 1992; 
Miehe, 1994.). A m o n g  other things, we show in this work  that  such a decomposi t ion  arises 
natural ly in the context o f  the assumpt ion that  plastic deformat ion  does not  affect the 
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form of the elastic constitutive relation, as is in particular the case in classical crystal 
plasticity. In Noll's terminology (e.g. Truesdell and Noll, 1965 (Sec. 27); Noll, 1967, 1972), 
such quantities represent material isomorphisms; in particular, since the plastic deforma- 
tion preserves the form of the elastic constitutive relation, we refer to it as an elastic 
material isomorphism here. Early models for inelastic material behaviour utilizing Noll's 
concept of material isomorphism include Noll (1972) and Wang and Bloom (1974). The 
concepts of elastic range (e.g. Pipkin and Rivlin, 1965; Owen, 1968, 1970; Del Piero, 1975; 
Silhav~ and Kratochvil, 1977; Kratochvil and Silhav2~, 1977; Lucchesi and Podio-Gui- 
dugli, 1988, 1990) and material isomorphism have been combined explicitly* by Silhav~ 
and Kratochvil (1977), Kratochvil and Silhav~ (1977) and, more recently, by Bertram 
(1993) and Bertram and Kraska (1995), to formulate models for inelastic material beha- 
viour; in particular the latter authors applied their formulation to crystal plasticity. In all 
of these previous works, the plastic deformation is assumed to be an elastic material iso- 
morphism from the start. A framework for the more general case, i.e. when plastic 
deformation is not necessarily an elastic material isomorphism, has been formulated 
recently in a thermodynamic setting by Svendsen (1998). 

In the current work, we apply this last approach to examine the aspects and con- 
sequences of material isomorphism for the thermodynamic formulation of large-defor- 
mation elastoplasticity with non-linear isotropic and kinematic hardening in the context 
of the internal dissipation inequality. After introducing the basic constitutive considera- 
tions and internal dissipation inequality (Section 2), we examine the consequences of the 
plastic deformation being an elastic material isomorphism (Section 3). Next, particular 
forms for the plastic part of the free energy are constructed which yield the well-known 
special cases of Prager (i.e. linear) and non-linear Armstrong-Frederick kinematic hard- 
ening (Section 4). Finally, we compare the results of the current formulation with those of 
previous works (Section 5). In particular, previous thermodynamic formulations of large- 
deformation kinematic hardening include Dogui and Sidoroff (1985) for the linear case 
and, more recently, Tsakmakis (1996) in the elastoplastic and Haupt (1995) in the visco- 
plastic context, for the Armstrong and Frederick (1966) case, and generalizations thereof. 
Among these previous works, one finds in essence two approaches, the difference being in 
whether or not the plastic part of the free energy depends explicitly on the plastic defor- 
mation (e.g. Dogui and Sidoroff, 1985; Haupt, 1995; this work) or not (e.g. Tsakmakis, 
1996; Sievert, 1997). In particular, the latter approach is motivated by that in the small 
deformation context (e.g. Chaboche, 1993). 

Finally, a word on notation. Let bold face, upper case italic letters such as D, F and T 
represent second-order Euclidean tensors, or time-dependent fields of such tensors. In 
addition, let A-B: = tr(ATB) represent the inner product of such tensors, where A T repre- 
sents the transpose of A. Further, let sym(A): = 1/2(A+A x) and skw(A):= 1/2(A-A T) 
represent the symmetric and skew-symmetric parts of any Euclidean tensor A. A scalar-, 
vector- or tensor-valued function tl,(A) of a Euclidean tensor A is called positive homo- 
geneous of degree 1 if O2(aA) = a~(A) holds for all positive real numbers a. For notational 
simplicity, it proves advantageous to abuse notation in this work and denote mappings 
and their values by the same symbol. Other notations and mathematical concepts will be 
introduced as they arise in what follows. 

*Without identifying it as such, earlier works such as Fox (1968) and Owen (1968, 1970) in effect represented 
plastic deformation as an elastic material isomorphism. 
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11. BASIC CONSTITUTIVE ASSUMPTIONS AND INTERNAL DISSIPATION 

We assume in this work that the material in question behaves elastoplastically in the 
sense that it exhibits rate-independent hysteresis (e.g. Haupt,  1993). In the context of  the 
internal variable approach being pursued here, each inelastic process is represented by the 
evolution of a corresponding internal variable; for the moment, we collectively designate 
these by ~,. Assuming further for simplicity in this work that the temperature is constant, 
the basic constitutive relations of the model then take the forms: 

= ¢(F, ~,, ~'), 

S = S(F,  f., ~'), 

~, = ~,(r, ~,,/~), 

(1) 

where ~p represents the referential free energy density, and S: = F-1KF-T the second Piola- 
Kirchhoff, K: = det(F)T the Kirchhoff, and T the Cauchy, stress tensors, respectively. As 
usual, the internal variables [, represent quantities whose evolution is not accounted for by 
the usual balance relations, requiring the constitutive relations (1) to be evolutionary in 
form (e.g. Valanis, 1967; Coleman and Gurtin., 1967; Lubliner, 1973; Haupt,  1993). As 
usual, the deformation gradient F and its rate F are determined via the balance relations 
or controlled externally. 

The basic thermodynamic development in this work is based, as usual, on the referential 
internal dis:~ipation rate density 8, i.e. the difference between work preformed on the 
material and work stored in the material per unit time, which in the isothermal case can be 
written in the form 

8 = S-FTF ' - '~ (2) 

relative to S. Next, substituting the constitutive relation (1)l into eqn (2), we obtain 

8 = 8(F, ~,, F) = [S - F-I$,r] .FT~ " -- ¢,~.~, -- ~ r.~'. (3) 

Note that 8 is linear in the independent variable F. For 8 to be greater than or equal to 
zero for any admissible thermodynamic process (F,[,,F) in which F can vary indepen- 
dently, then, we must have 

~,F = O, (4) 

yielding the reduced form 

q, = ¢ ( r ,  ~,) (5) 

for the referential free energy density ~p, as well as that 

= 8(r ,  ~,, r )  = [ S -  r -~  ~ . d . r r i r  - ~,~-/~ (6) 

for the referential dissipation rate density in the current constitutive context. 
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Now, since internal variables (or at least those of interest here) can always be defined or 
introduced in an observer-invariant* fashion, the requirement of material frame-indiffer- 
ence reduces (1) l to 

¢ = ¢(C, ~,), (7) 

where C: = FTF is the right Cauchy-Green deformation tensor. This requirement likewise 
reduces (1)2,3 to 

S = S(C,  ~,, C), 
L = L(c, ~, c). (8) 

An immediate consequence of material frame-indifference is that 

¢,r = 2F@,c (9) 

via eqn (7). Assuming now that the material is non-polar, i.e. 

S T -~- S, (10) 

and introducing the velocity gradient L: = FF -t ,  deformation rate D: = sym(L), continuum 
spin W:=skw(L) and using the results C = 2FTDF and FTF =l/2C + FTWF, eqn (6) 
reduces to 

8 = 8(C, ~,, C) =~/:[S - 2~,c].C + 8p (11) 

with skw(~,c)= 0. In this last result, 

~p = 8p(c, ~, (3 := - ~ , t . L  (12) 

represents the "plastic" dissipation rate density, which Lubliner (1984, 1986) has refered 
to as the plastic dissipation function, with which we work in what follows. 

For the material behaviour to be rate-independent, the reduced constitutive forms 
(eqn (8)) for S and ~ must be positive homogeneous of order 0 and 1, respectively, in (2, 
as usual. On this basis, the internal .dissipation rate density 8 from eqn (11) is then 
positive homogeneous of degree 1 in C, i.e. not linear in C. As such, the usual "elastic" 
form 

S = 2~P,c (13) 

for S is, in general, not necessary to satisfy 8>0, but rather only sufficient. Lubliner (1973) 
has shown that, in the special case of a loading function-based formulation of elastoplas- 
ticity, certain additional assumptions lead to the necessity of eqn (13) as well to insure 

*In particular, one finds such an observer-independent representation for (tensorial) plastic deformation or 
transformation in, e.g. Fox (1968), Wang and Bloom 0974), Siihav~ (1977), Silhav~ and Kratochvll 0977), 
Kratochvil and Siihav~ (1977) or Bertram (1993). 
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8_>0, the mo,;t important of these being the assumption that elastic processes result in no 
dissipation. If eqn (13) was, in general, both necessary and sufficient to satisfy 8_>0, then 
the condition 

8p > 0 (14) 

on the plastic dissipation 8p would follow automatically from 8>0; since this, however, is 
not the case in general, eqn (14) does not follow from these, and is itself only sufficient to 
satisfy 8>0, again in general. Since it is not the purpose of the current work to pursue such 
additional conditions needed to obtain the necessity of eqns (13) and (14) as well, they are 
simply adopted as additional and independent constitutive assumptions for simplicity in 
what follows. 

As can be motivated by simple rheological models (e.g. Dogui and Sidoroff, 1985; 
Maugin, 1992; Chaboche, 1993; Haupt, 1995), we assume in the elastoplastic case that ~p 
as given in eqn (7) can be split into a sum of elastic $E and plastic ~0p, parts. As such, ~PE 
will depend on the current total deformation C, while ~pp, does not. In particular, we 
assume that energy can become stored in the material as a result of plastic deformation, 
which we represent in this work via a deformation-like internal variable* P accounting for 
the effect of (tensorial) plastic deformation (i.e. the "collective" or "effective" deformation 
of all active glide systems, grain boundaries and so on, in the material) on the material 
behaviour. Since such deformation may in general influence the elastic response of the 
material, we assume that ~PE also depends in general on it. Restricting the remaining 
inelastic processes to non-linear kinematic and isotropic hardening, we assume that these 
do not influence the elastic response of the material. On the other hand, they may result in 
additional storage of energy in the material during inelastic processes. To account for this, 
we assume further that, beyond P, lpp, depends on two deformation-like internal variables 
Y and e. As will be seen in Section 4 in the context of the Armstrong-Frederick model for 
non-linear kinematic hardening, the evolution of Y governs, e.g. the saturation of the back 
stress. Analogously, e is thermodynamically conjugate to the yield stress, as will also be seen 
in what follows. 

On this basis, then, ~p takes the additive formt 

~p(C, ~,) = ~E(C, P) + grp(P, Y, e) (15) 

with ~,= (P,Y,e). As will be seen in the next section, the form lPE(C,P ) for 1//E in eqn (15) 
depending on the total deformation and its plastic part represents a conceptual general- 
ization to the current large-deformation context of the usual small-deformation assump- 
tion that ~tE depends on the "elastic part" of the deformation (when P is assumed to be an 

*Here, we are asing the notation from Mandel (1972) for this variable (see also Mandel, 1974, 1982). From the 
phenomenological point of view, this tensor could, in general, represent, in an effective sense, more complex or 
general inelastJic processes than the conceptually analogous plastic "deformation gradient" Fp, arising in the 
usual multiplicative elastoplastic decomposition of F from crystal plasticity (e.g. Lee, 1969). As will be shown in 
the next section, however, under the further constitutive assumption that P is an elastic material isomorphism, P 
can in fact be identified constitutively with Fp. 
tAs already mentioned in the introduction, a basic difference arises here between the current approach and that 
of, e.g. Kratoc]avll and Dillon (1969), Mandel (1972, 1974, 1982), Lubliner (1984, 1986) and Tsakmakis (1996) in 
that we allow ~p to depend on P. On the other hand, this is conceptually consistent with one approach taken in 
Dogui and Sidoroff (1985) and Haupt (1995). This assumption has consequences for the thermodynamic for- 
mulation of back stress, as shown in Sections 4 and 5. 
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elastic material isomorphism; see Section 3). Note that inelastic processes such as damage, 
which may influence the form of the elastic response of the material, are excluded for 
simplicity here. Substituting finally eqn (15) into (14), it reduces to 

~p = t~p(C, P, Y, e, (~) = -¢r,p.p - l~ry .~]~ -- ~r,e~. (16) 

The corresponding evolution relations for these variables then take the forms 

P = Lp(C,  P,  Y,e ,  C ) P ,  

~i' = i/(C, P, Y, e, (~), 

= ~(C, P, Y, e, C), 

(17) 

via eqn (8). In the current context of simple materials, P is interpreted as a tensor-valued 
inelastic process transforming the reference "state" of an infinitesimal neighborhood of 
each material point into a corresponding inelastically-transformed one, whose local evo- 
lution is given by eqn (17)1. On the other hand, Y is interpreted as an inelastic process 
with respect to reference configuration (e.g. like C or S) in this work; such an interpreta- 
tion for Y arises naturally in the context of particular cases, as will be shown for example 
in the Armstrong-Frederick case in Section 4. Such more general aspects of  the current 
formulation have been discussed in more detail elsewhere (Svendsen, 1998); here, we focus 
primarily on the thermodynamic formulation of kinematic hardening afforded by the 
above framework, subject to the further assumption that P represents an elastic material 
isomorphism, to which we now turn. 

IlL ELASTIC MATERIAL ISOMORPHISM 

From the classical case of crystal plasticity, one has the notion that the (inelastic) 
deformation resulting from the motion of dislocations in active glide systems, and so on, 
does not affect the structure of the crystal lattice. In other words, such deformation does 
not change its symmetry. On the phenomenological level, where we are dealing in general 
with material symmetry rather than crystal symmetry, one could generalize this idea into 
the assumption that plastic deformation does not affect the form of the elastic constitutive 
relation. In the context of eqn (15), such an assumption implies a special dependence of 
CE on P. Indeed, P will not change the form of eqn (13) if and only if the dependence of 
l~r E o n  P takes the special form* 

EMI ¢E(C, P) = ~OE(p-Tcp-I), 

*The stronger assumption 

¢(C, P, 0~) = ~o(p-Tcp -1, at), 

on the dependence of the entire referential free energy density ~p on P (in the guise of Fp, cx representing all other 
internal variables) has been commented on by Lubliner (1984, 1986), who, however, seems to have been unaware 
of its connection with the concept of material isomorphism. This stronger assumption underlies almost all of the 
standard thermodynamic formulations of inelastic material behaviour, e.g. Kratochvil and Dillon (1969), Mandei 
(1972, 1974, 1982), Lubliner (1984, 1986), Chaboche (1993), Tsakmakis (1996) and Sievert (1997). 
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where EMI ,;tands for "elastic material isomorphism". Originally, this notion stems from 
Noll (see, Noll, 1972, Sec. 9), who refers to time-independent transformations between 
(the tangent spaces of) two distinct material points which preserve some aspect of their 
material response as material isomorphisms. Here, we are using it in a slightly different 
fashion, i.e. it refers to a time-dependent process between two states of the same material 
point leaving some aspect of its material behaviour unchanged. Since the material beha- 
viour in question here is elastic, we refer to P in this context as an elastic material iso- 
morphism. Note that EMI represents in essence both (1) a restriction on the dependence 
of ~PE on P, and (2) the definition of P as an elastic material isomorphism. In particular, 
the elastic part of ~p as restricted in EMI depends on P only through its ("push-forward") 
tensorial action* p - TCp- I  on C. Substituting EMI into eqn (13), we see that, as claimed, 
such a dependence of ~PE on P does indeed preserve the form 

S = 2~,c = 2p-ltpE.p-Tcp-,P -x (18) 

of the elastic constitutive relation, as well as that 

4(~k c),c[A] = 4p -1 (tpE.p_Tcp-,)p-Tcp-~ [p-TAp-1]P-T (19) 

of the elasticity tensor with respect to any symmetric second-order tensor A. Transform- 
ing eqn (18) forward with F, and using the definition of C, yields the form 

2F~,FTFF T = 2(Fp-I)cpE,(Fp-t)T(Fp-,)(Fp-1) x (20) 

for the elastic Kirchhoff stress; the same of course can be done for the elasticity tensor in 
eqn (19). 

Since 2F~, FTF Fx in eqn (20) represents the elastic Kirchhoff stress, the result of eqn (20) 
implies thaL from the material behaviour point of view, the combination 

E := FP -1 (21) 

represents tl~e "elastic" part of F. Indeed, introducing the corresponding right Cauchy- 
Green deformation tensor 

CE := ETE (22) 

eqn (18) bec, omes 

2¢,c = 2p-1CpE,P-TCp -, p-T = 2p-lcFE,CEP-T, (23) 

while eqn (20) takes the form 

2F~r, cFT --- 2EtpE,cEE T (24) 

both via eqn (21). From the material behaviour point of view, then, E can be identified 
with the standard elastic "deformation gradient" FE, and P with Fp, when EMI holds. 
Note that ~Lhis constitutive derivation of the elastoplastic decomposition of F in the 

*The essential aspect of this action is its tensorial nature; the push-forward form of this action is chosen merely 
for convenience, i.e. so as to obtain correspondence of P with Fp (and not F~ l) under this assumption. 
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current formulation depends only on (1) the (local) representation of plastic deformation 
in the material via P, and (2) the assumption EMI. Indeed, without this last assumption, 
there is really no reason in the current formulation to relate F and P in the manner of eqn 
(21) at all. Furthermore, the "derivation" of F=FEFp in the context of EMI clearly 
implies that it is independent of the interpretation of the intermediate configuration as 
being stress-free (e.g. Lee and Liu, 1967; Lee, 1969). This is also implied from a formal 
point of view by the recent work of Bertram (1993) (see also Bertram and Kraska, 1995), 
and from a (generalized) kinematic point of view by that of Del Piero and Owen (1993) 
(see Owen, 1992) on structured deformations applied to elastoplasticity. 

The notion that plastic deformation does not affect the form of the elastic response of 
the material is, of course, much older than that of a (elastic) material isomorphism. 
Indeed, one finds this notion (at least tacitly) in the context of the continuum theory of 
dis!ocations in works such as Eckart (1948), whose local geometric natural reference state, 
i.e. a forerunner of the modern "intermediate configuration", is tacitly based on this (see 
also Besseling, 1968). In the realm of continuum mechanics, one finds in the work of Fox 
(1968) from the continuum dislocation point of view, and in that of Owen (1968, 1970) 
from the contitutive point of view, the plastic deformation represented (at least tacitly) as 
an elastic material isomorphism. In particular, Fox (1968) introduces the plastic defor- 
mation as a (time-dependent) material uniformity for the elastic behaviour of the material. 
Such a representation of the plastic deformation was formulated in detail by Wang and 
Bloom (1974) in their work on material uniformity and inhomogeneity in anelastic bodies. 
In the context of Noll's (1972) new theory of simple materials, Silhav~ and Kratochvil 
(1977) and Kratochvil and Silhav~ (1977) defined their plastic "distortion" as an elastic 
material isomorphism from the start. More recently, this concept finds tacit use in the 
work of, e.g. Lucchesi and Podio-Guidugli (1988, 1990) on materials with elastic range, 
and explicit use in that of Bertram (1993) or Bertram and Kraska (1995) in the case of 
crystal plasticity. Note that, in all of these works, the plastic deformation or transforma- 
tion is introduced either tacitly or explicitly as such an isomorphism from the start. In 
some cases of texture development, in particular when this leads to a corresponding 
change in the (material) symmetry of the elastic material behaviour, however, the plastic 
deformation no longer represents such an isomorphism. As such, a more general for- 
mulation is necessary in which the plastic deformation is not necessarily introduced as 
such an isomorphism from the start. 

Beyond eqn (23), EMI also yields the particular form 

--¢,p = 2CE~0E, CE P-T - -  l f i ' p , p  = MP -T - -  1 / / ~ , p  (25) 

for the quantity - ¢ , p  thermodynamically conjugate to P in eqn (16) via (15) and the chain 
rule, where 

M := 2CECPE,CE (26) 

represents Mandel's (1972) stress tensor. Substituting then eqn (25) into (16) yields the 
form 

8p = 8p(C, P, Y, e, t~) = [M - ¢p, ppT]-Lp -- ¢p,v-Y - ¢p,~e (27) 

for the plastic dissipation function via eqn (17)1. This last form of 8p implies that 
M-¢p ,pP  T is thermodynamically conjugate to Lp (note that Y and ~ are not linearly 
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dependent on Lp; see Section 4). In the context of an associated formulation of elasto- 
plasticity as based on the notion of elastic range, or more specifically, as based on a yield 
function, the form of eqn (27) is consistent with the interpretation of the tensor 

X : :  ¢p,ppT (28) 

as the centre of the elastic range of the material. As such eqn (28) represents a general 
thermodynamic form for the back stress, a basic result of the current approach. Besides 
depending tipon EMI, note that this thermodynamic form for X is also dependent on the 
additive form of eqn (15) assumed for ¢ in this work. In an analogous fashion, the quantity 

:= - q~q,.~ (29) 

thermodynamically conjugate to the deformation-like internal variable e in eqn (27) 
whose evolution is associated with isotropic hardening, can be interpreted as the yield 
stress of the material (e.g. Chaboche, 1993). 

The results of eqns (26) and (28) imply that neither M nor X are in general symmetric 
(i.e. with respect to the Euclidean metric); since ~0E.CE is symmetric, however, M is not an 
arbitrary linear transformation, but rather satisfies the auxiliary condition 

M = CEMTC~ 1, (30) 

implying that only six of its nine components are independent, i.e. that it is 6-dimensional, 
as noted also by Lubliner (1984, 1986). Although not symmetric with respect to the 
Euclidean metric, the condition in eqn (30) implies that M is, in general, symmetric with 
respect to tile metric on the "intermediate" configuration induced by E -l and the Eucli- 
dean metric on this configuration via "pull-back". The consequences of this symmetry for 
the formulation of associated plasticity, as well as the general material symmetry con- 
siderations for X in the form given in eqn (28), have been investigated elsewhere (Svend- 
sen, 1998). As already stated above, here we focus instead on the application of the above 
formulation to the case of linear and non-linear Armstrong-Frederick kinematic hard- 
ening, our rtext task. 

IV. APPLICATION: ARMSTRONG-FREDERICK KINEMATIC HARDENING 

In the large deformation context, the classical Armstrong and Frederick (1966) evolu- 
tion relation for X (see also, e.g. Chaboche and Rousselier (1983), for the geometric linear 
case) may be expressed in the form 

= cDp - t~X (3 I) 

relative to tlhe intermediate configuration, where X is some objective derivative of X, c is a 
non-negative material constant mediating the increase of X with increasing plastic defor- 
mation, Dp: = sym(Lp) is the symmetric part of Lp, and t¢ is a further internal variable 
which increases monotonically with increasing plastic deformation, resulting in the 
damping of X as usual. In the classical Armstrong and Frederick (1966) case, one 
assumes, for example, x = bs, where b is the original Armstrong-Frederick saturation 
parameter, and s is a plastic arc length. 
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Since X is, in the Armstrong-Frederick case, symmetric, the corresponding thermo- 
dynamic form of eqn (28) for X must also be symmetric. As shown by Svendsen 
(1998), this will be the case when the symmetry group of ~p with respect to the inter- 
mediate configuration is given by the entire orthogonal group (in which case M from eqn 
(26) is also symmetric, i.e. the material is elastically isotropic). Indeed, in that case, we 
obtain the reduction 

~#p(P, Y, e) = gq,(Up, Y, e) (32) 

of ~p via the polar decomposition P = R p U p  of P. Since ~Pr, is otherwise arbitrary at this 
point, any function of Up can also be used in ¢p without loss of generality. By analogy with 
the elastic case we can then choose in particular the function Cp = UTUp of Up, such that 

~t,p,p = 2P~p, cp, 

and so 
X = ¢ p , p p T  = 2pCp, cppT 

from eqn (28) is now symmetric. On this basis, 

Xc := 2¢p,cp 

represents the constitutive part of X, i.e. 

X = PXc PT 

and so 
= P X c  P T  = X --  L p X -  X L  T 

(33) 

(34) 

(35) 

(36) 

(37) 

On this basis, the thermodynamic form of eqn (34) is consistent with X belonging to the 
first family of dual stress-deformation tensors of Haupt and Tsakmakis (1989) (see Haupt 
and Tsakmakis, 1986; Svendsen and Tsakmakis, 1994). 

Now, assuming that ~h,,cp is independent of e, the time derivative of eqn (35), yields 

Xc -- 2¢p,cpcp[Cp] + 2¢~,cpv[Y]. (38) 

Compatibility of this last result with eqns (31) and (37) then requires the constraint 

4P~pp,cpcp[pTAp]P T = cA (39) 

on the form of V~q,,cpcp for all symmetric A, with the form 

-1  - =--(~,CpY) [¢P,Cp] K (40) 

for the evolution of Y, which is then directly "proportional" to that of r, such that Y 
evolves with r. To obtain these last two results, we have used the identity 

Cp = 2pTDpP, (41) 

and assumed that ~q,,cpv is invertible. 
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A particular form of ~rp satisfying these latter requirements is given by 

V~'(CP, Y, e) =I/2Ca.7~(Y) -1/4c ln(det(Cp)) - h(e) (42) 

where ~(Y)  represents a differentiable, symmetric-tensor-valued function of Y possessing 
additional properties which are apparent from the context of  what follows, and h is a 
scalar-valued isotropic hardening function. Perhaps the simplest form that ~ could take 
would be 7-/(¥)= cY, with Y symmetric. In this latter case, ~p is isotropic with respect to 
both the intermediate and reference configurations (Svendsen, 1998); indeed, for this 
particular Choice of ~ ,  note that ~po as given in eqn (42), is an isotropic function of its 
arguments. 

Now, from eqn (42), we obtain 

Xc = 2~/q,,cp = ~(Y) - -1/2CCpl ,  (43) 

as well as 

and 

4~:'p,cpcp[A] = cCplACp I 

~,rp,cpv = l /2~ ' / .y .  

Further, we then have the evolution relation 

~( = (7"/,y) -1 [~/2CCp I -- ~(Y)]K 

for Y, as well as that 
Xc = cP-IDPP -T - 2~q, Cp~ 

(44) 

(45) 

(46) 

(47) 

for Xc via 

~/2Cpl --  - -~ /2Cp| (~pCp 1 = p-1Dpp-T (48) 

eqns (46) and (43). Finally, note that the evolution relation (40) for Y, and the particular 
form in eqn (42) for ~pp, in turn yield the form 

8p = ~p(C, P, Y, e, C) 

= [M - X].Lp + ¢,'p,v-(C,9,cpv)-l[Cq,.cp]r - lpp,~k (49) 
1 = [M - X].Lp + [72Cp.~(Y) -3/4c]r + tr~ 

for the plastic dissipation function of  eqn (27), with tr = h' from eqns (29) and (42). As 
usual, this last form is satisfied sufficiently when each term is individually greater than or 
equal to zero. Noting that ~>0, this will in particular be the case for the second term when 

Cp-7-t(Y) >3/: (50) 

holds, representing a restriction on the form of the function ~(Y)  in relation to Cp. In 
particular, assuming P(0)= I, Y(0)= I, X(0)= 0, we have Xc(0)= 0 via eqn (36), and so 
7-l(Y(0)) = 1/2 cI from eqn (43), in which case Cp(0).H(Y(0)) = 1/2 cl.I = 3/:. Initially, then, 
this condition is satisfied identically. 
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The above formulation can also be carried out with respect to the second family Of dual 
stress~leformation tensors of Haupt and Tsakmakis (1989) as well; in this case, the 
Armstrong-Frederick relation takes the form 

where now 

= - -COp --  reX (51)  

= X + LTx + XLp (52) 

A thermodynamic form for this relation as well as Cp can be obtained in the context of the 
current formulation when we, so to speak, simply replace C E and Cp by their inverses in 
the formulation. Indeed, we then obtain the form 

M = 2CEg~E, CE = --2~0E,C~' CE 1 

for M from eqn (26), as well as 

(53) 

X = 2P~zp ,cpP  T = --2P-rlpp,%, p - I  (54) 

for X from eqn (54). Likewise, 

Xc = --2~Zp,c~, (55) 

then holds for Xc. Following the same procedure as above with respect to the first family, 
one can then establish in the same fashion that the form 

l f ip(Cp I , Y, E) =l/2Cp1 .'~(Y) +1/4c ln(det(C~ 1)) - h(e) 

for Cp, as well as that 

(56) 

(57) = --(~b'p,c~, y ) - I  [~te,c~q ]/¢ 

for Y, analogous to eqns (42) and (40), respectively, yield eqns (51) and (52) via (54) and 
time-differentiation. 

V. DISCUSSION 

As already alluded to in the previous sections, one finds in the literature essentially two 
approaches to the thermodynamic formulation of the back stress via internal variables. 
Conceptually speaking, both of these approaches for the case of linear kinematic hard- 
ening are considered in Dogui and Sidoroff (1985). Following these authors, we will refer 
to the approach in which ~0e depends explicitly on P as Approach 1, and the other as 
Approach 2. The variables associated with each approach will be labeled correspondingly. 
For the sake of simplicity, we also neglect isotropic hardening here, focusing solely on 
kinematic hardening. 

As already mentioned above, formulations representing versions of Approach 1 can be 
found in Dogui and Sidoroff (1985), whose approach was limited to linear kinematic 
hardening, and has been generalized in the current work to the non-linear Armstrong- 
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Frederick case, as well as in Haupt (1995), who also dealt with this latter case. In par- 
ticular, Dogui and Sidoroff (1985) discussed the form* 

X l  = I / 2 c [ B p  - I] (58) 

for XI, whose time derivative yields a Prager-type model for linear kinematic hardening 
with respect to the intermediate configuration, as well as the form 

X1 = X l  --  L p X I  - X1Lp T (59) 

for XI analogous to the current work, with Bp = FpFp x the plastic left Cauchy-Green 
deformation. Although they didn't obtain the corresponding form for Ce, this can be 
done, yielding 

¢p = ¢p(Fp) = ¢p(Bp) =l/4c[tr(Bp ) - In det(Bp)] (60) 

in the current context. As shown in the current work, because ~pp depends solely on Fp in 
their formulation, it is limited to linear kinematic hardening. On the other hand, Haupt 
(1995) worked with the form 

Or, = Co(Be, Y1) =l/2c(Ap -- YI)'(Ap - YI) (61) 

with Ap :=:t/2(I- Bp 1) the plastic Almansi strain tensor, and Yl a strain-like internal 
variable accounting for non-linear hardening. The evolution of this last variable is given 
by 

Y1 = bk(Ap - Y1) - 2(OpAp + ApDp) (62) 

with Y I taking the form of eqn (59). The form of eqn (62) represents a sufficient condition 
to satisfy ~p>0. In contrast to the approach taken in the current work, however, he 
defined the back stress analogous to Tsakmakis (1996) as discussed below, i.e. 

X1 := c[1 + 2(Ap - YI)](Ap - Yl), (63) 

rather than directly via a relation of the form given in eqn (28). 
As discussed in the text, Approach 2 is based on the stronger form 

¢(C, P, a) = tp(p-Tcp -1 , 0~) (64) 

of EMI tacitly assumed in most previous thermodynamic formulations (Kratochvll and 
Dillon, 1969; Mandel, 1972, 1974, 1982; Lubliner, 1973, 1984, 1986, 1987; Chaboche, 
1993; Tsakraakis, 1996; Sievert, 1997). The fact that a qualitative difference exists between 
this approach and the one taken in this work becomes immediately clear when one realizes 
that eqn (64) requires ~Pr, to be independent of P, in which case X as given by eqn (28) 

*To be exact, the back stress X formulated by Dogui and Sidoroff (1985) in this context is actually Xl as given in 
eqn (58) rotated forward to the current configuration, i.e. REXt RE x. 
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would vanish! Instead of an explicit dependence of ~pv on P, one works with the form 

¢(C, P, Y2) = ¢E(CE) + ¢P(Y2) (65) 

of ~p in this case, in which appears the deformation-like variable Y2. For example, the 
model of Chaboche (1993), when generalized to finite deformation, takes the form 

1]/p(Y2) =2/3cY2 "Y2 (66) 

(relative to the intermediate configuration; his tx is represented here by Y2), with 

Y2 = Op - tp(s)sY2 a n d  Y2 = Y2 (67) 

for the evolution of Y2 analogous to eqn (31) (neglecting static recovery). Further, 
Chaboche (1993) assumes that the back stress X2 is thermodynamically conjugate to Y2, 
yielding 

X 2 ~-- 1/fp,y 2 =1/3¢Y 2 (68) 

from eqn (66). As discussed in more detail in Svendsen et al. (1998), this last approach 
also encompasses the formulation of large-deformation kinematic hardening in poly- 
crystalline metals based on "micromechanical" considerations and a constitutive model 
for Wp:=skw(Lp) as advocated, e.g. by Dafalias (1983, 1985), Loret (1983), Aifantis 
(1987), Paulun and Pecherski (1987, 1992) or Van der Giessen (1991). Indeed, in this case, 
we have the form 

RE = WRE - REWp + O(I lnUEI) (69) 

for the evolution of RE in the case of small elastic deformations (i.e. I ln UE 1), as well as the 
forms 

K = REMRTE + O(I In UEI) 

A2 = REX2R T + O(I In UEI) 
(70) 

for the Kirchhoff and current back stress tensors, respectively. Consequently, one need 
only specify a constitutive model for Wp, as done in all the above-mentioned works. 

Although of this type, the model by Tsakmakis (1996) is yet more sophisticated. Indeed, 
on the basis of the Chaboche (1993) form of eqn (66) for lpp, he introduces the further 
stress-like internal variable 

Z2 : =  1/,tP,y 2 ~--- cY2 (71) 

which evolves via the form 

Z2 = De - b~Z2 with Z2 = Z2 - LpZ2 - Z2L~ 

analogous to eqn (67), and then defines the back stress via the relation 

(72) 
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X2 := (I + 2Y2)Z2. 
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(73) 

This last form for X2 is motivated by eqn (26) for the Mandel stress M, (I + 2Y2) corre- 
sponding to CE and Z2 to 2¢tE,C~. Indeed, Tsakmakis (1996) interprets Y2 as a strain-like 
internal variable analogous to the elastic Green strain tensor, and Z2 as a stress-like 
internal variable analogous to the elastic second Piola-Kirchhoff stress tensor. 
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