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Abstract

We treat mathematical and computational issues related to the incorporation of strain gradient terms in a phenom-

enological plasticity model. The strain gradients are associated with incompatibilities due to geometrically necessary

dislocations, and are quantified by the Nye dislocation density tensor. When incorporated within a flow rule for the

plastic strain rate, this tensor fundamentally alters the mathematical structure of the theory. Several computational

complexities also arise as a result. These problems are posed in the setting of a variationally-based multiscale method.

It allows the circumvention of some of the mathematical and computational difficulties associated with this model. The

phenomenological plasticity model, its enhancement by strain gradients, formulation within a multiscale context and

two numerical examples are presented.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction and background

With increasing computational power and more sophisticated diagnostic equipment to investigate mate-

rial microstructure, high-fidelity material models are being developed under the rubric of multiscale mate-

rials modeling [37]. Applications for these models include predictive analysis of mechanical performance of
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materials used in solid devices of macroscopic size (centimeter to meter) as well as micro- and nano-systems.

Various solid models and modeling approaches can be classified as ‘‘multiscale’’, as different models are

appropriate for the multiple size scales of a material�s response (dislocation-scale to polycrystalline-scale

response in metals, for instance). The strain gradient plasticity model presented for computational imple-

mentation in this paper is appropriate for phenomenological plasticity, but is motivated by single to mul-
tiple-grain response in metals. In particular, this model uses the Nye dislocation density tensor to account

for the net density of dislocations of one sign averaged over a number of grains representative of the poly-

crystalline material [4,22]. These are geometrically-necessary dislocations (GNDs). The study of continuous

distributions of dislocations that was popular in the 1950s and 60s [7,25,26,34] has regained interest in the

materials modeling community motivated by the current focus on multiscale material modeling

[1,3,6,8,15,16,21,23,27,28,32,33,36,39,40]. The model in this paper is similar to the strain gradient models

in the above-cited works. The common goal is to represent the effect of GNDs at the continuum scale in

polycrystalline metals. Two broad issues arise in the context of computational implementation of these
models.

The first issue is whether a robust and efficient methodology can be developed by which these highly

complex material models can be incorporated in existing computational codes. Models in advanced

mechanics of materials undergo frequent modification and enhancement of constitutive relations to reflect

fairly complex physics deduced from experiments. These modifications can often radically alter the math-

ematical character of the overall system of equations. Reformulations of the computational methods are

frequently required, are time-consuming and need revalidation. One approach with potential to overcome

some of these difficulties is to view any constitutive relation as a fine scale model that is to be embedded in a
coarse scale formulation. In most cases of interest, this coarse scale formulation is merely a weak statement

of the balance of linear momentum for a solid. The variational multiscale method that forms the basis of

the computational implementation in this work is one possible technique to achieve such a formulation. It

involves a scale separation of the displacement into fine and coarse components, which one can associate

with fine scale and coarse scale material behavior. In some cases it allows the problem to be posed entirely

in terms of coarse scale variables; e.g., displacements on the macroscopic scale, thereby also allowing sig-

nificant computational efficiency. In this paper, the variational multiscale framework is modified so that the

labels of ‘‘fine’’ and ‘‘coarse’’ scales are no longer entirely appropriate. However, the spirit of the formu-
lation remains the same.

The second issue pertains to the mathematical vagaries that a specific high-fidelity material model intro-

duces to the system of equations describing the mechanics. The strain gradient models of interest explicitly

include gradients of various strain measures (the plastic strain or internal elastic strain) in the evolution

equation. These gradients result from the incorporation of the density of GNDs in the formulation. The

central difficulty is that the plastic strain�s evolution is then dictated by a partial differential equation involv-

ing space and time, instead of an ordinary differential equation in time. Mathematical (and therefore com-

putational) complications arise as boundary conditions must be specified on plastic strain tensors, the
material tangent modulus tensor is nonlocal, and the mathematical well-posedness of the overall model it-

self is not guaranteed. The multiscale decomposition adopted here, and the manipulation of fine and coarse

scale weak forms that is made possible, also allows the circumvention of some of these complications. This

variational multiscale method has previously been applied to strain localization problems [19], embedding

surface laws in macromechanics [17], and to embedding another fine scale strain gradient plasticity model in

the macromechanical formulation [18].

The main body of the paper begins with the phenomenological plasticity model in Section 2. The

variational multiscale method for this model is outlined in Section 3. The finite element imple-
mentation and numerical results appear in Sections 4 and 5. Conclusions and a discussion are in

Section 6.
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2. The phenomenological plasticity model

Starting with a strain gradient crystal plasticity model presented by Bammann [6], Regueiro and

co-workers [35] formulated a nonlocal phenomenological plasticity model that accounts for the average

effect of GNDs over a representative number of grains. With a physically-motivated plastic spin W
p
and

texture effects represented by a structure tensor A, we can attempt to represent an average physical lattice

curvature through curlFe�1, where Fe is the elastic deformation gradient, leading to the dislocation density

tensor ae. In order to focus on the computational implementation, however, it is helpful to simplify the plas-

ticity model. We ignore plastic spin, texture effect on yield, static recovery, and temperature dependence

(i.e., an isothermal model), and recognize that without the structure tensor and plastic spin we do not

expect a physically meaningful dislocation density tensor. The resulting simplified strain gradient plasticity

model is summarized in this section.

2.1. Kinematics

The deformation gradient is multiplicatively decomposed into elastic and plastic parts [7,26,30,29,31,38].

Figs. 1 and 2 show the multiplicative decomposition F = FeFp whereS denotes the current configuration,B
the reference configuration, and B the intermediate configuration. We view Fp as incompatible plastic

deformation associated with dislocations and their motion, and Fe as both incompatible lattice deformation

causing the deformation to be compatible as well as macroscopic elastic deformation due to external loads.

In Fig. 1, ~F
e
is the lattice deformation due to external loading that causes macroscopic stress. This idea is

attributed to Bilby [7] and Kröner [26] who were solving the elasticity problem for the internal stress field
Fig. 1. Single edge dislocation perspective of multiplicative decomposition F ¼ FeFp ¼ ~F
e
F̂

e
Fp. Fp and F̂

e
are incompatible, and ~F

e
is

compatible. Fp is the accumulated plastic deformation, or motion of dislocations, and F̂
e
is the lattice deformation due to the

dislocation defect.



Fig. 2. Polycrystalline perspective of multiplicative decomposition.
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due to dislocations. Under small external loads, the dislocation microstructure should remain intact (Fp and

F̂
e
remain unchanged) while macroscopic stress is generated through ~F

e
. In Fig. 2, motivated from Ashby

[4] and Naghdi and Srinivasa [32], Fp is incompatible as individual grains shear along their various slip sys-

tems and attempt to misorient with respect to each other. The incompatible part of Fe makes the deforma-
tion compatible by introducing GNDs at or near grain or sub-grain boundaries, while the compatible part

of Fe is lattice stretching and rotation due to external loads.

The velocity gradient l in the current configuration is written
l ¼ _FF�1 ¼ _F
e
Fe�1 þ Fe _F

p
Fp�1Fe�1 ¼ le þ lp; ð1Þ
where the plastic velocity gradient in the intermediate configuration is L
p ¼ _F

p
Fp�1. The velocity gradient

may be additively decomposed as the rate of deformation tensor d and spin w in the current configuration

as l = d + w, d :¼ sym(l) and w :¼ skew(l). The plastic deformation rate dp may be written in terms of its

intermediate configuration counterpart as
lp ¼ dp ¼ symðFeL
p
Fe�1Þ ¼ Fe�TD

p
Fe�1; wp ¼ 0; ð2Þ
where D
p
:¼ symðC e

L
pÞ is the plastic deformation rate in B, C

e ¼ FeTFe is the elastic right Cauchy–Green

tensor, and plastic spin is ignored (wp = 0). The elastic strain in the intermediate configuration is

E
e
:¼ 1

2
ðC e � 1Þ.

The local compatibility conditions read [9,26,36]
CurlF ¼ CurlðFeFpÞ ¼ 0;

curlF�1 ¼ curl ðFp�1Fe�1Þ ¼ 0:
ð3Þ
These local compatibility conditions state that any microstructural misorientation or curvature (at the grain
or sub-grain scale) attempting to create voids or to overlap material is restricted for continuum deforma-
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tion. In the context of finite deformation, [9,36] these compatibility conditions were used to derive the lat-

tice curvature deformation tensors in the intermediate configuration. This gives the Nye dislocation density

tensor [34]; cf. Regueiro and co-workers [35] for notation:
ae � ap ¼ 0;

ae ¼ �J eFe�1 � ðcurlFe�1ÞT; J e ¼ detFe;

ap ¼ � 1

Jp F
p � ðCurlFpÞT; Jp ¼ detFp ¼ 1:

ð4Þ
The lattice curvature measured by the Nye dislocation density tensor, ae, representing the average den-

sity of GNDs will be used to calculate an unsymmetric internal stress tensor associated with hardening by

GNDs. In order to calculate stress, a deformation measure that is dimensionally consistent with a strain

measure is needed. Hence, a length scale l is introduced as
ael :¼ lae: ð5Þ
Refer to Bammann [6] for further discussion of the length scale l and unsymmetric dislocation stress f

requiring angular momentum balance.
2.2. Thermodynamics

Here, the thermodynamics are summarized, following the thermodynamic formulations by Coleman and

co-workers [11] and [10]. Assume that the mass-specific Helmholtz free energy function in the intermediate

configuration depends on compatible lattice deformation due to external mechanical forces, E
e
, lattice

deformation due to the presence of statistically stored dislocations, �ss, lattice curvature due to the presence

of GNDs at grain or sub-grain boundaries and around second phase particles, ael , and absolute tempera-

ture, h : w ¼ ŵðEe
; �ss; a

e
l ; hÞ.

Standard thermodynamic arguments [10,11] are used to motivate the following constitutive relations:
S ¼ q
ow

oE
e ; g ¼ � ow

oh
; ð6Þ
where q is mass density in B, S is the second Piola–Kirchhoff stress in B resulting from compatible stretch-

ing of the lattice through Fe, and g is the entropy. Defining the stress-like internal state variables conjugate

to _�ss and _a
e

l respectively as
j :¼ q
ow
o�ss

; f :¼ q
ow
oael

; ð7Þ
where j is the scalar internal stress field in the lattice due to statistically stored dislocations and f is the

internal unsymmetric stress field due to GNDs, the dissipation inequality reads
S : D
p � j_�ss � f : _a

e

l �
1

h
Q � rhP0; ð8Þ
where Q is the heat flux into B. The mechanical quantities in Eq. (8) are interpreted as the plastic defor-

mation work rate per unit mass contributing to dissipation due to dislocation motion ðS : D
pÞ, minus

the stored work due to the generation and annihilation of statistically stored dislocations (j_�ss) and GNDs

(f : _a
e

l); i.e., plastic deformation is dissipative but also leads to stored lattice elastic energy due to the

presence of dislocations.
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2.3. Constitutive model

The free energy w is written in quadratic form as
qŵ :¼ 1
2
E

e
: C : E

e þ 1
2
cjl�2ss þ 1

2
cflael : a

e
l þ gðhÞ; ð9Þ
where C ¼ k1� 1þ 2lI is the fourth order modulus tensor approximated by linear isotropic elasticity, k
and l are Lamé parameters where l is the shear modulus, cj and cf are material constants, and gðhÞ is

the thermal component of the free energy.

The constitutive equations in the intermediate configuration result as
S ¼ C : E
e
; g ¼ � ow

oh
;

j ¼ cjl�ss; f ¼ cflael :
ð10Þ
The macroscopic stress S and internal dislocation stress f will be calculated directly from Fe. The internal

scalar elastic strain �ss and plastic part of the deformation gradient Fp are determined by integration of evo-

lution equations, which will in turn provide Fe through Fe = F Æ Fp�1, assuming Fp is invertible.

The evolution equation for lattice deformation due to the presence of statistically stored dislocations

(ignoring static recovery) is
_�ss ¼ ½H � Rd�ss�_�
p;eff

; ð11Þ
where _�
p;eff

is the effective plastic strain rate, H is the dimensionless hardening parameter, and Rd is the

dimensionless dynamic recovery parameter. Eq. (11) is integrated to obtain �ss which in turn provides

the internal stress variable j ¼ cjl�ss. We may also write the evolution of the internal stress j in rate form

as
_j ¼ ½cjlH � Rdj�_�
p;eff

: ð12Þ
The plastic deformation rate D
p
is defined separately by its magnitude and direction as
D
p
:¼ kDpkNp

; kDpk ¼
ffiffiffi
3

2

r
_�
p;eff

; N
p
:¼ sym

oU

oN

� ��
sym

oU

oN

� �����
����; ð13Þ
where evolution of plastic flow _�
p;eff

is written in unified creep plasticity form as [5]:
_�
p;eff ¼ f sinh

hNeff � ðjþ Y Þti
V

" #
¼ U; N

eff ¼
ffiffiffi
3

2

r
kNk; N ¼ devS � devf; ð14Þ

devS ¼ S � 1
3
ðC e

: SÞC e�1
; devf ¼ f� 1

3
ðC e

: fÞC e�1
; ð15Þ
where h•i is the Macaulay bracket. Since there is no flow surface for this model, the plastic potential func-

tion U is used to define the direction of plastic flow N
p
. The parameter f in Eq. (14)1 determines the strain-

rate at which the model undergoes a transition from rate-independent to rate-dependent behavior [5],

V determines the rate-sensitivity of the yield stress, and Y is the quasi-static yield stress. Note that N is

unsymmetric since f is unsymmetric. As a result, N
p
is defined as the symmetric part of oU=oN since D

p

is symmetric. The kinetic equation for _�
p;eff

describing the velocity of statistically stored dislocations as a

function of flow stress is motivated by previous work in the literature [5,20,24]. The direction of associated
plastic flow is
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N
p ¼ sym

oN
eff

oN

 !,
sym

oN
eff

oN

 !�����
�����; oN

eff

oN
¼

ffiffiffi
3

2

r
N

kNk
: ð16Þ
With constitutive equations in place, the evolution for Fp is
_F
p ¼ C

e�1 � D
pðFp;CurlFpÞ

h i
� Fp; ð17Þ
which can be written as an evolution equation for Fe as
oðFe�1Þ
ot

¼ C
e�1 � D

pðFe; curlFe�1Þ
h i

� Fe�1 � Fe�1 � l ð18Þ
from which Fp and Fe are calculated. This is a nonlinear, first order partial differential equation for Fe�1.
3. A variational multiscale formulation

To place ideas in context we first review the displacement incompatibility that underlies the mathematical

theory of plasticity. Section 2 has demonstrated the incompatibility of the intermediate configuration, which

is obtained via the mapping Fp. This means that Fp is not related to the gradient of a displacement. In order

to illustrate the ideas we will use the following, rather simple, representation of the incompatibility for single

slip: Denoting the one-dimensional Heaviside function by HC(X), where
HCðXÞ :¼
0 : X 1 < C;

1 : X 1PC;

�
ð19Þ
it follows that for single slip Fp = 1 + mX2E1 � E2HC(X) is globally incompatible, but locally compatible in

regions X- :¼ {X 2 XjX1 < C} and X+ :¼ {X 2 XjX1 P C}(see Fig. 3). We can define a displacement field at
a point X = {X1,X2,X3} as
uaðXÞ ¼ mX 2E1HCðXÞ; ð20Þ

where ua = 0 at X1 = 0. This also allows us to introduce Fa :¼ 1 + oua/oX, which can be expanded as,
Fa ¼ 1þ mE1 � E2HCðXÞ þ mX 2E1 � E1dCðXÞ; ð21Þ
The incompatible intermediate configuration arising due to single slip. The compatibility of the final configuration is restored

elastic stretch and rotation from the intermediate configuration. The final configuration in the figure is obtained if the slip

onding to Fp increases along the E1 direction.
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where dC(X) is the one-dimensional Dirac delta function, and arises as the gradient field of HC(X). Of inter-

est here is the fact that Reg[Fa] = Fp, where Reg(•) denotes the regular part of a field. For our purpose, a

regular field is one in which no term is a Dirac delta function. Thus, ua is related to Fp through Eqs. (20),

(21) and Reg[Fa] = Fp. Where Fp is locally compatible it is the gradient of a displacement field, ua. Formally,

we define ua as
Z
C

oua

oX
dX ¼

Z
C

ðFp � 1ÞdX ð22Þ
over a contour C along which Fp is compatible. Incompatibilities in the intermediate configuration arise at

points (also curves or surfaces) such as C where Fp is discontinuous. At such incompatibilities, we let ua

develop a discontinuity given by suab = uajC+ � uajC�.

Since it can be related to slip at the atomic scale, ua may be thought of as a fine scale field. However,

plastic deformation typically dominates the elastic deformation in problems of interest, and this nomencla-

ture can prove confusing. Therefore we will refer to ua as the a-field in what follows. It is emphasized that ua

is not a physical displacement. In particular, it is not a ‘‘plastic displacement’’. However, it allows us to

address issues arising with strain gradient plasticity formulations. In particular, boundary conditions can

be applied on ua.
Having thus obtained ua we define the coarse scale field ub :¼ u � ua and the corresponding deformation

gradient.
Fb :¼ 1þ oub

oX
fReg½Fa�g�1

: ð23Þ
As the elastic deformation is typically smaller than plastic deformation, we will avoid the use of the term

‘‘coarse’’ scale to refer to ub, preferring instead the term b-field. Since the total displacement, u, is compat-

ible, ub must have a discontinuity that cancels suabjC at each incompatibility. It therefore follows that Fb is

also singular. However, Reg[Fb] = Fe as is verified by the following calculation.

Fig. 4 depicts single crystal plasticity, with the further restriction to single slip. The placement of a mate-

rial point in the reference (B), intermediate (B) and spatial configurations (S) is X, X and x respectively.

Given the deformation gradient F, slip c, slip plane normal m, and slip direction s, we have _F
p
Fp�1 ¼ cs�m

and Fe = FFp�1. Now, decomposing the displacement mathematically as u = ub + ua, we have u(X) =
Fig. 4. a-scale (ua) and b-scale (ub) displacements motivated by single slip.
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X + ub + ua. Recalling that ua is the displacement that maps the material point to its intermediate placement

in B, gives Fa = 1 + oua/oX where Reg[Fa] = Fp as shown previously. Furthermore,
F ¼ 1þ oub

oX
þ oua

oX

¼ 1þReg
oub

oX

� �
þReg

oua

oX

� �

¼ 1þReg
oub

oX

� �
fReg½Fa�g�1

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Reg½Fb�¼Fe

1þReg
oua

oX

� �� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Reg½Fa�¼Fp

:

ð24Þ
Since Reg[Fa] = Fp, we have Reg[Fb] = Fe as indicated.

3.1. Extension to phenomenological continuum plasticity

The incompatibilities are of the order of an Angstrom (roughly the magnitude of the Burgers vector).

Since they are restricted to dislocations and grain boundaries, the resulting strain gradients are small when

measured at continuum scales (0.1 lm and above). At the continuum scale, therefore, the influence of

incompatibilities in plastic deformation is much diminished. At this scale it is therefore a reasonable

approximation to treat plastic deformation as compatible, and write Fp as the gradient of a compatible dis-

placement field:
oua

oX
:¼ Fp � 1;

oub

oX
Fa�1 :¼ FFp�1 � 1: ð25Þ
Thus, with the effect of plastic incompatibility being small, the approximations we will use are Fa = Fp,

Fb = Fe.

3.1.1. A fundamental difficulty with incompatibilities

From Eqs. (2) and (25) we have
lp ¼ Fbr _ua: ð26Þ

Likewise, Eq. (25) also allows us to write, after some manipulation:
Fe ¼ Fb ¼ ð1�rubÞ�1
: ð27Þ
A fundamental difficulty now arises when we attempt to use (25) in the phenomenological continuum

plasticity model of Section 2. The influence of GNDs is felt in the backstress, f, that depends on (curlFe�1)T

through ael [Eqs. (4), (5) and (10)]. On account of Eq. (27), ael ¼ 0, and the effect of incompatibilities is lost.

This is a natural outcome of the assumption that, at the continuum scale, the incompatibilities have a neg-

ligible influence.
3.1.2. Weak representation of an incompatible strain field

In order to re-introduce incompatibilities to the multiscale kinematics, we define a strain field eb weakly

related to $ub:
Z
S

Cb : eb �rub

 �

dv ¼ 0: ð28Þ
Here, Cb is a variation on eb. The strain field, eb, belongs to a space of functions, Eb, with the property
curl eb 5 0 for any function in this space. From Eqs. (4), (27) and (28) the Nye dislocation density tensor
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can now be calculated as ael ¼ J eFe�1ð�curl ebÞT ¼ JbFb�1ð�curl ebÞT. The space Eb must be carefully chosen

to incorporate incompatibilities in order that ael retains the characteristics desired for a given problem. Of

course, for numerical solutions, this entails some understanding of the nature of the incompatibility field. In

spirit, this is similar to the incorporation of discontinuous interpolation functions in strain localization

problems [2]. The linearized form of (28) is
Z
S

Cb : ðeb �rubÞdvþ
Z
S

Cb : deb dv ¼ 0: ð29Þ
3.2. Weak formulation of the phenomenological plasticity model incorporating incompatibilities

This mathematical structure can now be applied to the phenomenological plasticity model of Section 2.

Recall that Eq. (17) is a partial differential equation for Fp, and Eq. (18) a partial differential equation for
Fe. Integrating the plastic flow rule therefore requires the solution of either of these partial differential equa-

tions. However, this complication can be eased by adopting the multiscale decomposition as we now pro-

ceed to demonstrate.

On using Eqs. (2) and (26) in L
p ¼ _F

p
Fp�1 ¼ C

e�1
D

p
, we have the following evolution law for r _ua:
Fbr _ua ¼ ½ð1�rubÞTDpð1�rubÞ�; ð30Þ

where D

p
is governed by the constitutive relations in (13)–(16). With the multiscale decomposition, Eq. (27)

and ael ¼ JbFb�1ð�curl ebÞT, the right-hand side depends entirely upon gradients of ub and eb. The relations

are complicated, but retain the advantage of being direct functional evaluations. If ub is known, eb follows
from (28), and ua, is entirely specified if Eq. (30) can be solved.

There then remains the problem of solving the partial differential equation (30) for ua. Since it is of first
order in ua, boundary conditions must be specified on some proper subset of the boundary of the domain

over which this equation is to be solved. We will call this the a-scale subdomain, denoted Ba, and satisfying

Ba � B. Since ua is motivated by slip in crystal plasticity, this displacement field can be specified on the

boundary of the plastic domain. This necessitates tracking the evolution of Ba as plastic flow progresses.

In other boundary value problems where slip is constrained on a subset of the displacement boundary

oBu, the boundary condition can be specified as ua = 0 on oBua , where oBua � oBu. Having thus specified

the boundary conditions on ua, Eq. (30) can be solved via the following a-scale weak form:
Z
S

rwa : ½Fbr _ua�dv ¼
Z
S

rwa : ½ð1�rubÞTDpð1�rubÞ�dv; ð31Þ
where wa is the a-scale weighting function satisfying wa = 0 on oBua � oBu. The right hand-side remains a

functional evaluation of ub and eb. In a time-discrete solution, _ua is replaced by Dua/Dt, where

Dua ¼ ðuaÞiþ1

nþ1 � ðuaÞn (i being the iteration number and n the time step) and Dt = tn+1 � tn:
Z
S

rwa : Fb
nþ#ðrDuaÞ

� 

dv ¼ Dt

Z
S

rwa : ½ð1�rubÞTDpð1�rubÞ�nþ# dv; ð32Þ
and # refers to a generalized trapezoidal integration (•)n+# = #(•)n+1 + (1 � #) (•)n.
3.3. b-scale equations and linearization

The b-scale equation is the following weak form of balance of linear momentum:
Z
B

rwb : sdV ¼
Z
B

wb � f dV þ
Z
oBt

wb � tdC; ð33Þ
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where s is the Kirchhoff stress, f the body force in B, and t the traction. Eqs. (32) and (33) are nonlinearly

dependent upon the strains in the finite strain setting, and, as is the practice, they must be expanded up to

terms of first order to set up an iterative solution. For strain gradient plasticity models in which a partial

differential equation must be solved for Fp or Fe, the resulting elastoplastic tangent tensor is nonlocal. A

direct numerical implementation becomes unrealistically cumbersome and computationally intensive.
However, this difficulty can be circumvented in the present case due to the multiscale decomposition. For

the first order expansion of (33), two approaches are possible: We are interested in calculating the Gateaux

variation d($�wb :s�)/d�j�=0, which is the algorithmic version of o($wb :s)/ot. In the time-exact setting we can

use:
o

ot
ðrwb : sÞ ¼ rwb : ð�slT þLvsþ lsþ slTÞ;

¼ rwb : ðCep : d þ lsÞ
ð34Þ
or,
o

ot
ðrwb : sÞ ¼ rwb : ð�slT þLe

vsþ lesþ sle
TÞ;

¼ rwb : ð�slp
T þ C : de þ lesÞ;

ð35Þ
where the first equation comes about by relating the material time derivative of s to its Lie derivative, Lvs,

and the second by relating it to the elastic Lie derivative, Le
vs. The elastic tangent is C, and Cep is the

elastoplastic tangent. Traditionally, the use of the elastic Lie derivative has been avoided because it results
in some elastic and plastic velocity gradient terms, and specifying boundary conditions on the correspond-

ing displacements is problematic. However, with the multiscale decomposition, the use of the algorithmic

counterpart of the elastic Lie derivative actually becomes feasible. First let us note that the algorithmic

versions of Eqs. (34) and (35) are, respectively,
d

d�
ðr�wb : s�Þj�¼0 ¼ rwb : ðLdusþ ðrdub þrduaÞsÞ;

¼ rwb : ðCep : ðrdub þrduaÞ þ ðrdub þrduaÞsÞ;
ð36Þ
and,
d

d�
ðr�wb : s�Þj�¼0 ¼ rwb : ðrdusþLdubs� 2symðFbrduasÞÞ;

¼ rwb : ððrdub þrduaÞsþ Ce : rdub � 2symðFbrduasÞÞ:
ð37Þ
Now the second set of equations can be rendered in a form depending on ub and eb if dua can be solved for

in terms of ub and eb from Eq. (32). Such a linearization of the stress through the elastic strain (here,

through the Lie derivative along dub) is computationally feasible if we can specify boundary conditions
on ub. These are obtained as:
ub þ ua ¼ u ) ub þ Ga
B½ub;rub;�curl eb� ¼ g on oBu; ð38Þ
where ua ¼ Ga
B½ub;Fb; curl eb� is a formal representation of the solution to Eq. (32). Observe that the weak

form of the b-scale problem is now:
Z
B

½rwb : Ce : rdub þ 1 : rdubsrwbT � 2rwb : symðFbrduasÞ þ 1 : rduasrwbT �dV

¼
Z
B

wb � f dV þ
Z
oBt

wb � tdC�
Z
B

rwb : sdV þ d

d�

Z
oBunoBua

wb � s�F�T �

N dC

����
�¼0

: ð39Þ
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The last term on the right hand-side appears since, for wb, we now have:
wb ¼ 0 on oBua ; wb 6¼ 0 on oB n oBua : ð40Þ

This term must also be linearized using:
d

d�

Z
oBunoBua

wb � s�F�T�N dC

����
�¼0

¼
Z
oBunoBua

wb � Ldubsþ 2symðrdubsÞ � 2symðFbrubrduasÞ

 �

F�TN dC

�
Z
oBunoBua

wb � sðrdub þrduaÞTF�TN dC: ð41Þ
Similarly, the a-scale weak form is linearized:
Z
S

rwa : ½Fb
nþ# rDuað Þ�dv�

Z
S

½rwa � ðrduÞ� : ½Fb
nþ# rDuað Þ�dv

þ #

Z
S

rwa :
dFb�

d�
ðrDuaÞ�

" #
�¼0

dvþ
Z
S

rwa : ½Fb
nþ# rdua �rua � rduð Þ�dv

þ
Z
S

rwa : Fb
nþ#ðrDuaÞ

� 

½1 : rdu�dv ¼ Dt

Z
S

rwa : ½ð1�rubÞT �Dp � ð1�rubÞ�nþ# dv

� Dt
Z
S

ðrwa � rduÞ : ½ð1�rubÞT �Dp � ð1�rubÞ�nþ# dv

þ Dt#
Z
S

rwa :
�dðrubÞT

d�
�Dp � ð1�rubÞ � ð1�rubÞT �Dp � dðrubÞ

d�

"

þð1�rubÞT � dD
p

d�
� ð1�rubÞ

#
�¼0

dvþ Dt
Z
S

rwa : ½ð1�rubÞT �Dp

� ð1�rubÞ�nþ#½1 : ðrduÞ�dv: ð42Þ
Remark 1. Eq. (38) has the form where a specified functional of ub must equal g. Such an integral form of

the boundary condition is also seen in the Dirichlet-to-Neumann map, arising in the context of wave

propagation in an infinite medium. In that case, the integral is over the boundary. In our case it is over the

domain and involves $ub and curl eb
�1

. The problem for ub remains well-posed with such boundary

conditions.

Remark 2. For a pure Neumann problem, oBu ¼ ;, and the effect of ua on the b-scale weak form through

the boundary term is lost. This is because no kinematic restrictions exist on the displacement, u, hence on

ub.
4. Finite element implementation

4.1. Bubnov–Galerkin approximations

The following Bubnov–Galerkin approximations of (ua,ub, eb) are made to solve equations (32), (33), and

(28) respectively:
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ub
h ¼

Xnnp
A¼1

NAd
b
A; wbh ¼

Xnnp
A¼1

NAc
b
A; ð43Þ

ua
h ¼

Xnnp
A¼1

NAd
a
A; wah ¼

Xnnp
A¼1

NAc
a
A; ð44Þ

eb
h ¼

Xnnp
A¼1

NE
Ad

E
A ; Cbh ¼

Xnnp
A¼1

NE
Ac

E
A : ð45Þ
The NA are standard trilinear shape functions on hexahedral elements in three dimensions. The shape

functions, NE
A , interpolating eb

h

, can be chosen to reintroduce incompatibility to the strain field by ensuring

that curl eb
h

5 0 in regions where strain gradient effects dominate. In practice, these interpolations should

not be the gradients of any functions themselves. A sufficiently rich basis of functions can be used to ensure

that the incompatibility is accurately reproduced. Suitable choices of such basis functions are currently

being studied using different finite element spaces [13]. For the preliminary examples solved in Section 5

trilinear functions were used for NE
A . Thus interpolated, e

bh

satisfies curl eb
h

5 0.
4.2. Eq. solving—Newton–Raphson method

The equations are integrated in time by the Backward Euler algorithm, linearized (see Appendices A.1

and A.2), and the following system of matrix equations is obtained for b- and a-scales respectively.
Ka
1dd

a þ Kb
1dd

b ¼ R1; ð46Þ

Ka
2dd

a þ Kb
2dd

b ¼ R2: ð47Þ
Note that R1 :¼ Fext � Fint represents the difference of external and internal forces and that the unknowns
in these equations are solved for using a staggered Newton–Raphson algorithm (Box 1). The matrix form of

Eq. (28) is:
MdE ¼ Gdb: ð48Þ
5. Numerical results

Two numerical examples are considered in this section. The first demonstrates the local evolution of the

model under nonuniform loading. The second is a comparison against experiments on the torsion of thin

wires. This example is a check on both: the theoretical formulation and its numerical implementation.
5.1. Local evolution of the model

A cubic micron of Tantalum was loaded by prescribing displacements that vary linearly along the

X1-axis (see Fig. 5) to induce strain gradients. Box 2 shows material parameters and model data. The load-

ing causes linear gradients in several of the strain components and demonstrates the influence of strain

gradients upon different stress components. The tensor f has the effect of a back stress upon final results

and will be referred to as such for the remainder of this section.
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Box 2 (Material parameters for nonuniformly-loaded cube).

Young�s modulus E: 168 GPa Poisson�s ratio m: 0.34

Length scale l (see Eq. (5)): 1e�6 m

Gradient parameter cf (see Eq. (9)): 4.9
Prescribed displacements: 0.12 lm (End) 0.06 lm (Center) (constant in X3)

Supports: All fixed (constant in X3)
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The tensors ael and f resulting from the curl(•) operation possess the following characteristics: Stresses

and strains with dominant normal directions may produce back stress terms with dominant shear directions

and vice-versa. For the case at hand, for example, the Cauchy stress component r22 and displacement gra-

dient ub2;2 dominate. However, their gradients—which are also dominant—will appear in off diagonal cur-

l(eb) and back stress f components, and therefore affect off-diagonal stress components (Fig. 6). As a
consequence, though r22 is dominant, it is not necessarily affected by the back stress. This is apparent when
X1

X2

Fig. 5. Micron sized cube specimen: one square micron of tantalum in compression (left) and prescribed displacements along X1 in X2

induce a strain gradient (right).
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Fig. 6. Back-stress providing a hardening effect on r13.



0 2 4 6 8 10 12 14
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time step

w/ Back Stress 
w/o Back Stressσ 2

2 
(c

om
pr

es
si

on
 in

 G
Pa

)

Fig. 7. Back-stress providing a softening effect on r22 at a point near the support.
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Fig. 8. Back-stress having negligible effect on r22 at point near center of cube.
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Fig. 7 is compared to Fig. 8. In Fig. 7, stress is sampled close to the support where shear is prevalent, how-

ever, in Fig. 8, stress is sampled at a point where shear stresses are smaller. These characteristics also are

inherited by the back stress tensor f.

Fig. 9 shows fields for various components of f. Recall that this tensor represents the influence of incom-

patibilities as a back stress. An interesting observation is that these fields are more circular in appearance.

Small point-like areas of high back stress values appear as seen in Fig. 9(a,c).

As shown by this simple example, the applied strain gradients induce back stress, and therefore harden-

ing, in what one may describe as a noncoaxial manner for the chosen theoretical formulation.



Fig. 9. Back stress fields as a result of strain gradient curleb: (a) fðsymÞ
1:1 (GPa), (b) fðsymÞ

2:2 (GPa), (c) fðsymÞ
2:3 (GPa) and (d) fðsymÞ

1:3 (GPa).
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5.2. Comparison with microtorsion experiments

The numerical simulations described in this section were motivated by the microtorsion experiments seen

in the work of Fleck and co-workers [14]. In that paper, the authors observed size effects playing important

roles in the response of polycrystalline materials subjected to various loadings, particularly for micron scale

specimens. Specifically, the observation was that the smaller the size, the harder the plastic response. The

authors went on to postulate that yield stress depends upon strain gradients as well as strain.

Fleck and co-workers measured the torsional responses of copper wires in order to obtain direct experi-
mental evidence for strain gradient hardening. The wires were made of polycrystalline copper and varied in

diameter from 12 to 170 lm. It was predicted that the thinner wires would have greater strain gradients

(and a corresponding greater amount of geometrically necessary dislocations), and would consequently

experience a greater degree work hardening. The experimental results discussed in that paper confirm this

expectation and the thinner work hardened wires were indeed stronger than the thicker ones. To establish

measures of torque, Q, and twist per unit length, j, that were independent of wire radius, a, dimensional

groups Q/a3 and ja were used. With these groups, Q/a3 is a function of ja but is otherwise independent of

radius a.
The simulation discussed below is a preliminary one. Simplicity was a consideration and an exact

replication of the experimental results seen in [14] was not expected. More accurate microtorsion simulations
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Fig. 10. A rectangular member subjected to torsion.
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are left for future work. A long thin member of square cross section was selected as a torsion specimen (see

Fig. 10). Because the angles of twist per unit length applied to the wire in the [14] experiment were very large
(on the order of 0.1 rad/lm), a small cross sectional slice of the member seen in Fig. 10 was used for the

numerical simulation, this way smaller rotations could be used for easier boundary condition implementa-

tion. This small slice is depicted in Fig. 10. The applied torque is administered to the slice by applying forces

at its four corners (denoted by F in the figure). The FEA mesh of the slice is shown in Fig. 11. The dimen-

sions of this geometry are 2a · 2a · 5 lm, where the dimension 2a is analogous to the diameter of the

copper wire cited above. Box 3 below shows material parameters and model data.
Box 3 (Material parameters for microtorsion simulations).

Young�s modulus E: 124 GPa Poisson�s ratio m: 0.34

Length scale l (see Eq. (5)): 1e�6 m

Gradient parameter cf (see Eq. (9)): 1.01

BCJ parameters: V = 14.0 f = 15.8 Y = 0.63

Applied moment at final time was Q
a3 = 300 MPa
For a fixed set of material parameters (Box 3), the normalized torques were plotted against twist for

three wire diameters (Fig. 12). Observe the increase in normalized torque with decrease in wire width. While

the comparison with experiment is far from perfect, the simulation results have the expected trend. This set

of results demonstrates the length scale effect of the strain gradient plasticity model, and its reproduction

when the model is implemented with the variational multiscale method.
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6. Conclusions

The ideas presented in this paper are part of a body of work in which variational methods have been

developed for embedding several models of fine scale physics in the macromechanical formulation of solid
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mechanics. In previous work [17,18] the fine scale physics has consisted of surface laws and a complete

theory for strain gradient plasticity. In a departure, this paper views a particular phenomenological plas-

ticity model as the fine scale (here, called the a-scale) model. This view is justified since the flow rule of

the phenomenological plasticity model incorporates the gradient of plastic strain to model many phenom-

ena observed at fine scales (see Section 1). Of greater importance is the fact that the inclusion of the plastic
strain gradient leads to several mathematical and computational difficulties. These include the integration

of the plasticity model, which is now described by a partial differential equation, and the specification of

boundary conditions on the plastic strain. Some of these are mitigated by the multiscale approach adopted

here.

The specific multiscale decomposition used here, by which the a-scale strain is identified with the plastic

deformation gradient leads to its own difficulty in the vanishing of the Nye dislocation density tensor. A

strain field, eb, has been introduced and weakly related to the gradient of the b-scale displacement to cir-

cumvent this difficulty (Section 3.1.2). However, the fidelity of the resulting numerical representation of
incompatibilities depends much too strongly on the interpolation functions for eb. It also amounts to an

expansion in the number of unknown fields. The underlying assumption of a multiscale decomposition

of the displacement clearly needs refinement for this problem. One alternative is to introduce a multiscale

decomposition directly on the strain field. We will return to this topic in future work.

The results presented here are preliminary ones. They are meant to only demonstrate the working of the

computational formulation and some features of the assumed plasticity model. Work is in progress on im-

proved theoretical models of gradient theories incorporating incompatibilities (dislocations and disclina-

tions), and on the use of fundamentally different classes of finite element spaces to represent the Nye
dislocation density tensor.
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Appendix A. Linearization

A.1. a-scale equation

Recall the a-scale equation in its weak form from Eq. (31).
ðWaÞ
Z
S

rwa : Fb � r _ua
� 


dv ¼
Z
S

rwa : ð1�rubÞT �Dp � ð1�rubÞ
h i

dv: ðA:1Þ
Expanding the $ operator, and substituting Eq. (27) into Eq. (A.1).
Z
S

rwa : Fb o _ua

oX
F�1

� �� �
dv ¼

Z
S

rwa : Fb�T

D
a
Fb�1

h i
dv: ðA:2Þ
Recognizing o _ua

oX
¼ _F

a
, Eq. (A.2) can be written:
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Z
S

rwa : Fb _F
a
F�1

h i
dv ¼

Z
S

rwa : Fb�T

D
a
Fb�1

h i
dv: ðA:3Þ
From Eq. (13), the plastic flow equation is written in terms of the a-scale field:
D
a ¼

ffiffiffi
3

2

r
f sinh

N
eff � ðjbþ Y Þ

V

" #¼:b* +
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼:/

N
a
; ðA:4Þ

D
a ¼ /N

a
: ðA:5Þ
Substituting (A.5) into Eq. (A.3) and using the Backward Euler Algorithm, Eq. (A.3) in time-discretized
form is:
Z

S

rwa : Fb Fa � Fa
n

Dt

� �
F�1

� �
dv ¼

Z
S

rwa : /Fb�T

N
a
Fb�1

h i
dv: ðA:6Þ
Combining integrals and expanding terms of Eq. (A.6), we define:
G2 :¼
Z
S

rwa : 1� FbFa
nF

�1 � Dt/Fb�T

N
a
Fb�1

h i
dv ¼ 0: ðA:7Þ
For variations dua and dub, the variation in G2 is:
dG2 ¼
Z
S

rwa : d �FbFa
nF

�1

 �

� Dtd /Fb�T

N
a
Fb�1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

¼:N

 !" #
dv ¼ 0: ðA:8Þ
Linearizing terms, Eq. (A.8) is written:
dG2 ¼
Z
S

rwa : �dFbFa
nF

�1 � FbFa
ndF

�1 � Dtd/N � Dt/dN
� 


dv ¼ 0: ðA:9Þ
Details are provided in [12].

A.2. b-scale equation

For variations dua and dub, the variation in Eq. (33) is defined:
dG1 :¼ d
Z
S

rwb : r�
Z
oBt

wb � tda�
Z
S

wb � bdv
� �

6¼ 0:
Working with the first term:
d
Z
St

rwb : rdv
� �

¼
Z

B

d
owb

oX
F�1

� �
: s

� �
dV

¼ �
Z

B

rwb : sðrduaÞT dV|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ia

� �
Z

B

rwb : sðrdubÞT dV|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ib

þ
Z

B

rwb : dsdV|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
II

: ðA:10Þ
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Working with term II:
II ¼
Z
B

rwb : ½dðFbÞSFbT þ FbSdðFbTÞ�dV|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
IIA

þ
Z
B

rwb : FbdðSÞFbT dV|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
IIB

:

Rewriting the integral in the current configuration, the sum of terms Ia, Ib, and IIA is:
�
Z
S

rwb : ðrðrduaÞTFbTÞdvþ
Z
S

rwb : ðrdubrÞdv�
Z
S

rwb : ðF]rduarÞdv:
Noting that: C : dEb ¼ C : ðFbTdFbÞ where: dFb ¼ ½rdub � F]rdua�Fb,
IIB ¼
Z
B

rwb : Fb½C : ðFbT ½rdub � F]rdua�FbÞ�FbT dV ¼
Z
B

rwb : Fb½C

: ðFbTrdubFbÞ�FbT dV �
Z
B

rwb : Fb½C : ðFbTF]rduaFbÞ�FbT dV :
Switching to indicial notation.
¼
Z
B

wb
i;jF

b
iI ½CIJKLF

bT

Kkdu
b
k;lF

b
l;L�F

bT

J ;j dV �
Z
B

wb
i;jF

b
iI ½CIJKLF

bT

KkF
]
ksdu

b
s;lF

b
l;L�F

bT

J ;j dV :
Rearranging and writing the integral in the current configuration.
¼
Z
S

wb
i;j
1

j
F b

iI F
b
jJ F

b
kKF

b
lLCIJKL|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼:cb

dubk;l dv�
Z
S

wb
i;j
1

j
F b

iIF
b
jJ F

b
kKF

b
lLCIJKL|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼cb

F ]
ksdu

b
s;l dv: ðA:11Þ
Defining:
Sðdua; dubÞ :¼ �rðrduaÞTFbT þrdubr� F]rduarþ cb : rdub � cb : F]rdua;
where cbijkl :¼ 1
j F

b
iIF

b
jJ F

b
kKF

b
lLCIJKL and F] :¼ rubFb

we can compactly express:
dG1 ¼
Z
S

rwb : Sðdua; dubÞdvþ
Z
oBt

wb � ½Sðdua; dubÞ � n�da:
From this linearization, the expression G2 þ dG2 ¼ 0 leads to Eq. (46).
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[27] E. Kröner, Benefits and shortcomings of the continuous theory of dislocations, Int. J. Solids Struct. 38 (2001) 1115–1134.

[28] L.P. Kubin, A. Mortensen, Geometrically necessary dislocations and strain-gradient plasticity: a few critical issues, Scr. Mater. 48

(2003) 119–125.

[29] E.H. Lee, Elastic–plastic deformation at finite strains, ASME J. Appl. Mech. 36 (1969) 1–6.

[30] E.H. Lee, D.T. Liu, Finite-strain elastic–plastic theory with application to plane-wave analysis, J. Appl. Phys. 38 (1967) 19–27.

[31] J. Mandel, Thermodynamics and plasticity, in: J.J. Delgado, et al. (Eds.), Foundations of Continuum Thermodynamics,

Macmillan, New York, 1974, pp. 283–304.

[32] P.M. Naghdi, A.R. Srinivasa, A dynamical theory of structured solids. I. Basic developments, Phil. Trans. Roy. Soc. Lond. Ser. A

345 (1993) 425–458.

[33] A. Needleman, J.Gil Sevillano, Preface to the viewpoint set on: geometrically necessary dislocations and size dependent plasticity,

Scr. Mater. 48 (2003) 109–111.

[34] J.F. Nye, Some geometrical relations in dislocated crystals, Acta Metall. 1 (1953) 153–162.

[35] R.A. Regueiro, D.J. Bammann, E.B. Marin, K. Garikipati, A nonlocal phenomenological anisotropic finite deformation

plasticity model accounting for dislocation defects, ASME J. Engrg. Mat. Tech. 124 (2002) 380–387.

[36] P. Steinmann, Views on multiplicative elastoplasticity and the continuum theory of dislocations, Int. J. Engrg. Sci. 34 (1996) 1717–

1735.

[37] E.B. Tadmor, R. Phillips, M. Ortiz, Hierarchical modeling in the mechanics of materials, Int. J. Solids Struct. 37 (2000) 379–389.

[38] C. Teodosiu, F. Sidoroff, A finite theory of the elastovisoplasticity of single crystals, Int. J. Engrg. Sci. 14 (1976) 713–723.

[39] M. Zaiser, E.C. Aifantis, Geometrically necessary dislocations and strain gradient plasticity—a dislocation dynamics point of

view, Scr. Mater. 48 (2003) 133–139.

[40] H.M. Zbib, E.C. Aifantis, Size effects and length scales in gradient plasticity and dislocation dynamics, Scr. Mater. 48 (2003) 155–

160.


	A variational multiscale method to incorporate strain gradients in a phenomenological plasticity model
	Introduction and background
	The phenomenological plasticity model
	Kinematics
	Thermodynamics
	Constitutive model

	A variational multiscale formulation
	Extension to phenomenological continuum plasticity
	A fundamental difficulty with incompatibilities
	Weak representation of an incompatible strain field

	Weak formulation of the phenomenological plasticity model incorporating incompatibilities
	 beta -scale equations and linearization

	Finite element implementation
	Bubnov ndash Galerkin approximations
	Eq. solving mdash Newton ndash Raphson method

	Numerical results
	Local evolution of the model
	Comparison with microtorsion experiments

	Conclusions
	Acknowledgments
	Linearization
	 alpha -scale equation
	 beta -scale equation

	References


