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USE OF NON-QUADRATIC YIELD SURFACES IN
DESIGN OF OPTIMAL DEEP-DRAW BLANK GEOMETRY

Roger W. Logan
University of California
Lawrence Livermore National Laboratory

ABSTRACT

Planar anisotropy in the deep-drawing of sheet
can lead to the formation of ears in cylindrical cups and to
undesirable metal flow in the blankholder in the general
case. For design analysis purposes in non-linear finite-
element codes, this anisotropy is characterized by the
use of an appropriate yield surface which is then
implemented into codes such as DYNAS3D. The quadratic
Hill yield surface offers a relatively straightforward
implementation and can be formulated to be invariant to
the coordinate system. Non-quadratic yield surfaces can
provide more realistic strength or strain increment ratios,
but they may not provide invariance and thus demand
certain approximations. Forms due to Hosford and Barlat
et al. have been shown to more accurately address the
earing phenomenon. In this work, use is made of these
non-quadratic yield surfaces in order to determine the
optimal blank shape for cups and other shapes using
ferrous and other metal blank materials with planar
anisotropy. The analyses are compared to previous
experimental studies on non-uniform blank motion due to
anisotropy and asymmetric geormnetry.

INTRODUCTION AND BACKGROUND

There are (at least) two primary goals for the engineering
analysis of a sheet metal forming process. First, analysis
aims to reduce the trial and error in tooling and process
design, and thereby reduce material waste and lead
times to produce a new part. Second, analysis aims to
influence the design of the desired part for ease of
manufacture. Both of these goals ultimately lead toward
the objective of faster production of better parts at
minimum cost. The second goal in particular is usuall
dependent on material propetties of the sheet material,
and thus the design analysis may influence either the
positioning of the (anisotropic) sheet prior to stamping,
or influence the thermo-mechanical processing to provide
more desirable forming properties. )

One cause of material waste in stamping is the
formation of ears on the periphery of the blank from
which the part is formed. The formation of ears in
simplest form resuits from the stamping of a circular blank
into a cylindrical cup. This phenomenon has been
studies both experimentally, and more recently
numerically, in numerous wor%s; a partial coverage of
these can be found in [1-5].

In both partial [3] and full {4] simulations of the
earing phenomenon is cylindrical cups, it was noted that
use of the 1948 Hill quadratic anisotropic yield surface [6]

- is likely to lead to an overprediction of earing. A similar

phenomenon was noted with regard to the tendency of
the 1948 Hill criterion to overpredict the dependence of
the Limiting Draw Ratio (LDR) on the strain ratio R. In an
effort to overcome these tendencies to overpredict
certain deep drawing phenomena, the anisotropic yield
criterion suggested in 1979 by Hosford [7] in correlation
with crystal plasticity based calculations for fcc metals
was implemented into the Lawrence Livermore National
Laboratory (LLNL) DYNA3D [8] and used to study the
earing phenomenon in [4]. As outlined in that work and
below, the 1979 Hosford criterion shows improved
correlation to experimental earing observations, but does
demand an implementation that is both tedious and
numerically approximate in nature, although these
drawbacks affect most non-quadratic yield surfaces to
some extent. An extension of the 1979 Hosford criterion
was suggested by Barlat and Lian in 1989 [9], and with
the inclusion of an in-plane shear term this criterion
shows added promise for 3-dimensional analyses with a
more traditional implementation into finite-element codes.
Thus, the preliminary motivation for this work
was to examine, with fully 3-D simulations, the predicted
vs. observed earing using both the 1948 Hill quadratic
yield criterion and the 1979 Hosford criterion as in [4],
and to compare these to the newly implemented Tri-
Component (1989 Barlat) criterion. At this point, given
an expanded suite of anisotropic yield surface
capability, our second goal was to study the effect of
using (or not using) nommal anisotropy and planar
anisotropy in detemmining optimum blank shape for
forming processes. We have chosen two part
geometries, covering applications of both general and
specific interest. In the first, blank shape optimization is
studied for the case of square cup or box drawing, and
compared to previous experiments [10] on this geometry
with a nearly isotropic stainless steel. Next, this same
shape will be studied using properties typical of
aluminum-killed (AK) drawing quality steel, with a slight
adjustment in properties so A=P. This in part was done
to postpone for a further work the issues arising when A
and P are unequal; this situation, not uncommon for
Interstitial-Free (IF) steel, warrants a separate
discussion, and is mentioned below only in passing. A
situation highly typical in LLNL's formability research is
the warm forming of unalloyed uranium (designated D38)




into axisymmetric geometries as discussed below. Even
with an axisymmetric geometry, previous works [11]
have shown that if the thermomechanical processing is
achieved to optimize the LDR, planar anisotropy is
induced that may result in earing and thus material
waste. Given our great concern about the waste and
reprocessing costs for uranium, optimization of the blank
shape for this process is highly desirable from an
environmental and worker safety standpoint.

YIELD SURFACE IMPLEMENTATIONS

Building on our previous work with anisotropic
yield surfaces [4], we continue here with the Lawrence
Livermore National Laboratory (LLNL) version of
DYNASD, our explicit, transient dynamics Lagrangian
finite-element code [8]. We find it is usually most efficient
to implement a methodology in our explicit DYNA family
first, bearing in mind that the formulation must be
appropriate for subsequent implementation into the
implicit NIKE3D [12] as well. Such is the case in this
work, which examines the usefulness of new vyield
surfaces implemented into an internal W-DYNA version
of our DYNA code family. Previously Whirley,
Engelmann, and Logan [13] showed that the deep
drawing analyses shown below can be solved
effectively with explicit codes like DYNA3D by applying
foads slowly to minimize dynamic effects, so nearly
quasi static solutions may be obtained.

This section briefly describes the implementation
of the yield surfaces implemented into the LLNL public
DYNA3D (1948 Hill as Model 33) and the internal
W-DYNA (1979 Hosford and 1989 Barlat
*TriComponent" as Model 33x). An overview of the
explicit finite element approach used in DYNA3D is
given elsewhere [13]. The relevance of material
behavior enters heavily into the update of the internal
force vector for an element e :

f:f; = IQ, BTGn+ldQe’ (1)

using B, the "strain-velocity operator,” and the updated
Cauchy stress ©o,,, . The internal element force vector

is assembled into the global force vector f.7, by
assembling contributions from all elements. The stress
tensor term and thus the global force vector in egn. (1)
depends in principle on the material constitutive equation
chosen. in the public version of DYNA3D, we have

if;i'nplemented the 1948 Hill equation for anisotropic plastic
ow:

5= Flo,- 0,)' +G(o,~0,)’ +H(o,—0,)" + D
R+1

.2

Eqn. (2) relates the effective stress to the three nomal
components of Cauchy stress, with the term D
containing the shear stress terms:

D=2Lo. +2Mc?, +2No’, (3)

The values for the constants in Egns. (2) and (3) can be
expressed in terms of the in-plane strain ratios R,
Q=Ry4s, and P=Rgg, with the following additional
relations needed:

F=S=R/P (4a)
G=1 (4b)
H=R (4c)
L=(Q, +i)R+1) (5a)
M=(Q_ + DR +S) (5b)
N=(Q, +1({1+S) (5¢)

In addition to being comparatively straightforward to
implement, the quadratic 1948 Hill criterion permits the
relatively simple calculation of the ratio, X(8)/X, of the
yield stress in a direction at an angle in the plane of the
sheet to the rolling direction, as well as the calculated R-
value in that direction:

X(6) _

R+1 /2 ©)
X 2Ns’c? + R(c? —s%)? +c* + §s*

R+{(2Q,, +D(1+8)—-S—-1-4R}s’c’

R(6)= Ss*+¢c? @
¢ =cos(@)
s =sin(8)

Eqns. (6)-(7) are relatively easy to comprehend, but
show several trends that are not usually bome out by
experimental data. For example, at 45 degrees to the
rolling direction, 1948 Hill predicts (if R=P):

. Va
_V_V_=X(45)=Ii R+l} @

X X 0,+1
The exponent 'a is set to a=2 in eqn. (8) for 1948 Hill. At

90 degrees to the rolling direction, a similar situation
exists for general values of unequal R and P

_XQO0) _ [P(R+ 1)}% -

b4
X X |RP+D

Since the exponent 'a' is still a=2, Egns. (8-9) show a
high dependence of yield stress on orientation in the
plane of the sheet. This dependence is a likely factor in
overprediction of earing as in [4], as the strong material in
the 45 degree direction tends to pull in to form the wall of
the punch (forming a deep trough), while compressing
the 0 degree and 90 degree walls {forming high ears).
One yield criterion which has shown better agreement
with experiment is the 1979 Hosford equation, extending
1948 Hill to a non-quadratic form with values of the
exponent a in the range of a =8 for fcc [7], and a =6 for
bee [14] metals:

5° = F(o,-6,) +G(o,—0,)’ + H(o, - 6,)°
R+1
This equation predicts much milder dependencies of

strength ratios in stress states and directions other than
tension in the rolling direction. For example, in biaxial

(10)




tension, where both , ¢, = 0, = B, both 1948 Hill and
1979 Hosford predict the relatively simple value:

A
E_(Re]) )
X S+1

Clearly, values of a > 2 will give a much milder
dependence often observed experimentally and thus
should provide better correlation with LDR as shown in
previous works. Further, if we assume the R-value
orientation dependence as in eqn. (7), the orientation
dependence of uniaxial flow stress is much milder. This
ratio is important in the flange during draw-in, and has
shown greater accuracx{in earing calculations compared
to experimental data. However, difficulties arise in the
implementation of the 1979 Hosford criterion for cases in
other than principal stress/strain space. This stems from
the lack of shear terms in the criterion. Eqn. (10) must
remain in principal stress space to be used without
spurious results and non-convexity problems. To do so,
we must make a key approximation in updating the
Cauchy stress tensor (expressed as a vector of six)
when using eqn. (10). The key necessity is a rotation to
the principal stress coordinate space. This does not
nomally coincide with either the material (rolling and
transverse direction) coordinate system, nor with the
axes of principal strain. We assume that the axes of
principal stress and strain approximately coincide,
although for planar isotropy we know that they normally
will not. However, this assumption, which leads us to
ignore cross-terms in the constitutive matrix, is believed
to lead only to small errors for the degree of anisotropy
observed in most sheet metals. This is the assumption
we will use below to update the stresses for the 1979
Hosford criterion.

In order to circumvent the stress space limitation
of the 1979 Hosford criterion, Barlat and Lian [9]
introduced a criterion which offers all the advantages of
the 1979 Hosford for the case of normal anisotropy
{AR=0) but permits the introduction of a coupled shear
term while retaining convexity of the yield surface and
coordinate system invariance. This criterion is expressed
below as in [8], except that we retain the use of 'a' as
the yield criteria exponent since many of our DYNA
implementations refer to 'm' as a strain-rate exponent.
Note also that to avoid confusion we have expressed
the coefficient (2-c) explicitly:

= @ —oflK, + K [ +[K, - K[ }+ K [

2
Kl=0"a+ho’,,
2
o, -ho,Y
K = e "8 4 ot
: J( 2 J po (12)
c,=0,-0,

The Cauchy stresses must be defined to allow for a
third (normal) stress, even though the implementation
here is for the shell element in DYNA. This is because
the plane-stress material routine is iterative so that even
though the normal stress vanishes at convergence, we
must recognize its presence during the iterations.
Parameters ¢, h, and p* may be defined in the current
notation as follows:

c=2 (_3_)(._!3_)
1+ RALI+P
_ [R0+P)
h_\IP(l+R) (13)

- Q, + DA+ S)
1+ R)Y2+0)

The value of p is needed for the shear term in eqn (12).
In the case of a=2, we have p=p*. However, this is also
the case where the criterion reduces identically to 1948
Hill and is thus of interest only for verification. In general,
the value of p* must be found iteratively as described
by Barlat and Lian in [9]. However, this has not been
found to be a drawback for the case considered thus far
where these coefficients are constant.

Given either of the choices of yield surface, the
next step in implementation involves the stress update.
For the isotropic case, this is conveniently done using -
the radial retum method as discussed by Krieg and Key
[15]. However, this method cannot be used directly for
anisotropic plasticity. Thus, the incremental method
described by Bathe [16] and others is used in the DYNA
implementation. Due to the small strain increments typical
in an explicit dynamics code, this again is not a major
drawback in computation speed. The incremental stress
update involves calculation of contact stresses and
updated elastoplastic stresses as follows:

o; =0} +Cyde; (14)
o) = o] + C7(dg; - de}) (15)

Here, de; are the elastic portions of the strain increment,
and C; is the elastic constitutive matrix. To obtain the
updated stresses, we proceed further by applying the
remainder of the strain increment (de; — de;) using the

elastoplastic matrix C7:

Q;q I (C;q I )y

T e
G,

G =G~ 1

(16)
The yield surface F directly affects the calculation of the

matrix C,;" , since

_dF.
do,

q; (17)




dF

v (18)

p:=

In the following sections we will demonstrate the
effect of the chosen yield surface (Eqn. (2), (10), or (12))
on the extent of earing in cupping, and on the choice of
optimal blank shape for minimization of material usage
during drawing of square and cylindrical cups.

EARING DEVELOPMENT AND FINITE-ELEMENT
PREDICTIONS

To demonstrate the correlation the different yield
criteria in DYNA with earing observed experimentally,
we compare the data obtained by Wilson and Butler [1]
with that obtained using simulations with either a =2 in
eqn. (2) (1948 Hill), a=8 in eqn. (10) (1979 Hosford), or
a =8 in eqn. (12) (1989 Barlat). Numerous runs with A =
P were made as outlined in detail previously [4] for the
first two of the three criteria outlined here, using a 100mm
punch and 200mm diameter blank. To explore what we
might expect to find for a moment, we consider two sets
of values for R, Qap, and P that typify the magnitudes
commonly observed in AK and [F steels. In fact, the
dependencies are not far from those cbserved in warm
rolled and annealed D38 uranium [11], depending on
whether unidirectional or cross-rolling was employed:

TABLE 1. Plastic material Eroperties used in the DYNA
analyses in the current work.

Matenal | K(Mr'a) n , ap -V
AR ‘ o6l 241 2500 1500] 2500
= - -} 1.5001 2.000] 2.500
SSIV4 1514 A3] 1.0251 1.0251 1.025
D38-v 1300 241 28001 14001 2.800

The values of Kand n refer to the equation:
o, =Ke, (19)

used in tabular form in W-DYNA's Model 33x to describe
the uniaxial stress-strain behavior in the a-direction. *
The values in Table 1 lead to some interesting
predicted dependencies of stress on direction and stress
state as shown here in Fig. 1. As noted above, the W/X
ratio for the 'AK' steel is much lower for the 79 Hosford
than for 48 Hifl, which explains the improved earing
correlation noted in [4]. The W/X ratio for the 83 Barlat is
intermediate between the two. Finding the value of W/X
for the 89 Barlat requires the same iterative procedure
used to find the value of pin eqn. (12). Thus, we might
anticipate earing behavior for 89 Barlat that is
intermediate between the 48 Hill and 79 Hosford criteria.
The B/X ratio does not directly enter into the earing
behavior, but will enter directly into the blank shape
optimization to follow as we will need to consider
thinning at the punch nose as well as earing in the
flange. In this respect, the 79 Hosford and 89 Barlat
criteria predict the same value which is much lower than
48 Hill as explained above. The third ratio explored in
Fig. 1 is the Y/X ratio or ratio of yields in the rolling and
transverse directions. This ratio was calculated for the
'IF* steel using rounded R-values typical of that material
and perhaps unidirectionally rolled and annealed D38 as
well. In contrast to the B/X ratio, the 89 Barlat (Tri-

Component) yield surface here shows a Y/X ratio
identical to 48 Hill and not 79 Hosford. Thus, predicted
behavior in the flange for IF-like materiais where R and P
are unequal may show quite a different comparison and
this issue is reserved for future study.

48 Hill a=2

79 Hosford a=8

3] 89 Barlat a=8
1.40
1.30 4 B
3
44
)
2 1.204 =
5
1721
=
R
> 1.10 4 . ol
4 .:~ F 94
e o
1.00 : L

WX (AK) B/X(AK) Y/X({F)

Direction and (Material)

Fig. 1. Comparison of yield strength ratios as predicted
using the three plane-stress yield criteria in this work for
materials where A=P {(AK) and R>P (IF).

In light of the strength ratio (W/X) observed in
Fig. 1, earing calculations performed in {4] were repeated
using the 89 Barlat criterion with exponent a=8. These
results are plotted as Ah/h vs. AR/R in Fig. 2, along with
the original data from Wilson and Butler. As noted in [4), it
is clear that the use of a=2 (identically 1948 Hil) over
predicts earing by about a factor of two. In contrast, the
use of a =8 in the 79 Hosford equation matches aimost
exactly the observed earing data.

As might be expected from the trend of (W/X)
implied in Fig. 1, the 89 Barlat predictions are
intermediate between 48 Hill and 79 Hosford, the latter of
which matches best the experimental data. This situation
may change for cases where R and P are unequal, or
where yet another yield surface, perhaps the 6-
component surface of Barlat et al. [17] is used.
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Fig. 2. Plot of earing (Ah/h vs. AR/R) including Wilson
and Butler- data compared to DYNA results with a =2 (48
Hill), a =8 (79 Hosford) and a =8 (89 Barlat) .

SQUARE-CUP DRAWING: BLANK SHAPE EFFECT

Given an understanding of the capabilities of the
three yield criteria above regarding earing, we next
desired to explore their influence in determining an
optimal blank shape in square cup drawing. This was
done previously for the case of isotropic material by
Kobayashi et al. [10] for the stamping of a small (40mm x
40mm punch) square cup. Blank shapes of a circle,
octagon, and square (all having the same initial volume)
were used with a 304 stainless steel as characterized in
Table 1. The experimental punch force vs. punch depth
behavior is reproduced in Fig. 3 for those geometries and
compared to analyses with DYNA performed in this
work. The bold lines in Fig. 3 represent the current DYNA
results, while the lighter lines (coded the same way)
represent the finite-element (FEM) results as reported in
[10]. It was noted in [10] that their FEM punch forces
tended to be lower than experimental, but they did
reproduce the trend of punch force as a function of blank
shape. These same trends are shown in the current
DYNA simulations, with improved correlation to
experiment. However, it is not clear whether the
improved agreement in this work is serendipitous or due
to improved accuracy in the code or shell element
formulation. As Kobayashi et al. point out, the
discrepancy may be due to an increasing friction
coefficient during the stamping process. This possibility
was neglected in both [10] and in the current work.
However, this work did use the Selective Velocity
Enhancement (SVE) technique for quasi-static simulation
with the explicit DYNA code [13], and this can resuit in
increased punch forces. Several values of SVE were
tried and this does not appear to be the case, so the

reason for improved punch agreement is not clear,
although it is certainly desirable.

50 _

40 +

]
o
-
P2
g 20+
A
DYNA3D
10 - Circle
A Octagon === ==«
0 Square = me=me=-.

1
0 5 10 15 20 25
Punch Depth, mm

Fig. 3. Comparison of punch force vs. displacement for
the experiments as reported in {10] vs. the current
DYNA3D resuits (bold lines) and the FEM results in [10]
(fine lines) as a function of blank shape.

TABLE 2. Comparison of peak normal strains as
calculated in the current work and in [10] for the
experiments in [10], transverse cut to mid-side of box.

Peak Thinnin Peak Thickening
Strain % (Punch Strain % (Flange%

Blank] Rell10]] DYNA| | Rel[10]]
Circie 3 ) 7 6
Qctagon 3 4 13 12
Square 3 L3 12 12

TABLE 3. Comparison of peak normal strains as
calculated in the current work and in [10] for the
experiments in {10}, diagonal cut to comer of box.

Peak Thinning Peak thickening
Strain % (Punch) Strain % (Flange)
Blank| Rel[10] DYNA Rel{10] DY
Circle 13 15 16
Octagon 10 15 2] 9
Square L4 15 9 9




In contrast to the punch forces, there is good
agreement between the peak normal strains (thinning at
the punch nose and thickening in the flange) between
the current DYNA runs and the FEM of [10]. This is
shown in Table 2 for a transverse cut to the mid-side of
the box, and in Table 3 for a diagonal cut to the box
comer, showing the peak thinning under the punch nose
comer. The slight increase in thinning and decrease in
thickening are indicative of a slight SVE affect in the
current explicit DYNA analyses and thus might partially
accountfor the higher punch forces.

SQUARE-CUP DRAWING: ANISOTROPY EFFECTS

Given the good agreement between the current
DYNA analyses and the experimental and FEM data
reported in [10], we chose to explore the influence on the
choice of anisotropy model on the optimum shape of
blank for the forming of a square cup such as the one
here. The optimized blank shape was chosen to retain
the original blank volume as in the above isotropic
study. Criterion for success was chosen to maximize the
height of the square cup formed, multiplied by the
thinnest resulting portion of the formed box, with the
implicit assumption of some minimum wall thickness in
the final product that must be retained; thus the

rameter "adjusted draw depth® reported in the figures
elow refers to the minimum wall height (troughs of the
ears) multiplied by the thickness (relative to the original)
at the thinnest point in the final part (usually the punch
nose comer).

Some early runs were made using octagon
shaped blanks with various amounts trimmed from the
comers, but it was found that secondary troughs were
the usual result, and that there was no simple way to
characterize the transition in blank shape to the circle,
even though that blank shape proved to be near (but
not at) the optimum for this case of forming with no
blankholder or drawbead restraints as in [10]. Thus, the
transition from a round to square blank was made by
adding a linear section to the blank but retaining rounded
corners, which then decreased in size to retain the
original volume of the 80mm diameter circular blank. The
blank shape could then be expressed as a Percentage
Toward a Square (PTS) blank, where the rounded
comers disappeared completely at 100% for the square
blank. Note that the optimum blank shape was in some
cases a negative percent, where -100% would
represent a square blank rotated 45 degrees from square
placement over the square die. The qualitative resuits
achieved are shown below for the three basic blank
shapes in Figs. 4-6, for the assumption of the 48 Hill
criterion and AR>0 (i.e. rolling direction along the sides of
the box). Fig. 4 shows the box shape formed from a
square blank (PTS=100) and the large ears as expected
at the box comers. Fig. 5 shows the opposite case, with
PTS=-40 (rotated blank and rounded comers) showing
ears on the mid sides of the box. Fig. 6 shows the
circular blank which tumed out to be the optimal blank
shape for this case of yield criterion and material rotation.
The upper mesh in each case shows the initial blank
shape, with shading representing the amount of
thickening during the drawing operation. The unshaded
areas indicate a nommal strain of -0.08 or below, while the
darkest areas indicate a normal strain of +0.08 or above
in the flange.

X
X
4
X
) 4
p 4

Fig. 4. Forming of square-cup box using square
(PTS=100) blank with placement so AR>0 with 48 Hill.
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With the general trends observed in Figs. 4-6 in mind,
we then chose to determine the optimum blank shape
{(PTS value) as determined by the assumption of
anisotropy and the yield criterion chosen to represent
this anisotropy. As a baseline, the 48 Hill criterion was
used with assumptions of normal anisotropy only
(AR=0), planar anisotro%with the a-direction along the
mid-side of the blank (AR>0), planar anisotrop% with the
a-direction toward the comer of the blank (4H<0), and
finally the isotropic (von Mises for the exponent a=2)
case for comparison. In all cases as shown in Fig. 7a,
the optimum blank shape occurs at PTS=0 or PTS<0.
For the AR=0 case, we obtain PTS=-16 with an
adjusted draw depth ADD=20.12mm. The best result
occurs with a AR>0 placement and PTS=0 (circular
blank), with an ADD=20.24mm. The case for AR<0
shows an optimum PTS=-20 with ADD=20.06mm. It is
interesting to note that (as expected), blank placement
so that AR>0 shows a higher ADD and changes the
PTS, but that placement so AR<0 does not seem to
adversely affect the results. This is consistent with an
overall trend observed for this square-cup drawing
process in that the choice of yield criterion and use of
normal anisotropy (compared to A=1) had a much
greater affect than the effect of AR value and placement.

he most noticeable reduction in ADD occurred for the
von Mises assumption, with an ADD of only 18.15mm at
PTS=0, thus showing a difference of almost 12% in
ADD depending on the anisotropy assumption.

Use of the 79 Hosford criterion with exponent
a=8 showed (Fig. 7b) the expected results on the trends
of PTS and ADD. All of the peak values of ADD now
occur at PTS=-20, and the values of ADD are much
closer, with ADD=19.67mm for AHA=0 and
ADD=18.91mm for R=1 (close to Tresca criterion)
representing the extreme differences of only 4% in ADD.
The 89 Barlat criterion (Fig. 7¢) showed a similar
tightening of the band of ADD, with the notable
difference being the change in place of the AR>0 and
AR<Q cases. The maximum ADD=19.87mm at PTS=-20
is now due to the AR<0 condition, with the minimum
again due to an R=1 assumption with ADD=18.82mm at
PTS=-20. Again, the difference in ADD is only 5.6%
over the range of assumed anisotropy.

Of equal importance in the blank shape issue is
the effect of the chosen vield criterion for any given level
of anisotropy. These comparisons are made in Figs. 8a-
8d by rearranging the data discussed in Fig. 7a-7c and
grouping for a given degree of anisotropy. Thus,
although the plots in Figs. 8a-8d represent
approximations to the anisotropy of a given material,
they might weli represent those of separate but actual
materials (for example, the R=1 condition in Fig. 8d
approximates the isotropy of the 304 stainless steel
used in [10]. Use of the 48 Hill criterion (a=2) shows the
greatest differences compared to the two criteria with
a=8, especially for the cases where AR>0 and R=1.
Predictions for the peak value of ADD again are
interchanged for the AR>0 and AR<0 cases depending
on the use of the 79 Hosford or 89 Barlat criteria.

Overall, for this case of square-cup forming, the
use of any of the three criteria will give a reasonable
result, given that (at least) normal anisotropy is
considered. The tendencies of 48 Hill to overpredict
earing and LDR do not adversely affect either the choice
of blank shape (PTS) or the resuiting adjusted blank
height (ADD) for the forming conditions here.
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Fig. 7. Dependence of ADD on PTS for anisotropy
assumptions (top) and yield criterion chosen: (a) 48 Hill,
{(b) 79 Hosford, (c) 89 Barlat.
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Fig. 8a-b. Plot of depth ADD vs. blank shape PTS for
the cases (a? AR=0 and (b) AR>0. Use of the three
choices of yield criteria are compared. Results are similar
for (a) AR=0, with 48 Hill showing a more rounded PTS
dependence. For AR>0, the optimum PTS and ADD
achieved differ notably with 48 Hill compared to the non-
quadratics. :
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Fig. 8c-d. Plot of depth ADD vs. blank shape PTS for
the cases (c) AR<0 and (d) A=1. Use of the three
choices of yield ctiteria are compared. Results for AR<O
show a reduced ADD predicted by the 79 Hosford
criterion, while 89 Barlat is close to 48 Hill despite the
different exponents. For the R=1 isotropic case (d), 79
Hosford and 89 Barlat are nearly coincident while 48 Hill
shows a lower ADD at different PTS; expected due to
the high 48 Hill dependence of LDR on normal
anisotropy.
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Fig. 9a-c. Sequence of blank shapes in optimization of cylindrical cupping operation in the warm forming of D38 uranium
with AR>0 (a-direction along mid-sides) and use of 48 Hill yield criterion. (a) Initial blank with PTS=0 (round blank). Ears
form as expected from earing studies in Fig. 2. (b) Square blank (PTS=100) shows ears at the diagonals; blank shape
has overcome effect of AR>0. (c) Blank with PTS=40, near optimum for assumption of 48 Hill.

ANISOTROPIC D38 URANIUM CUP DRAWING

In order to characterize the drawability of D38, we chose
to model the forming process and geometry of the "MTS"
type Formability Tester (Materials Testing Systems,
Minneapolis, MN) "standard" (100mm die) cupping
facility as shown in Fig. 9a-c. It has been shown by
Hughes et al. [11] that optimal processing of the
unalioyed D38 uranium alloy can result in planar
anisotropy with the values of R, Qp, and P as shown
in Table 1 above as reported in [11] for the case of 20%
work followed by an anneal. In a similar manner to the
above square-cup study, we choose here to determine

the optimal blank shape (PTS) for this cylindrical
cupping operation with AR>0. As can be seen from the
examples shown in Flg. 9a-c, the optimum appears at
PTS=40, resulting in a nearly uniform thickening
(darkened region) in the flange of the cup, although the
greatest thickening is still in the diagonal direction where
Qap=1.4 as opposed to R=P=2.8 in the mid-side
direction. ‘

It is apparent even qualitatively from Fig. 9 that
there is a large change in blank shape needed to counter
the strong effect of planar anisotropy present, since in
the absence of planar anisotropy a circular blank would
clearly be the correct choice. A detailed examination of




the ADD achieved from a circular blank can be made as
a function of anisotropy and yield criterion assumption,
and the results of this are shown in the bar graphs of
Fig. 10a-b. For this cupping operation, we use a 100mm

unch with a 200mm blank for a draw ratio of 2.0. Thus,
m addition to the earing effect, the adjusted draw depth
ADD will be affected by the LDR that would be
predicted due to each of the yield criteria. This is shown
immediately in FIg. 10a even for the AR=0 case, where
48 Hill predicts a much higher ADD due to the fact that an

average value of R =2.1 is used. In spite of this, the
highest ADD is predicted by the 79 Hosford criterion for
AR>0, as the 48 Hill criterion predicts a much higher
earing percent which is detrimental with the use of a
round blank. Note though that the 89 Barlat predicts
nearly as strong a penalty for the AR>0 case. For the

isotropic case with R =10 , 48 Hill again predicts a

severe reduction in ADD, compared to R =2.1 , while
both 79 Hosford and 89 Barlat show a much milder
reduction. Note that in fact, for the two cases in Fig. 10a
with AR=0, the 79 Hosford and 89 Barlat criteria should
in fact give identical results. We must remember the
subtle difference in implementation, however, and the
approximation of coincident principal stress and strain for
the 79 Hosford case. This may cause some artificial
rounding of the comers of the yield surface, effectively
lowering the a-value exponent in that sense. This effect,

though small, is' more noticeable for the R =1.0 case,
which is closer to the LDR and thus experiences more
thinning. This may make the 89 Barlat implementation
slightly more accurate for cases where AR=0 and we are
close to the material's forming limit.
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Fig. 10a. Dependence of adjusted draw depth (ADD) on
assumptions of anisotropy and yield criterion; effect of
yield criterion compared.

Fig. 10b rearranges the data above in a way to
show the sensitivity of each criterion to the assumed
anisotropy. As expected, 48 Hill shows a strong

reduction in ADD due to either the AR>0 or R=1.0
assumption, while the 79 Hosford is rather insensitive to

either. The 89 Barlat is most sensitive to the AAR>0
condition, consistent with the observations above.
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Fig. 10b. Dependence of adjusted draw depth (ADD) on
assumptions of anisotropy and yield criterion; effect of
anisotropy compared. _
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Fig. 11. Determination of optimum blank shape (PTS) for
the forming of cylindrical cups from D38 uranium with
planar anisotropy; effect of yield criterion.

Fig. 11 shows the effect of assumed yield
criterion on the blank optimization effort which is only
meaningful for AR>0; the case for AR<O is obviously
symmetric. All of the criteria show a strong dependence
of ADD on PTS as the optimum PTS is approached,




with the 48 Hill showing PTS=36 as the greatest

deviation from a circular blank. The optimum for the 79
Hosford criterion is, as expected, the closest to a circular
blank at PTS=6. The 89 Barlat optimum is as might be
expected between the two others at PTS=20, but with
a much lower value of ADD at the optimum, due to its
unique prediction of a high dependence of earing due to

AR=1.4 but only a small increase in LDR due to R =2.1
SUMMARY AND FUTURE WORK

Using full 3D finite-element simulations of the cupping
process for cylindrical and square cups, the features of
the 1979 Hosford and 1989 Barlat 'TriComponent' yield
surfaces are examined as compared to the 1948 Hill
tendencies to overpredict LDR and earing effects. The
89 Barlat seems to give resuits intermediate between
the two others for earing phenomena, and agrees (in

rinciple) exactg/ with 79 Hosford for normal anisotropy.
n fact, a slight difference is observed which may be due
to more accurate reproduction of the yield surface comers
in the 89 Barlat implementation. For the case of earing in
general and specifically with the D38 uranium examined
here and in ref. [11}], additional yield criteria such as the
6-component model of Barlat et al. {17] or other may be
desired in the future.
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