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Abstract

Linear time-invariant approximations of nonlinear systems are used in many applications
and can be obtained in several ways. For example, using system identification and the
prediction-error method, it is always possible to estimate a linear model without consider-
ing the fact that the input and output measurements in many cases come from a nonlinear
system. One of the main objectives of this thesis is to explain some properties of such
approximate models.

More specifically, linear time-invariant models that are optimal approximations in the
sense that they minimize a mean-square error criterion are considered. Linear models,
both with and without a noise description, are studied. Some interesting, but in applica-
tions usually undesirable, properties of such optimal models are pointed out. It is shown
that the optimal linear model can be very sensitive to small nonlinearities. Hence, the
linear approximation of an almost linear system can be useless for some applications,
such as robust control design. Furthermore, it is shown that standard validation methods,
designed for identification of linear systems, cannot always be used to validate an optimal
linear approximation of a nonlinear system.

In order to improve the models, conditions on the input signal that imply various
useful properties of the linear approximations are given. It is shown, for instance, that
minimum phase filtered white noise in many senses is a good choice of input signal. Fur-
thermore, the class of separable signals is studied in detail. This class contains Gaussian
signals and it turns out that these signals are especially useful for obtaining approxima-
tions of generalized Wiener-Hammerstein systems. It is also shown that some random
multisine signals are separable. In addition, some theoretical results about almost linear
systems are presented.

In standard methods for robust control design, the size of the model error is assumed
to be known for all input signals. However, in many situations, this is not a realistic
assumption when a nonlinear system is approximated with a linear model. In this thesis,
it is described how robust control design of some nonlinear systems can be performed
based on a discrete-time linear model and a model error model valid only for bounded
inputs.

It is sometimes undesirable that small nonlinearities in a system influence the linear
approximation of it. In some cases, this influence can be reduced if a small nonlinearity is
included in the model. In this thesis, an identification method with this option is presented
for nonlinear autoregressive systems with external inputs. Using this method, models with
a parametric linear part and a nonparametric Lipschitz continuous nonlinear part can be
estimated by solving a convex optimization problem.
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Sammanfattning

Linjära tidsinvarianta approximationer av olinjära system har många användningsområ-
den och kan tas fram på flera sätt. Om man har mätningar av in- och utsignalerna från
ett olinjärt system kan man till exempel använda systemidentifiering och prediktionsfels-
metoden för att skatta en linjär modell utan att ta hänsyn till att systemet egentligen är
olinjärt. Ett av huvudmålen med den här avhandlingen är att beskriva egenskaper för så-
dana approximativa modeller.

Framförallt studeras linjära tidsinvarianta modeller som är optimala approximationer
i meningen att de minimerar ett kriterium baserat på medelkvadratfelet. Brusmodeller
kan inkluderas i dessa modelltyper och både fallet med och utan brusmodell studeras här.
Modeller som är optimala i medelkvadratfelsmening visar sig kunna uppvisa ett antal in-
tressanta, men ibland oönskade, egenskaper. Bland annat visas det att en optimal linjär
modell kan vara mycket känslig för små olinjäriteter. Denna känslighet är inte önskvärd i
de flesta tillämpningar och innebär att en linjär approximation av ett nästan linjärt system
kan vara oanvändbar för till exempel robust reglerdesign. Vidare visas det att en del vali-
deringsmetoder som är framtagna för linjära system inte alltid kan användas för validering
av linjära approximationer av olinjära system.

Man kan dock göra de optimala linjära modellerna mer användbara genom att välja
lämpliga insignaler. Bland annat visas det att minfasfiltrerat vitt brus i många avseenden
är ett bra val av insignal. Klassen av separabla signaler detaljstuderas också. Denna klass
innehåller till exempel alla gaussiska signaler och just dessa signaler visar sig vara spe-
ciellt användbara för att ta fram approximationer av generaliserade wiener-hammerstein-
system. Dessutom visas det att en viss typ av slumpmässiga multisinussignaler är separa-
bel. Några teoretiska resultat om nästan linjära system presenteras också.

De flesta metoder för robust reglerdesign kan bara användas om storleken på modell-
felet är känd för alla tänkbara insignaler. Detta är emellertid ofta inte realistiskt när ett
olinjärt system approximeras med en linjär modell. I denna avhandling beskrivs därför
ett alternativt sätt att göra en robust reglerdesign baserat på en tidsdiskret modell och en
modellfelsmodell som bara är giltig för begränsade insignaler.

Ibland skulle det vara önskvärt om en linjär modell av ett system inte påverkades
av förekomsten av små olinjäriteter i systemet. Denna oönskade påverkan kan i vissa
fall reduceras om en liten olinjär term tas med i modellen. En identifieringsmetod för
olinjära autoregressiva system med externa insignaler där denna möjlighet finns beskrivs
här. Med hjälp av denna metod kan modeller som består av en parametrisk linjär del
och en ickeparametrisk lipschitzkontinuerlig olinjär del skattas genom att man löser ett
konvext optimeringsproblem.
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Notation

Symbols, Operators and Functions

N the set of natural numbers (0 ∈ N)
Z the set of integers
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L1(Rn) the space of functions f such that

∫
Rn |f(x)| dx <∞

∈ belongs to
A ⊂ B A is a subset of B
A \B set difference, {x | x ∈ A ∧ x /∈ B}
card(A) the cardinality of the set A
, equal by definition
4 component-wise inequality (for vectors),

negative semidefiniteness (for a matrix A with A 4 0)
arg min f(x) value of x that minimizes f(x)
|v|

√
vT v

q the shift operator, qu(t) = u(t+ 1)
(x(t))Mt=0 the sequence x(0), x(1), . . . , x(M)
‖x‖

√∑∞
t=0 x(t)Tx(t)

‖x‖N
√∑N

t=0 x(t)Tx(t)
[G(z)]causal the causal part of the transfer function G(z)
E(X) expected value of the random variable X
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1
Introduction

Mathematical modeling of real-life systems is a very common methodology in science
and engineering. It is used both as a means for achieving deeper knowledge about a sys-
tem and as an engineering tool, e.g., as a basis for simulations or for design of controllers.
Sometimes, it is possible to construct a model of a system from physical laws and princi-
ples. However, in other cases this is not possible, either because of a lack of knowledge
of the studied system or because physical modeling is considered too time consuming. In
these cases, system identification can be a way of solving the modeling problem.

System identification deals with the problem of how to estimate a model of a system
from measured input and output signals. Usually, only estimation problems for dynamic
systems, i.e., systems with some kind of memory, are called system identification. A sys-
tem can be linear or nonlinear and, depending on the type of system, linear or nonlinear
models can be estimated. In practice, linear models are very common and they are often
used also when the true system is nonlinear. In these cases, the model can only give an
approximate description of the system. It is therefore interesting to understand in what
way an estimated linear model can approximate a nonlinear system and how this approxi-
mation depends on the properties of the true nonlinear system and of the input signal used.
The main objective of this thesis is to give some answers to this problem. Furthermore,
some robustness issues concerning system identification and automatic control are also
discussed.

The field of automatic control concerns methods for changing the behavior of a dy-
namic system and a device designed for this purpose is called a controller. For example,
controllers can be used to stabilize a system, to make a system less sensitive to distur-
bances or to change the response of a system to an external signal. Usually, a control
method is designed for a particular class of control problems, which is often defined by
a number of mathematical assumptions about the system. However, many methods are
applied also to real-life systems that do not satisfy all these assumptions. Hence, it is
important to investigate the robustness of a control method with respect to erroneous as-
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2 1 Introduction

sumptions about the system. When a controller is designed based on a mathematical
model, it is said to be robust towards model errors if the differences between the model
and the true system cannot cause instability. This type of robustness of a controller is
discussed here.

This chapter contains a brief discussion about systems and models and some moti-
vating examples. These examples describe some of the phenomena or problems that can
occur when a linear model of a nonlinear system is estimated. Furthermore, an outline of
the thesis is given and finally, the main contributions are listed.

1.1 Systems and Models

A very important notion in system identification is the difference between a system and
a model. In a wide sense, a system is any kind of physically or conceptually bounded
object. Examples of systems are the solar system, a human brain cell and an electrical
motor. A system is usually affected by external signals. For example, the solar system is
affected by the gravity of other stars, a human brain cell is affected by neighboring cells
and by the composition of the blood, and an electrical motor is affected by the voltage
over its winding. External signals with a desired effect on the system are called inputs,
while other, undesired signals that affect the system are called disturbances. Measurable
signals that describe some property of the system are called outputs. Note that also dis-
turbances can be measurable and that the classification of external signals as either inputs
or disturbances is somewhat arbitrary. However, for a particular application it is usually
easy to distinguish inputs and disturbances.

From a control engineering perspective, a system is some device whose behavior we
would like to make more intelligent in some way. This can be done by designing a con-
troller that measures the outputs from the system and then alters the input signals in order
to achieve the desired behavior. From a control scientist’s point of view, the only systems
of interest are those with both input and output signals. In most parts of this thesis, only
scalar systems, i.e., systems with one input and one output, are considered.

A mathematical description of a system is called a model. Whenever a system corre-
sponds to a real-life object, it cannot be described exactly and any model of it will thus
contain errors. Only in constructed examples, it is possible to give an exact description
of the true system. However, any reference to the system always concerns the actual true
system. Hence we can talk about model errors but not about system errors.

The common practice to approximate nonlinear systems using linear models can be
done in many ways. For example, differentiation can be used to linearize a nonlinear
system description locally, or some kind of linear equivalent of a nonlinear system can
be derived for a particular input. In this thesis, we will investigate the latter of these
two approaches. More specifically, we will study the behavior of linear model estimates
obtained by system identification using input and output data from nonlinear systems.
The system identification method that will be used here is the well-known prediction-error
method (see Section 2.3), and we will only investigate its behavior when the number of
measurements tends to infinity.

The prediction-error method can be used to compute estimates of some parameters θ



1.2 Motivating Examples 3

in a general linear model

y(t) = G(q, θ)u(t) +H(q, θ)e(t)

of a system with input u(t) and output y(t). Here, q denotes the shift operator, qu(t) =
u(t+1),G(q, θ) is the linear model from input to output andH(q, θ) is a model of how the
noise e(t) affects the output. Both these models are parameterized by the vector θ. It will
be assumed that both H−1(q, θ)G(q, θ) and H−1(q, θ), with H−1(q, θ) = 1/H(q, θ),
are stable models (see Section 2.1). It can be shown (Ljung, 1978) that the prediction-
error parameter estimates under rather general conditions will converge to the parameters
that minimize a mean-square error criterion E((H−1(q, θ)(y(t)−G(q, θ)u(t)))2), where
E(x) denotes the expected value of the random value x.

In the special case when the noise model is equal to one, the mean-square error optimal
model G(q) will here be called the Output Error Linear Time-Invariant Second Order
Equivalent (OE-LTI-SOE) and it will be denoted G0,OE (q). The corresponding mean-
square error optimal model for a general noise model will be called the General Error
Linear Time-Invariant Second Order Equivalent (GE-LTI-SOE) and it will be denoted
(G0,GE (q),H0,GE (q)). In the next section, some motivating examples that illustrate the
properties of OE-LTI-SOEs and GE-LTI-SOEs will be presented.

1.2 Motivating Examples

Although the use of linear models of nonlinear systems is straightforward in some cases, it
can sometimes give rise to rather nonintuitive phenomena. This is shown in the following
examples.

Example 1.1

Consider the simple static nonlinear system

y(t) = u(t)3. (1.1)

Intuitively, the best linear approximation of this system would be a static linear system
y(t) = c0u(t), where c0 is some constant. However, this is not always the case. Let the
input to the system (1.1) be

u(t) = e(t) +
1
2
e(t− 1),

where e(t) is a sequence of independent random variables with uniform distribution over
the interval [−1, 1]. In this case, it turns out that the OE-LTI-SOE of the system (1.1) is

G0,OE (q) =
0.85 + 0.575q−1

1 + 0.5q−1
.

Hence, a static nonlinear system can have a nonstatic OE-LTI-SOE .



4 1 Introduction

Example 1.2
Let the input signal to (1.1) be generated in a different way according to

u(t) =
1
2
e(t) + e(t− 1), (1.2)

where e(t) is the same signal as in Example 1.1. In this way, this input will have the same
spectral density Φu(eiω) as the one in the previous example. However, the OE-LTI-SOE
of the system (1.1) for the input (1.2) is

G0,OE (q) =
0.925 + 0.425q−1

1 + 0.5q−1
.

Hence, a nonlinear system can have different OE-LTI-SOEs for two input signals with
equal spectral densities.

Example 1.3
Consider the static nonlinear system

y(t) = u(t)2 − 3

with the input
u(t) = e(t) + e(t− 1)2 − 1,

where e(t) here is a white Gaussian process with zero mean and unit variance. The OE-
LTI-SOE of this system is

G0,OE (q) =
8
3
≈ 2.6667

while the GE-LTI-SOE is

G0,GE (q) =
√

4161− 33
12

≈ 2.6255,

H0,GE (q) = 1 +
65−

√
4161

8
q−1.

As can be seen from these expressions, G0,OE (q) 6= G0,GE (q) despite the fact that the
system operates in open loop.

Hence, the OE-LTI-SOE G0,OE (q) of an open-loop nonlinear system can be different
from G0,GE (q) in the corresponding GE-LTI-SOE .

Example 1.4
Consider the nonlinear system

y(t) = yl(t) + 0.01yn(t),
yl(t) = u(t),

yn(t) = u(t)3.
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(a) The output y(t) (dashed) of the nonlinear
system in Example 1.4 and the output yl(t) =
u(t) (solid) of the linear part of that system
for a particular realization of the input signal.
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(b) The frequency response of the OE-LTI-
SOE (dashed) and of the linear part (solid) of
the nonlinear system in Example 1.4

Figure 1.1: The frequency response of the OE-LTI-SOE can be far from the response
of the linear part of the system also when the nonlinear contributions to the output
are small.

The output from this system consists of a linear part, yl(t) = Gl(q)u(t) with Gl(q) = 1,
and a nonlinear part, 0.01yn(t) = 0.01u(t)3. Let the input signal be

u(t) = (1− 2cq−1 + c2q−2)e(t),

where c = 0.99 and where e(t) is a white noise process with uniform distribution over
the interval [−1, 1]. For this input, it is hard to distinguish the output y(t) of the non-
linear system from the output yl(t) of the linear part of the system. This can be seen in
Figure 1.1a for a particular realization of the input signal. However, the small differences
between the output signals y(t) and yl(t) will make the OE-LTI-SOE very different from
the linear part Gl of the system. This difference can be seen in Figure 1.1b.

Hence, the distance between the OE-LTI-SOE and the linear part of the true system
can be large also when the nonlinearities are small.

As can be seen in the previous examples, the OE-LTI-SOE of a nonlinear system
is input dependent. Furthermore, there is no guarantee that the OE-LTI-SOE and the
GE-LTI-SOE will be equal even for an open-loop nonlinear system. Neither will the
OE-LTI-SOE always be close to the linear part of the system.

In particular, this last property can in some circumstances be undesirable, for example
if the OE-LTI-SOE is supposed to be used as a basis for robust control design. Such
a design puts restrictions on the control laws in order to guarantee the stability of the
resulting true closed-loop system, despite the presence of model errors. A drawback with
a model that is far from the linear part of an almost linear system is that the gain of the
model errors might be unnecessarily large.
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A robust control design based on a model with large model errors usually implies that
the restrictions on the control laws will be rather hard. Hence, the use of an OE-LTI-SOE
with large model errors can result in a rather poor control performance for the true system.
It is thus interesting to understand under which circumstances the OE-LTI-SOE will be
close to the linear part of the system when the nonlinearities are small. Furthermore, it
would be interesting to have an identification method such that small nonlinearities can
be ignored when a linear model is desired. A method with this option is discussed in this
thesis.

Examples 1.1 and 1.2 show that the OE-LTI-SOE of a nonlinear system will be input
dependent. One could argue that this input dependency is a problem and that an LTI
approximation of a nonlinear system should not be derived for a particular input or class
of inputs. However, as the following example illustrates, it is not realistic to believe that
a linear model can be a good approximation of a nonlinear system for all inputs.

Example 1.5

Consider the nonlinear system

y(t) =


1, u(t) > 1,
u(t), |u(t)| ≤ 1,
−1, u(t) < −1

and assume that a linear approximation

ŷ(t) = b0u(t)

of this system is desired. Assume that we want this approximation to be optimal in the
sense that

sup
u(t)∈R

|y(t)− ŷ(t)|

is minimized. In this case, it is easy to see that the optimal model is b0 = 0. Of course,
this is not a very useful model.

Hence, a linear model of a nonlinear system should typically be derived and used only
for a restricted class of inputs.

Examples 1.1-1.5 will be discussed in more detail later in this thesis (see Exam-
ples 4.2, 5.1, 4.3 and 8.1 and Chapter 10, respectively). Furthermore, some conditions
and methods that prevent the behaviors shown in these examples will be presented.

1.3 Outline of the Thesis

Most of the results in this thesis concern systems with stationary stochastic input and
output signals. Some background material about such signals and about linear and non-
linear systems can be found in Chapter 2. This chapter contains also a brief description of
system identification using the prediction-error method and an introduction to separable
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processes. An overview of some existing methods for linearization of nonlinear systems
can be found in Chapter 3.

The rest of this thesis is divided into two parts. The first part comprises Chapters 4
to 9 and concerns analysis of LTI-SOEs of nonlinear systems. The second part com-
prises Chapters 10 and 11 and concerns robustness issues for control design and system
identification using linear models.

The linearization approach used in this thesis is based on minimization of the mean-
square error. The LTI-SOEs obtained by this approach are described in Chapter 4 and
some basic properties of these models are discussed in Chapter 5. There, it is also shown
that a minimum phase filtered white noise input implies useful properties for the LTI-SOE
of a nonlinear system.

Furthermore, it turns out that the class of separable inputs is especially useful for
LTI approximations of nonlinear systems. Some results for these inputs are described
in Chapter 6 while Gaussian inputs, which belong to the class of separable inputs, are
discussed in Chapter 7. This chapter contains also some results about LTI-SOEs of gener-
alized Wiener-Hammerstein systems. Furthermore, LTI approximations of almost linear
systems are studied in Chapter 8 and the first part of the thesis is summarized with a
discussion about different input signals in Chapter 9.

The second part of the thesis is more focused on methods. An approach to robust
control using realistic model error models is described in Chapter 10. Furthermore, an
identification method that sometimes can reduce the sensitivity of an estimated LTI model
to small nonlinearities is discussed in Chapter 11.

Some final conclusions concerning the previously presented topics are given in Chap-
ter 12.

1.4 Contributions

The main objective of this thesis is to explain some of the behavior of LTI-SOEs of non-
linear systems and to investigate some robustness issues concerning control and identifi-
cation using linear models of nonlinear systems. For example, the phenomena shown in
Examples 1.1-1.4 are discussed.

From a practical point of view, there are four contributions in this thesis that probably
are more important than the others. The first one is the observation described in Sec-
tions 5.4 and 5.5 that minimum phase filtered white noise in many senses is a good choice
of input signal for LTI approximations of nonlinear systems. Furthermore, the result in
Lemma 6.1 that some random multisines are separable has direct practical implications
and can be viewed as a theoretical motivation for an input signal that is already com-
monly used. The third contribution of practical interest is the result in Corollary 7.1 about
generalized Wiener-Hammerstein systems with Gaussian inputs. This result implies that
the linear parts of such a system will be factors in the OE-LTI-SOE of it. Finally, the
mixed parametric and nonparametric identification method in Chapter 11 might be useful
in some applications.

Some other results can also be viewed as main contributions. For example, the result
about higher order separability in Theorem 6.3 is a generalization of a classic theoretical
result. With the behavior of LTI-SOEs shown in Examples 1.1-1.4 in mind, also the result
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in Theorem 8.1 about uniform convergence of the linear approximations when the size of
the nonlinearities tends to zero can be viewed as a main contribution.

Most of the material of this thesis has previously been published. With exception
for the discussion about LTI-SOEs for periodic inputs and the separability of random
multisines, the results in Chapters 4 to 9 have been published previously in

M. Enqvist. Some results on linear models of nonlinear systems. Licentiate
thesis no. 1046. Department of Electrical Engineering, Linköpings univer-
sitet, Linköping, Sweden, 2003.

The results about higher order separability and LTI-SOEs for Gaussian inputs in Sec-
tion 6.3 and Chapter 7 can also be found in

M. Enqvist and L. Ljung. Linear approximations of nonlinear FIR systems
for separable input processes. Automatica, 41(3):459–473, 2005.

Early versions of the results in Chapter 8 about approximations of almost linear systems
can be found in

M. Enqvist and L. Ljung. Estimating nonlinear systems in a neighborhood of
LTI-approximants. In Proceedings of the 41st IEEE Conference on Decision
and Control, pages 1005–1010, Las Vegas, Nevada, December 2002.

The material in Chapter 7 about Gaussian inputs has previously been published also in

M. Enqvist and L. Ljung. Linear models of nonlinear FIR systems with
Gaussian inputs. In Proceedings of the 13th IFAC Symposium on System
Identification, pages 1910–1915, Rotterdam, The Netherlands, August 2003.

Some of the examples and results in Chapter 8 can also be found in

M. Enqvist and L. Ljung. LTI approximations of slightly nonlinear systems:
Some intriguing examples. In Proceedings of the 6th IFAC Symposium on
Nonlinear Control Systems, pages 639–644, Stuttgart, Germany, September
2004.

The approach to robust control in Chapter 10 has also been studied in

S. T. Glad, A. Helmersson, M. Enqvist, and L. Ljung. Controllers for am-
plitude limited model error models. In Proceedings of the 16th IFAC World
Congress, Prague, Czech Republic, July 2005.

Some of the results about minimum phase filtered white noise inputs in Chapter 5 are
described in

M. Enqvist. Benefits of the input minimum phase property for linearization
of nonlinear systems. In Proceedings of the International Symposium on
Nonlinear Theory and its Applications, pages 618–621, Bruges, Belgium,
October 2005.

Most of the results about the mixed parametric and nonparametric method for system
identification in Chapter 11 are published in
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J. Roll, M. Enqvist, and L. Ljung. Consistent nonparametric estimation of
NARX systems using convex optimization. In Proceedings of the 44th IEEE
Conference on Decision and Control and the European Control Conference,
Seville, Spain, December 2005a. (To appear).

The results about separability of random multisines in Section 6.2 can be found also in

M. Enqvist. Identification of Hammerstein systems using separable random
multisines. Submitted to the 14th IFAC Symposium on System Identification,
Newcastle, Australia, March 2006.
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2
Preliminaries

In this chapter, some background material about linear and nonlinear systems will be pre-
sented and the notation that will be used throughout this thesis will be introduced. Further-
more, a brief description of the basic ideas of system identification based on prediction-
error methods and an introduction to separable processes will be given.

2.1 Linear Systems and Stochastic Processes

Linear time-invariant (LTI) dynamic systems and models are the foundation of control
theory and system identification and are described in many textbooks (see, for example,
Kailath, 1980; Rugh, 1996). Any discrete-time LTI system with input u(t) and output
y(t) can be written as a convolution

y(t) =
∞∑

k=−∞

g(k)u(t− k).

The sequence (g(k))∞k=−∞ is called the impulse response of the system. An LTI system
can also be represented by a transfer function G(z), which is obtained by taking the z-
transform of the impulse response, i.e.,

G(z) =
∞∑

k=−∞

g(k)z−k.

Similarly, the function G(q), where q is the shift operator qu(t) = u(t+1), will be called
the transfer operator of the system. A third way to represent a discrete-time LTI system
is to write it as a state-space description or a state equation

x(t+ 1) = Ax(t) +Bu(t),
y(t) = Cx(t) +Du(t),

11
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where x(t) is a state vector and where A, B, C and D are matrices.
Although a transfer function sometimes can be written more compactly as a rational

function of z, it should always be thought of as a certain series expansion in order to avoid
any ambiguities. These ambiguities can occur due to the fact that a rational function cor-
responds to different series expansions in different regions of convergence. However, the
series expansion is unique if the region of convergence is specified (Brown and Churchill,
1996, Sec. 50). Sometimes, this specification will be done using the following terminol-
ogy.

Definition 2.1. A sequence (m(k))∞k=−∞ is causal ifm(k) = 0 for all k < 0 and strictly
causal if m(k) = 0 for all k ≤ 0. The sequence is anticausal if m(k) = 0 for all k > 0
and strictly anticausal if m(k) = 0 for all k ≥ 0.

The notion of causality can be used also for LTI systems.

Definition 2.2. An LTI system is (strictly) causal if its impulse response is (strictly)
causal. Similarly, an LTI system is (strictly) anticausal if its impulse response is (strictly)
anticausal.

In some cases, we will need to extract the causal part of a noncausal system. This will
be done using the notation

[G(z)]causal =

[ ∞∑
k=−∞

g(k)z−k
]

causal

=
∞∑
k=0

g(k)z−k.

Causality of an LTI system implies that the system output only depends on past and
present values of the input signal. Hence, all real-life systems are causal. Another im-
portant property of LTI systems is stability. In this thesis, we will only use the type of
stability called bounded input bounded output stability, which is defined as follows.

Definition 2.3. An LTI system with impulse response g(k) is stable if
∞∑

k=−∞

|g(k)| < +∞.

If a transfer function is said to be stable, it should always be viewed as coming from
the series expansion, causal or noncausal, whose region of convergence contains the unit
circle. On the other hand if a transfer function is said to be causal it should be viewed as
coming from a, possibly unstable, causal series expansion.

Furthermore, an LTI system G(z) is said to be static if only g(0) is nonzero and
nonstatic if there exists a k ∈ Z \ {0} such that g(k) 6= 0. If g(k) is nonzero only for a
finite number of k:s, the system is said to be a finite impulse response (FIR) system. An
LTI system is said to be monic if g(0) = 1. In some cases, we will use the notation

G−1(z) =
1

G(z)
=

∞∑
k=0

g̃(k)z−k

for the inverse system of a causal LTI system. As indicated above, G−1(z) should always
be viewed as a causal series expansion. An important notion for control theory, and also
for the discussion later in this thesis, is the concept of minimum phase systems.
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Definition 2.4. An LTI system is minimum phase if both G(z) and G−1(z) = 1/G(z)
are stable and causal transfer functions.

The definitions that have been introduced so far have concerned LTI systems but do
of course hold for LTI models and filters as well. The word filter will here be used as
an alternative name for an LTI system whose main purpose is to change a signal in some
way. The signals that will be discussed in this thesis are discrete-time stationary stochastic
processes (see, for example, Gardner, 1986; Jazwinski, 1970).

Formally, a discrete-time stochastic process (u(t))∞t=−∞ is an indexed sequence of
random variables where the parameter t corresponds to time. The processes that will be
studied in this thesis will be real and stationary. Stationarity of a process means that the
simultaneous probability density function of any set of variables {u(t+ τ), τ ∈ D ⊂ Z}
is independent of t. Furthermore, all processes will have zero mean, i.e., E(u(t)) = 0
for all t ∈ Z, and well-defined covariance functions Ru(τ). The covariance function of a
process with zero mean is defined as

Ru(τ) = E(u(t)u(t− τ)).

Furthermore, it will be assumed that the covariance function has a well-defined z-trans-
form Φu(z) whose region of convergence contains the unit circle. The function Φu(z)
can be written

Φu(z) =
∞∑

τ=−∞
Ru(τ)z−τ

and it will, using the terminology in Kailath et al. (2000), be called the z-spectrum of the
process. Properties like stability and causality that hold for LTI systems can be used also
about z-spectra. Note that Φu(z−1) = Φu(z) since Ru(−τ) = Ru(τ). The real-valued
function Φu(eiω) of ω ∈ [−π, π] that is obtained when z = eiω will be called the spectral
density function of the process.

If two processes (u(t))∞t=−∞ and (y(t))∞t=−∞ are considered, it will be assumed that
they are jointly stationary and that the cross-covariance function Ryu(τ) between these
processes exists. The cross-covariance function is defined as

Ryu(τ) = E(y(t)u(t− τ)).

Furthermore, it will be assumed that also this function has a z-transform Φyu(z) whose
region of convergence contains the unit circle. The function Φyu(z) can be written

Φyu(z) =
∞∑

τ=−∞
Ryu(τ)z−τ

and will be called the z-cross-spectrum. Note that Φyu(z−1) = Φuy(z) and that all z-
spectra and z-cross-spectra should always be interpreted as the series expansion whose
region of convergence contains the unit circle.

A very important class of processes is white noise processes, which have the property
that all u(t), t ∈ Z, are independent. Hence, for white processes only Ru(0) is nonzero.
Using white processes as inputs to LTI filters, it is possible to construct processes with
arbitrary z-spectra. This follows from the next lemma about LTI filtering of stationary
stochastic processes. This lemma has been taken from Kailath et al. (2000, p. 195).
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Figure 2.1: The general LTI model.

Lemma 2.1 (Filtering of Stationary Processes)
Let (y(t))∞t=−∞ be the stationary process that is obtained by passing a stationary process
(u(t))∞t=−∞ with zero mean through a stable LTI system with transfer function H(z).
Then the relations

Φy(z) = H(z)Φu(z)H(z−1),
Φyu(z) = H(z)Φu(z)

hold. Furthermore, if (x(t))∞t=−∞ is jointly stationary with (y(t))∞t=−∞ and (u(t))∞t=−∞
as just defined, then

Φxy(z) = Φxu(z)H(z−1).

Proof: See Kailath et al. (2000, pp. 195-197).

LTI models and stochastic processes will in this thesis be used to model arbitrary
systems. Usually, it will be assumed that these systems contain some noise and hence we
need models that include some kind of noise description. One model with this property is
the following general LTI model of a system with input u(t) and output y(t),

y(t) = G(q)u(t) +H(q)e(t), (2.1)

where H(q) is a monic transfer operator that describes how the output depends on the
white noise e(t). The structure of the model (2.1) is illustrated in Figure 2.1.

The LTI model (2.1) can be used to define the optimal predictor ŷ(t) of y(t) given
past output values (y(t − k))∞k=1 and past and present input values (u(t − k))∞k=0 (see,
for example, Ljung, 1999, Chap. 3). This predictor can be written as

ŷ(t) = H−1(q)G(q)u(t) + (1−H−1(q))y(t). (2.2)

The predictor (2.2) is optimal in the sense that if (2.1) is an accurate description of the
true system, it minimizes the mean-square error E((y(t) − ŷ(t))2) and is equal to the
conditional expectation of y(t) given past output and past and present input values (Ljung,
1999, Chap. 3). Predictors of this kind are used in the prediction-error method, which will
be described in Section 2.3. First, however, we will give a brief overview of some types
of nonlinear systems that will be discussed later in this thesis.
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2.2 Nonlinear Systems

In some of the results that will be presented in this thesis, there will be no explicit as-
sumptions on the true nonlinear system that is modeled. Hence, the system can often
be viewed as a black box that for a given stationary input signal (u(t))∞t=−∞ produces
the output (y(t))∞t=−∞. However, in some other results, we will assume that the system
belongs to certain classes of nonlinear systems and these classes will be defined here.

We will only consider nonlinear systems in discrete time in this thesis. Similarly to
the LTI case, a nonlinear system will be said to be static if its output y(t) can be written
as a function of u(t) only, i.e., if y(t) = f(u(t)), and the system is said to be nonstatic if
y(t) depends on any other u(t−k), k ∈ Z\{0}. A class of systems that will be discussed
later in this thesis is nonlinear finite impulse response (NFIR) systems. An NFIR system
can for some M ∈ N be written as

y(t) = f
(
(u(t− k))Mk=0

)
.

Here, the compact notation f
(
(u(t− k))Mk=0

)
simply means

f(u(t), u(t− 1), . . . , u(t−M)),

i.e., a function of a finite number of input components. An NFIR system is a special case
of a nonlinear autoregressive system with external input (NARX system) (Sjöberg et al.,
1995). Such a system can be written as

y(t) = f(ϕ(t)) + e(t),

where the vector ϕ(t) has signal components of u and y as elements and where e(t) is a
white noise process. An NFIR system is also a special case of a nonlinear output error
(NOE) system

y(t) = f
(
(u(t− k))∞k=0

)
+ e(t),

where e(t) is white noise.
Two other system classes that will be discussed later are Wiener and Hammerstein

systems. A Wiener system consists of an LTI model followed by a static nonlinearity, i.e.,

y(t) = f(v(t)),
v(t) = G(q)u(t),

while a Hammerstein system has these linear and nonlinear subsystems in the opposite
order, i.e.,

y(t) = G(q)v(t),
v(t) = f(u(t)).

Actually, Wiener and Hammerstein systems can be viewed as special cases of a more
general system class known as Wiener-Hammerstein systems. Such a system consists of
a Wiener system followed by an LTI system.
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Just like LTI systems, many nonlinear systems can be written also in state-space form

x(t+ 1) = f(x(t), u(t)),
y(t) = h(x(t), u(t)),

where x(t) is a state vector.
A detailed description and characterization of many other types of nonlinear systems

and models can be found in Pearson (1999) and Sjöberg et al. (1995). In the next section,
we will describe some of the basic ideas in system identification.

2.3 System Identification

As was mentioned in the introduction to this thesis, system identification can be viewed
as a synonym for mathematical modeling of dynamic systems using measurements of the
input and output signals. Various identification methods can be found in the literature, but
here we will only discuss one family of methods, namely prediction-error methods. We
will discuss the general idea behind this method, some of its properties and also a special
version of it designed for a class of input signals called random multisines.

2.3.1 Prediction-Error Methods

Prediction-error methods are based on the observation that predictors like (2.2) can be
used to compare how well different LTI models can predict the output y(t). The main
idea is to use some kind of measure of the distance between the predicted output and the
true output and to minimize this distance by adjusting some parameters in the model. Typ-
ically, a prediction-error method works with a finite data set ZN = (u(t), y(t))Nt=1 that
contains simultaneous measurements of the input and output signals and a parameterized
version of the general LTI model (2.1). This parameterized model can be written as

y(t, θ) = G(q, θ)u(t) +H(q, θ)e(t), (2.3)

where θ is a d-dimensional vector of parameters. For example, θ can be the coefficients
of the numerator and denominator polynomials of G and H , provided that these transfer
functions are chosen as rational functions.

Different model structures can be obtained by imposing some restrictions on the ra-
tional functions G and H . For example, the autoregressive with external input (ARX)
model structure is obtained by letting

G(q, θ) =
B(q, θ)
A(q, θ)

,

H(q, θ) =
1

A(q, θ)
,

where A and B are polynomials. Similarly, the output error (OE) model structure is
acquired if H(q, θ) = 1. A family of LTI model structures is described in Ljung (1999,
pp. 81-88).
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If the model (2.3) would be a perfect description of the true system for some white
noise process e(t), the mean-square error optimal predictor ŷ(t, θ) of y(t) would be

ŷ(t, θ) = H−1(q, θ)G(q, θ)u(t) + (1−H−1(q, θ))y(t). (2.4)

When a model structure has been selected in the prediction-error method, the corre-
sponding predictor (2.4) is used to compute θ-dependent predictions ŷ(t, θ) based on the
data in ZN . A parameter estimate θ̂N can then be computed by minimizing a criterion
VN (θ, ZN ). For example, this criterion can be chosen to be quadratic such that

θ̂N = arg min
θ∈DM

VN (θ, ZN ) = arg min
θ∈DM

1
N

N∑
t=1

(y(t)− ŷ(t, θ))2. (2.5)

Here, θ is restricted to some pre-specified set DM ⊂ Rd. Usually, DM is the set of pa-
rameters that make the predictor (2.4) stable. In general, the minimization of VN (θ, ZN )
has to be performed using some kind of numerical method. A common choice is to use a
Gauss-Newton or a damped Gauss-Newton method. These methods use the gradient and
an approximation of the Hessian of VN (θ, ZN ) and have good convergence properties,
especially in the vicinity of the optimum (see Ljung, 1999).

Detailed studies of the properties of the prediction-error estimate when the number of
measurements tends to infinity have been made (Ljung, 1978, 1999). In Ljung (1978) it
is shown that under rather weak conditions on the true system and on the input and output
signals, the following convergence result holds with probability one.

θ̂N → θ∗ = arg min
θ∈DM

E((y(t)− ŷ(t, θ))2), w.p.1 as N →∞ (2.6)

With some abuse of notation, y(t) and ŷ(t, θ) here denote the stochastic signals while
they previously in this section have denoted realizations of these signals. An important
necessary condition on the input and output signals for (2.6) to hold concerns the de-
pendency between signal components over time. Intuitively, this condition requires that
the remote past of the process should be forgotten at an exponential rate. This condition
is satisfied for many random input signals of practical interest, e.g., most filtered white
noise signals and random binary signals. For such inputs, the properties of a model es-
timated using (2.5) can often be understood by studying the model that minimizes the
mean-square error in (2.6). However, there is at least one important class of input signals
for which the result (2.6) is not applicable, namely random multisines. Usually, a mod-
ified version of the prediction-error method is used for these input signals. This will be
discussed in the next section.

The convergence result (2.6) holds also for many nonlinear systems. Since (2.6) shows
that the prediction-error estimate with probability one will converge to the mean-square
error optimal estimate θ∗, it is interesting to investigate what can be said about the LTI
models that are defined by θ∗ when the true system is nonlinear. This is the main objective
of this thesis.

A convergence result that is similar to (2.6) can be shown under less restrictive as-
sumptions on the input signal if the system is linear (Ljung, 1999, Chap. 8). In this result,
the expectation in (2.6) is replaced with both an average over time and an expectation, and
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the convergence of the parameter estimates is obtained also for quasi-stationary signals
(Ljung, 1999, Chap. 2), e.g., pseudo-random binary signals and deterministic multisine
signals. However, this result cannot be applied to nonlinear systems. Furthermore, it is
not obvious that all quasi-stationary signals are suitable for estimation of LTI models of
nonlinear systems since some averaging due to the randomness of the input signal might
be beneficial in this type of identification problem. Intuitively, the reason why a random
input signal might be useful is that it often will give a linear model that approximates the
average behavior of the system rather than just the system behavior for one fixed input.

However, also when a nonlinear system is approximated by an LTI model using the
prediction-error method and a realization of a stochastic process as input, there is a risk
that the obtained model will be adjusted too much to the particular realization of the input
used in the identification experiment. For example, consider an identification experiment
where a realization of a stochastic process with zero mean is used to model the average
behavior of a nonlinear system in an interval around zero. If the realization of the input
is short, there is often a significant probability that, for example, all signal components
will have equal signs. In this case, an estimated model will usually not be able to describe
the desired system behavior accurately. However, if the dependency between two input
components u(t) and u(t − τ) decreases as |τ | increases, the probability to get a real-
ization where all components have equal signs tends to zero when the number of signal
components in the realization goes to infinity. Hence, an estimated model will typically
describe the average system behavior better if a large data set is used in the identification
procedure. For many systems, such an input signal will guarantee also that (2.6) holds.

The method described here is not the only prediction-error method, but rather a com-
monly used member of a family of methods. The main differences between these methods
are due to different choices of criterion in (2.5) and to the fact that a prefilter is used in
some methods. It should also be noted that prediction-error methods can be used for
other model structures than the ones based on (2.1). For example, both linear state-space
models and general nonlinear black-box models can be used.

2.3.2 A Prediction-Error Method for Random Multisines

The use of periodic input signals in identification experiments is common in many ap-
plications and can be motivated in several ways (Pintelon and Schoukens, 2001; Ljung,
1999). For example, if the modeling is done using a frequency domain criterion, a periodic
signal will remove the undesirable leakage effects that are usually present. Furthermore,
it is easy to calculate good estimates of the noise level with such an input.

A discrete-time signal u(t) is periodic if there is a positive integer P such that

u(t+ P ) = u(t), ∀t ∈ Z.

Consider a P -periodic input, with P ∈ Z+, to a system with the output

y(t) = ynf (t) + w(t),

where ynf (t) is the noise-free output and w(t) is measurement noise. Assume that mea-
surements from M periods have been collected and that all transient effects have disap-
peared such that ynf (t) is P -periodic too. In this case, an average ȳ(t) of the output signal



2.3 System Identification 19

over the periods can be calculated as

ȳ(t) =
1
M

M−1∑
k=0

y(t+ kP ), 1 ≤ t ≤ P.

In this way, a shorter signal with a higher signal-to-noise ratio is obtained and an estimate
λ̂w of the variance of the measurement noise can be calculated as

λ̂w =
1

(M − 1)P

M−1∑
k=0

P∑
t=1

(y(t+ kP )− ȳ(t))2 .

A disadvantage with a P -periodic signal is that it can only be persistently exciting of, at
most, order P (Ljung, 1999, Chap. 13). Hence, models with arbitrarily many parameters
cannot be uniquely determined if a periodic input has been used. Further properties of
periodic excitation signals can be found in Pintelon and Schoukens (2001) and Ljung
(1999).

A particular class of periodic signals that has turned out to be useful for identification
of linear and nonlinear systems is random multisines (Pintelon and Schoukens, 2001).

Definition 2.5. A random multisine signal is a stationary stochastic process u(t) that can
be written

u(t) =
Q∑
k=1

Ak cos(ωkt+ ψk), (2.7)

where bothAk and ψk can be random variables and where all ωk are constants that satisfy
|ωk| ≤ π.

Here, the phases ψk will usually be independent random variables with uniform dis-
tribution on the interval [0, 2π) and the amplitudes Ak will usually be constants. Fur-
thermore, we will only consider periodic random multisines such that the period P is an
integer, i.e., such that all ωk can be written ωk = πpk for some pk ∈ {x ∈ Q | |x| ≤ 1}.

A linear system can be identified from one realization of a random multisine, but for
a nonlinear system it is important to use several realizations in order to get a model that is
not too adjusted to the signal shape of one realization only. Since a random multisine un-
der certain assumptions on ωk is periodic, the dependency between the signal components
does not decrease over time. Hence, the convergence result (2.6) will not hold in general.
This implies that for a nonlinear system, parameter estimates that give models that are
good approximations of the mean-square error optimal model cannot be obtained by col-
lecting many measurement from one single identification experiment. Instead, several
experiments have to be performed.

With data sets from NE experiments where different realizations of the input signal
have been used and N = MP measurements in each data set, with M ∈ Z+, a model
can be estimated by minimizing the cost function

VNE ,N (θ, ZNNE
) =

1
NE

NE∑
s=1

1
N

N−1∑
t=0

(ys(t)−G(q, θ)us(t))2 (2.8)



20 2 Preliminaries

with respect to the parameters θ. Here, us(t) and ys(t) are the input and output signals
from experiment s, respectively, and ZNNE

is the combined data set with measurements
from all experiments. Intuitively, this cost function can be viewed as an approximation of
the mean-square error E((y(t)−G(q, θ)u(t))2), just like the cost function VN in (2.5) can
be viewed as an approximation of the mean-square error. However, VNE ,N will typically
approach the mean-square error when the number of experiments NE tends to infinity
while VN approaches it when the number of measurements N in one experiment tends to
infinity according to (2.6).

With a periodic input, it is very natural to consider the modeling problem in the fre-
quency domain. Applying the Discrete Fourier Transform (DFT) to the input and output
signals gives the transforms

Us,N (n) =
N−1∑
t=0

us(t)e−i2πnt/N , (2.9a)

Ys,N (n) =
N−1∑
t=0

ys(t)e−i2πnt/N . (2.9b)

Let ŷs(t, θ) denote the output from the stable model G(q, θ) for the input us(t) and as-
sume that the input has been applied at t = −∞ such that all transients have disappeared
at t ≥ 0, i.e., that ŷs(t, θ) is P -periodic in the interval 0 ≤ t ≤ N − 1. Furthermore, let
Ŷs,N (n, θ) denote the DFT of ŷs(t, θ), i.e.,

Ŷs,N (n, θ) =
N−1∑
t=0

ŷs(t, θ)e−i2πnt/N .

The frequency response of the stable model G(z, θ) is obtained for z = eiω . In particular,
since v(k) , e−i2πnk/N is an N -periodic signal, it follows that

G(ei2πn/N , θ) =
∞∑
k=0

g(k, θ)e−i2πnk/N

=
N−1∑
t=0

( ∞∑
l=0

g(t+ lN, θ)

)
︸ ︷︷ ︸

,g̃N (t,θ)

e−i2πnt/N , G̃N (n, θ). (2.10)

Furthermore, since us(t) is a P -periodic signal and N = MP , with M ∈ Z+, us(t) is
also N -periodic. Hence,

ŷs(t, θ) = G(q, θ)us(t) =
N−1∑
k=0

g̃(k, θ)us(t− k)

and this implies that

Ŷs,N (n, θ) = G̃N (n, θ)Us,N (n) = G(ei2πn/N , θ)Us,N (n), (2.11)
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where we have used (2.10) in the last equality.
Using Parseval’s formula, the cost function can be rewritten as

VNE ,N (θ, ZNNE
) =

1
NE

NE∑
s=1

1
N

N−1∑
t=0

(ys(t)−G(q, θ)us(t)︸ ︷︷ ︸
=ŷs(t,θ)

)2

=
1
NE

NE∑
s=1

1
N2

N−1∑
n=0

∣∣∣Ys,N (n)− Ŷs,N (n, θ)
∣∣∣2

=
1
NE

NE∑
s=1

1
N2

N−1∑
n=0

∣∣∣Ys,N (n)−G(ei2πn/N , θ)Us,N (n)
∣∣∣2 .

From this expression, it is obvious that two linear models will give the same value of the
cost function if their frequency responses are equal at the frequencies where Us,N (n) is
nonzero. Assume that the input is a random multisine such that Us,N (n) is nonzero at the
frequencies where n ∈ Ω ⊂ {0, 1, . . . , N − 1} and zero otherwise and consider a non-
parametric frequency response model Gnp(n) = G(ei2πn/N , θ). In this case, minimizing
VNE ,N is equivalent to solving a least squares problem for each n ∈ Ω. The resulting
nonparametric estimate can be written

Ĝnp(n) =
∑NE

s=1 Ys,N (n)Us,N (n)∑NE

s=1 |Us,N (n)|2
, n ∈ Ω. (2.12)

In particular, if |Us,N (n)| are equal for all s, (2.12) can be simplified to

Ĝnp(n) =
1
NE

NE∑
s=1

Ys,N (n)
Us,N (n)

, n ∈ Ω. (2.13)

For example, this expression can be used when the input is a random multisine where
all amplitudes Ak are constants and all frequencies ωk are separate. More results about
random multisines and frequency domain identification can be found in, for example,
Pintelon and Schoukens (2001).

2.4 Separable Processes

Some of the results in this thesis concern processes that are separable in Nuttall’s sense
(Nuttall, 1958a), i.e., processes which satisfy the condition described in the following
definition.

Definition 2.6 (Separability). A stationary stochastic process u(t) with E(u(t)) = 0 is
separable (in Nuttall’s sense) if

E(u(t− τ)|u(t)) = a(τ)u(t). (2.14)

for some function a(τ).
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In this section, some of the main results for separable processes will be presented.
These results can all be found in Nuttall (1958a,b) but they are here rewritten with the
notation used in this thesis. Note that the technical report Nuttall (1958a) is an almost
identical copy of the thesis Nuttall (1958b). Here, the first of these works will be used as
the main reference. Furthermore, note that some of the proofs in this section are slightly
different from the corresponding ones in Nuttall (1958a).

It is easy to show that the function a(τ) in (2.14) can be expressed using the covariance
function of u(t).

Lemma 2.2
Consider a separable stationary stochastic process u(t) with E(u(t)) = 0. The function
a(τ) from (2.14) can then be written

a(τ) =
Ru(τ)
Ru(0)

. (2.15)

Proof: The result follows immediately from the fact that

Ru(τ) = E(u(t)u(t− τ)) = E
(
u(t)E

(
u(t− τ)|u(t)

))
= a(τ)E(u(t)2) = a(τ)Ru(0)

if u(t) is separable. Here, we have used the facts that

E(Y ) = E(E(Y |X)), (2.16a)
E(g(X)Y |X) = g(X)E(Y |X) (2.16b)

for two random variables X and Y (see, for example, Gut, 1995, Chap. 2).

Separability can be expressed also using characteristic functions. Hence, the follow-
ing definition is useful.

Definition 2.7. Consider a stationary stochastic process u(t) with E(u(t)) = 0 and with
first and second order characteristic functions

fu,1(ξ1) = E(eiξ1u(t)), (2.17a)

fu,2(ξ1, ξ2, τ) = E(eiξ1u(t)+iξ2u(t−τ)), (2.17b)

respectively. Then the G-function Gu(ξ1, τ) of this process is defined as

Gu(ξ1, τ) =
∂fu,2(ξ1, ξ2, τ)

∂ξ2

∣∣∣∣
ξ2=0

= E(iu(t− τ)eiξ1u(t)). (2.18)

In Nuttall (1958a), a number of separable signals are listed, e.g., Gaussian processes,
random binary processes and several types of modulated processes. For example, a single
sinusoid with random phase is separable according to the following lemma.

Lemma 2.3
A random sine process

u(t) = A cos(ωt+ ψ), (2.19)
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where ψ is a random variable with uniform distribution on the interval [0, 2π) and where
A and ω are constants, is a separable process. Furthermore, this process has the proper-
ties

Ru(τ) =
A2

2
cos(ωτ), (2.20a)

fu,1(ξ1) = J0(Aξ1), (2.20b)

where J0 is the zeroth order Bessel function.

Proof: Using basic properties of trigonometric functions, we have

u(t− τ) = A cos(ωt− ωτ + ψ) = A cos(ωt+ ψ) cos(ωτ) +A sin(ωt+ ψ) sin(ωτ)
= u(t) cos(ωτ) +A sin(ωt+ ψ) sin(ωτ).

Since A sin(ωt + ψ) equals
√
A2 − u(t)2 or −

√
A2 − u(t)2 with equal probabilities if

u(t) is given,
E(A sin(ωt+ ψ)|u(t)) = 0.

Hence, it follows that
E(u(t− τ)|u(t)) = cos(ωτ)u(t),

i.e., u(t) is separable. Furthermore, Lemma 2.2 implies that the covariance function of
u(t) is

Ru(τ) = cos(ωτ)E(u(t)2) = A2 cos(ωτ)
1
2π

2π∫
0

cos(ωt+ ψ)2 dψ =
A2

2
cos(ωτ)

and the characteristic function is

fu,1(ξ1) = E(eiξ1u(t)) =
1
2π

2π∫
0

eiAξ1 cos(ωt+ψ) dψ =

=
{
ψ̃ = ωt+ ψ +

π

2

}
=

1
2π

ωt+5π/2∫
ωt+π/2

eiAξ1 cos(ψ̃−π/2) dψ̃ =

=
1
2π

2π∫
0

eiAξ1 sin(ψ̃) dψ̃ = J0(Aξ1).

In the previous lemma, separability of a single sinusoid with random phase was proved
directly using Definition 2.6. However, in many cases it is more convenient to show
separability of a signal using characteristic functions. This is possible according to the
following theorem.
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Theorem 2.1
Consider a stationary stochastic process u(t) with E(u(t)) = 0. This process is separable
if and only if

Gu(ξ1, τ) = a(τ)f ′u,1(ξ1), (2.21)

where a(τ) = Ru(τ)/Ru(0) and where fu,1 and Gu are defined in (2.17a) and (2.18),
respectively.

Proof: IF: Assume that (2.21) holds. Then, using the definition ofGu in (2.18), it follows
that

E
(
ieiξ1u(t)

(
E
(
u(t− τ)|u(t)

)
− a(τ)u(t)

))
= Gu(ξ1, τ)− a(τ)f ′u,1(ξ1) = 0.

From the uniqueness of Fourier transforms it thus follows that (2.14) holds. Hence, u(t)
is separable if (2.21) holds.
ONLY IF: Assume that u(t) is separable, i.e., that (2.14) holds. This implies that

Gu(ξ1, τ) = E(iu(t− τ)eiξ1u(t)) = E
(
ieiξ1u(t)E

(
u(t− τ)|u(t)

))
= a(τ)E(iu(t)eiξ1u(t)) = a(τ)f ′u,1(ξ1),

where we have used (2.14) in the second equality. Hence, (2.21) holds if u(t) is separable.

In the next theorem from Nuttall (1958a), it is shown that the sum of Q independent
separable processes is separable if the characteristic functions satisfy a certain condition.

Theorem 2.2
Consider Q independent and separable stationary stochastic processes uk(t) with

E(uk(t)) = 0

for k = 1, . . . , Q and let

u(t) =
Q∑
k=1

uk(t). (2.22)

Assume that the characteristic functions satisfy

fuk,1(ξ1)
1/σ2

k = ful,1(ξ1)
1/σ2

l , ∀k, l ∈ {1, 2, . . . , Q}, (2.23)

where σ2
m = Rum

(0). Then u(t) is separable.

Proof: Since the signals uk(t) are independent, we have

fu,1(ξ1) =
Q∏
k=1

fuk,1(ξ1) = fu1,1(ξ1)
PQ

k=1 σ
2
k/σ

2
1 , (2.24)

fu,2(ξ1, ξ2, τ) =
Q∏
k=1

fuk,2(ξ1, ξ2, τ), (2.25)

Ru(τ) =
Q∑
k=1

Ruk
(τ), (2.26)
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where the last equality in (2.24) follows from (2.23). Furthermore, (2.25) implies that

Gu(ξ1, τ) =
∂fu,2(ξ1, ξ2, τ)

∂ξ2

∣∣∣∣
ξ2=0

=
Q∑
k=1

Guk
(ξ1, τ)

Q∏
l=1,l 6=k

ful,2(ξ1, 0, τ)

=
Q∑
k=1

Guk
(ξ1, τ)

Q∏
l=1,l 6=k

ful,1(ξ1), (2.27)

where we have used that ful,2(ξ1, 0, τ) = ful,1(ξ1) in the last equality. From (2.23) it
follows that

f ′uk,1
(ξ1) =

σ2
k

σ2
1

fu1,1(ξ1)
σ2

k/σ
2
1−1f ′u1,1(ξ1). (2.28)

Since all uk(t) are separable, (2.21) holds and by inserting (2.28) we obtain

Guk
(ξ1, τ) =

Ruk
(τ)

σ2
1

fu1,1(ξ1)
σ2

k/σ
2
1−1f ′u1,1(ξ1). (2.29)

Inserting (2.23) and (2.29) in (2.27) gives

Gu(ξ1, τ) =
Q∑
k=1

Ruk
(τ)

σ2
1

fu1,1(ξ1)
PQ

l=1 σ
2
l /σ

2
1−1f ′u1,1(ξ1)

=
d

dξ1

(
fu1,1(ξ1)

PQ
l=1 σ

2
l /σ

2
1

) ∑Q
k=1Ruk

(τ)∑Q
l=1 σ

2
l

= f ′u,1(ξ1)
Ru(τ)
Ru(0)

,

where we have used (2.24) and (2.26) in the last equality. Hence, Theorem 2.1 gives that
u(t) is separable.

In Nuttall (1958a), two different results for sums of separable processes are presented.
Both these results concern sufficient conditions for the separability of the sum of a finite
number of independent separable processes. The first of these conditions is that the in-
dividual correlation functions should be equal, while the second is the condition on the
characteristic functions restated here in Theorem 2.2. Furthermore, it is shown in Nuttall
(1958a) that the product of two independent separable processes with zero mean always
will be separable.

The reason why separable processes are useful for identification experiments is that
they are the most general class of input signals for which a certain invariance property
holds.

Definition 2.8. Consider a stationary stochastic process u(t) with E(u(t)) = 0 and
Ru(τ) <∞ for all τ ∈ Z and a static nonlinearity y(t) = f(u(t)) such that E(y(t)) = 0
and Ryu(τ) <∞ for all τ ∈ Z. The invariance property holds if

Ryu(τ) = b0Ru(τ), ∀τ ∈ Z, (2.30)

for some constant b0.
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It is easy to show that the separability of u(t) is a sufficient condition for the invariance
property (2.30) to hold. Consider a separable process u(t) with zero mean and a static
nonlinearity such that y(t) has zero mean too. Then it follows that

Ryu(τ) = E
(
f(u(t))u(t− τ)

)
= E

(
E
(
f(u(t))u(t− τ)|u(t)

))
= E

(
f(u(t))E

(
u(t− τ)|u(t)

))
= a(τ)E

(
f(u(t))u(t)

)
= b0Ru(τ), (2.31)

where b0 = E
(
f(u(t))u(t)

)
/Ru(0) and where (2.15) has been used in the last equality.

In a certain sense, separability is also a necessary condition for (2.30) to hold. Con-
sider an arbitrary stationary stochastic process u(t) with zero mean and let Du be a class
of Lebesgue integrable functions such that

Du = {f : R → R | E
(
f(u(t))

)
= 0,E

(
f(u(t))2

)
<∞,

Ryu(τ) = E
(
f(u(t))u(t− τ)

)
exists ∀τ ∈ Z}. (2.32)

The following result shows a certain equivalence between the invariance property and
separability of the input signal. In Section 6.3.2, this result will be extended to a more
general type of nonlinear systems and thus the proof of Theorem 2.3 is omitted here.

Theorem 2.3
Consider a stationary stochastic process u(t) with E(u(t)) = 0 and Ru(τ) < ∞ for
all τ ∈ Z. The invariance property (2.30) holds for all f ∈ Du if and only if u(t) is
separable.

Proof: See Nuttall (1958a).

For a separable process, it is easy to show that the mean-square error optimal LTI
model of a static nonlinearity is a constant. However, this important property will not be
described in this section but later in Chapter 6 when the LTI approximations based on
the mean-square error have been properly defined. Several other results about separable
processes are also presented in Nuttall (1958a), but since these results are not used in this
thesis, they are not restated here.

After this discussion about the properties of LTI systems and some nonlinear systems
and the brief introductions to the prediction-error method, random multisines and separa-
ble processes, we are now ready to move on to the main part of this thesis. First, however,
we will in the next chapter give an overview of some of the linearization approaches that
can be found in the literature.



3
Methods for Linearization of

Nonlinear Systems

Since there are many different circumstances when LTI models of nonlinear systems are
useful, various linearization approaches have been proposed. These approaches differ in
many aspects, for example in the types of signals they are defined for, in their optimality
properties and in which mathematical tools that are used. In this chapter, a brief overview
of some of the linearization frameworks that can be found in the literature will be given.
First, we will in the next section consider linearizations in a deterministic framework
while we in the second part of this chapter will discuss LTI approximations for stochastic
signals.

3.1 Deterministic Approaches

The most straightforward linearization approach is perhaps to use some kind of local
linearization based on a truncated Taylor series expansion. For example, if the true system
is an NFIR system (see Section 2.2)

y(t) = f((u(t− k))Mk=0),

it can for small inputs be approximated with an LTI system

G0(z) =
M∑
k=0

g0(k)z−k,

where g0(k) = f ′u(t−k)(0). Of course, this approximation is only well-defined if f is
differentiable at 0. Similar LTI approximations can be calculated also for nonlinear state-
space systems (see, for example, Ljung and Glad, 1994, pp. 347-349).

The idea of deriving an LTI approximation by differentiation of a nonlinear system is
used also in Mäkilä and Partington (2003). There, LTI approximations of some classes

27
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of nonlinear systems with l∞ input and output signals are studied. It is shown that the
Fréchet derivative of a Wiener, an NFIR or a bi-gain system is an optimal approximation
in the sense that the induced gain of the model error is minimized. Furthermore, some
relations to controller design and identification are discussed. Induced gains of linear
and nonlinear systems for lp signals are studied also in Partington and Mäkilä (2002). In
particular, this paper contains some results about the accuracy of LTI approximations of
piecewise linear systems.

LTI models that are optimal in the sense that they minimize an average squared error
condition are characterized in Mäkilä (2004a) using a deterministic quasi-stationary signal
framework. Actually, LTI approximations can be viewed as a special case of a general
approximation problem for nonlinear systems studied in Mäkilä (2003a,b). These papers
concern also approximations in an absolute error framework. In Mäkilä and Partington
(2004), the least-squares LTI approximation problem from Mäkilä (2004a) is studied for
a more general class of input signals. Furthermore, this paper presents conditions that
guarantee quasi-stationarity of the output signal for some classes of nonlinear systems.
Some of these results have also been published in the thesis Mäkilä (2004b).

LTI approximations of NFIR systems are considered in Mäkilä (2005). There, the
concept of nearly linear systems is introduced. A nonlinear system is nearly linear if
there exists an LTI system such that the l∞ norm of the difference between the outputs
of the nonlinear and the linear systems is bounded for all input signals. An LTI system
with this property is called an LTI companion of the nonlinear system. For a nearly
linear NFIR system, it turns out that a controller stabilizes the system if and only if it
stabilizes its LTI companion. The importance of a careful input design for least-squares
LTI approximations of NFIR systems is also discussed in Mäkilä (2005).

A different approach is used in Horowitz (1993). There, the LTI equivalent P (s) of
a continuous-time nonlinear system that has the output y(t) for a particular input u(t) is
defined as the ratio

P (s) =
Y (s)
U(s)

,

where Y (s) and U(s) are the Laplace transforms of the output and input signal, respec-
tively. Furthermore, it is shown that a set of such LTI equivalents can be used for controller
design.

LTI approximations for a class of deterministic signals are also discussed in Sastry
(1999). There, the existence of an optimal LTI model is mentioned and it is related to
the theory of describing functions. A describing function is a parameterized linear ap-
proximation of a nonlinearity derived for a sinusoidal input signal. Describing functions
are often used for analysis of closed-loop nonlinear systems (see, for example, Ather-
ton, 1982; Sastry, 1999). LTI approximations for deterministic periodic signals are also
investigated in Evans and Rees (2000a,b).

The concept of LTI-SOEs used in this thesis is, for example, discussed in Ljung
(2001). However, a deterministic quasi-stationary framework is used in this paper while
we here will study LTI-SOEs for stochastic signals. Despite this, the fundamental ap-
proximation results in Ljung (2001) are completely analogous to the ones that will be
presented in Chapter 4.
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3.2 Stochastic Approaches

Since the work of Wiener (1949), there has been a great activity in estimation and filtering
using random signals. We will here present some of the existing approaches to lineariza-
tion using stochastic signals and we begin with linearizations of static nonlinearities.

3.2.1 Results for Static Nonlinearities

Many problems concerning the interplay between stochastic signals and nonlinear sys-
tems are difficult to solve. However, some nonlinear systems can be written as combina-
tions of LTI subsystems and static nonlinear functions. For example, LTI systems with
input and/or output saturation turn out to be very common in applications.

It is usually easier to analyze a static nonlinearity than a dynamic one. Hence, it is no
surprise that there has been a wide interest in understanding how a static nonlinearity can
be linearized for a stochastic input signal. Many results in this area are directly or indi-
rectly related to Bussgang’s classic theorem about Gaussian signals (see Bussgang (1952)
for the original report and, for example, Papoulis (1984) for a more recent reference).

In Bussgang (1952), it is shown that the cross-covariance function between the output
and the input of a static nonlinear function is a scaled version of the input covariance
function if the input is Gaussian, i.e., that the invariance property in Definition 2.8 holds
in this case. This result is summarized in the following theorem.

Theorem 3.1 (Bussgang)
Let y(t) be the output from a differentiable static nonlinearity f with a Gaussian input
u(t), i.e., y(t) = f(u(t)). Assume that the expectations E(y(t)) = E(u(t)) = 0, that the
cross-covariance function Ryu(τ) and the covariance function Ru(τ) are well-defined
for all τ ∈ Z and that E(f ′(u(t))) exists. Then it holds that

Ryu(τ) = b0Ru(τ),

where b0 = E(f ′(u(t))).

A direct implication of this result is that the mean-square error optimal LTI approxi-
mation of a static nonlinearity always will be a constant b0 = E(f ′(u(t))) when the input
to the nonlinearity is Gaussian (cf. Section 6.1). It will be shown later in this thesis that
this is not always true in the non-Gaussian case (see, for example, Example 4.2). The
constant b0 is called equivalent gain in Booton (1954) an can be viewed as a describing
function for a random input signal. Just like ordinary describing functions, it can be used
to analyze nonlinear closed-loop systems (Atherton, 1982, Chap. 8). The relation be-
tween Bussgang’s theorem and some other results about Gaussian processes is discussed
in Gorman and Zaborszky (1968).

Furthermore, Bussgang’s theorem has been generalized to other classes of signals
than Gaussian in Barrett and Lampard (1955), Brown (1957) and Nuttall (1958a). Nut-
tall’s generalization is to the class of separable processes defined in Section 2.4. This
class of signals is especially interesting since it contains the other two, and since it gives
a useful necessary and sufficient condition on the input signal for the invariance property
in Definition 2.8 to hold for any static nonlinearity in a wide class of functions (cf. The-
orem 2.3). As was mentioned in Section 2.4, a number of separable signals are listed
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in Nuttall (1958a), e.g., Gaussian processes, random binary processes and several types of
modulated processes. In addition, it is shown in McGraw and Wagner (1968) that signals
with elliptically symmetric distributions are separable and they have also characterized
these signals further.

A result related to separable processes can be found in Balakrishnan (1960). There, it
is shown that processes for which conditional expectations like E(u(t− σ)|u(t)) are of a
specified form have characteristic functions that satisfy certain equations.

3.2.2 Results for Hammerstein and Wiener Systems

Separable processes in general, and Gaussian processes in particular, have turned out to
be very useful for system identification of Wiener-Hammerstein systems (cf. Section 2.2).
The reason for this is that the use of a separable input signal makes it possible to estimate
the linear part of a Hammerstein system without compensating for the nonlinearity at
the input. The corresponding result holds also for Wiener-Hammerstein systems with
Gaussian inputs. Some results about identification of Wiener, Hammerstein or Wiener-
Hammerstein systems using Gaussian signals can, for example, be found in Billings and
Fakhouri (1978, 1982), Korenberg (1985), Hunter and Korenberg (1986) and Bendat
(1998). Gaussian signals are not the only signals that have been studied in this context.
For example, it is also possible to estimate the linear and nonlinear parts of a Wiener or
Hammerstein system separately when the input is sinusoidal (Bai, 2003a,b). The case of
a Hammerstein system with a pseudo-random binary input signal is studied in Bai (2004).

In this thesis, we will discuss linearization of Hammerstein systems in some detail
(see Chapter 6). This system structure is common in many real-life applications and it is
thus natural that identification of Hammerstein systems has been an active research field
for quite some time. A brief overview of some of the existing methods can be found in
Bai and Li (2004).

One popular method for identification of Hammerstein systems was originally pro-
posed in Narendra and Gallman (1966) and has been studied in many papers (see, for
example, Stoica, 1981; Bai and Li, 2004). In this method, a Hammerstein model with
independent parameterizations of the linear and the nonlinear submodels is estimated by
minimizing a quadratic cost function iteratively starting from an initial estimate, or guess,
of the parameter values. In each step, the cost function is minimized with respect only
to one of its arguments while using the previous value of the other one. Often, an LTI
approximation of the system is first estimated without considering the nonlinearity at the
input and the parameters from this approximate model are used as parameters of the lin-
ear submodel when the first estimate of the nonlinearity is computed in the next step.
For example, the initial LTI model can be obtained by estimating an OE model using the
prediction-error method (see Section 2.3.1).

The iterative approach guarantees that the cost function will be monotonically de-
creasing over the iterations. Furthermore, the convergence of the parameter estimates to
the true parameter values can be shown in some special cases (Bai and Li, 2004). How-
ever, there are no such convergence results available for the general case. Hence, it is
important that the initial LTI approximation is as good as possible in the sense that it
resembles the true LTI subsystem as well as possible.

For a separable input signal, the iterative approach can be motivated by the fact that the
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invariance property holds, since this property implies that the LTI model that minimizes
the mean-square error E((y(t)−G(q)u(t))2) will be equal to a scaled version of the LTI
part of the system.

For nonseparable input signals, the estimation of the initial LTI model requires more
attention. Some results concerning this problem for Wiener and Hammerstein systems
with random multisine inputs can be found in Crama and Schoukens (2001, 2004). The
approach has also been generalized to Hammerstein-Wiener and Wiener-Hammerstein
systems in Crama and Schoukens (2004) and Crama and Schoukens (2005), respectively.
All these papers concern random multisine inputs and use a nonparametric frequency
response function estimate as the very first LTI model estimate. Some related material
can also be found in Vandersteen et al. (1997) and Vandersteen and Schoukens (1999).

3.2.3 Results for General Nonlinear Systems

Bussgang’s theorem has been generalized to functions of several variables (Atalik and
Utku, 1976; Scarano et al., 1993; Lutes and Sarkani, 1997, Chap. 9). This generaliza-
tion can be used to characterize optimal linear approximations of NFIR systems, as will
be shown later in Chapter 7. However, the generalized version of Bussgang’s theorem
has been used mainly for linear approximations of continuous-time nonlinear state-space
systems in the field of stochastic mechanical vibrations. This linearization approach is
there known under names such as equivalent linearization, statistical linearization and
stochastic linearization and it can, for example, be used to compute an approximation of
the variance of the output from a nonlinear system.

LTI approximations of nonlinear systems for stochastic signals are often studied in a
mean-square error framework. In this case, the optimal LTI model of a nonlinear system
with input u(t) and output y(t) can be defined as the stable model G0(q) that minimizes
the mean-square error E((y(t)−G(q)u(t))2). It is a well-known result that this optimal
approximation can be written

G0(z) =
Φyu(z)
Φu(z)

and it is sometimes called the equivalent linear model (see, for example, Gardner, 1986,
p. 382). The modelG0(z) can also be called the noncausal Wiener filter, since it in general
will be a stable but noncausal LTI system. In this thesis, we will also call it the noncausal
LTI-SOE (cf. Chapter 5).

If the LTI approximation is assumed to be causal, it will in general not be equal to the
ratio between Φyu(z) and Φu(z). Instead, it can be derived using techniques for causal
Wiener filtering (see, for example, Kailath et al., 2000, Chap. 7). The mean-square error
optimal stable and causal LTI approximation of a nonlinear system has been discussed in
Schetzen (1980, p. 330) and is also the main topic of this thesis.

Optimal LTI approximations are also discussed in Pintelon and Schoukens (2001).
There, the term related dynamic system is used for the mean-square error optimal LTI
model and the part of the output signal that this model cannot explain is viewed as a non-
linear distortion. This name is natural since the effects of unmodeled nonlinearities on
nonparametric frequency response estimates can be similar to the effects of measurement
noise. For some special classes of input signals, including random multisines, a num-
ber of interesting properties of related linear systems can be derived. For example, the
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asymptotic behavior of the related dynamic system when the number of excited frequen-
cies for a random multisine input signal tends to infinity has been studied. It turns out that
such a signal in many ways is similar to a Gaussian signal when the number of frequency
components is large.

Fundamental results about, for example, related dynamic systems, nonparametric fre-
quency response estimates and random multisines can be found in Schoukens et al. (1998),
Schoukens et al. (2001), Pintelon et al. (2001), Schoukens et al. (2002), Pintelon and
Schoukens (2002), Pintelon et al. (2003) and Schoukens et al. (2005a). These results have
been applied to various identification problems. In Schoukens et al. (2004a), the risk for
instability in nonlinear closed-loop systems is investigated, while closed-loop identifica-
tion is discussed in Schoukens et al. (2005b). An approach where approximate models
consisting of an LTI part, a Wiener part, a Hammerstein part and a Wiener-Hammerstein
part are estimated is described in Schoukens et al. (2003). Furthermore, some input de-
sign issues are discussed in Vanhoenacker et al. (2001) and Vanhoenacker and Schoukens
(2003). Related results can also be found in Dobrowiecki and Schoukens (2001), Vander-
steen et al. (2001) and Schoukens et al. (2004b).

In this chapter, an overview of some existing linearization approaches has been given.
These approaches deal either with deterministic or stochastic signals and have rather dif-
ferent properties. In this thesis, we will consider only LTI approximations for stochastic
signals and these approximations will be described in the next chapter.



Part I

LTI-SOEs
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4
The Notion of LTI Second Order

Equivalents

The previous chapter contained an overview of the various linearization frameworks that
can be found in the literature. All these frameworks have their benefits and drawbacks
depending on which type of linearization is desired. In this thesis, the main objective is
to understand the behavior of the prediction-error method when the measured input and
output signals come from a nonlinear system.

Hence, with the discussion from Section 2.3 about the asymptotic properties of the
prediction-error method in mind, it is here natural to study linear approximations of non-
linear systems that are optimal in the mean-square error sense. Such approximations will
be called LTI Second Order Equivalents (LTI-SOEs) of the nonlinear systems. This chap-
ter contains both detailed derivations of two types of LTI-SOEs and some interpretations
of these approximations. First, some restrictions on the input and output signals will be
imposed in order to make the LTI-SOEs well-defined.

4.1 Assumptions on the Input and Output Signals

Since the class of nonlinear systems literally contains all kinds of systems, it is too general
to be studied as a whole. In many cases, explicit restrictions on the considered types of
nonlinear systems are introduced in order to enable further analyses of the properties of
these systems. Examples of explicit restrictions are that the nonlinear systems should
have finite gain, finite memory or some kind of stability property.

Also in this thesis, the class of nonlinear systems has to be restricted. However, we
will not impose any explicit restrictions but instead assume that the input and output
signals of the nonlinear systems have certain properties. These signal assumptions are
listed here and impose implicit restrictions on the class of nonlinear systems that will be
studied in the sequel.
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Assumption A1. Assume that

(i) The input u(t) is a real-valued stationary stochastic process with

E(u(t)) = 0.

(ii) There exist K > 0 and α, 0 < α < 1 such that the second order moment Ru(τ) =
E(u(t)u(t− τ)), satisfies

|Ru(τ)| < Kα|τ |, ∀τ ∈ Z.

(iii) The z-spectrum Φu(z) (i.e., the z-transform ofRu(τ)) has a unique canonical spec-
tral factorization

Φu(z) = L(z)ruL(z−1), (4.1)

where L(z) and 1/L(z) are causal transfer functions that are analytic in the set
{z ∈ C | |z| ≥ 1}, L(∞) , lim|z|→∞ L(z) = 1 and ru is a positive constant.

Assumption A2. Assume that

(i) The output y(t) is a real-valued stationary stochastic process with

E(y(t)) = 0.

(ii) There exist K > 0 and α, 0 < α < 1 such that the second order moments
Ryu(τ) = E(y(t)u(t− τ)) and Ry(τ) = E(y(t)y(t− τ)) satisfy

|Ryu(τ)| < Kα|τ |, ∀τ ∈ Z,

|Ry(τ)| < Kα|τ |, ∀τ ∈ Z.

In this thesis, Assumptions A1 and A2 are the standard assumptions on the input
and output signals. However, some signals that do not satisfy these assumptions will be
discussed too. For these signals, the following assumptions will be used.

Assumption A3 (Periodic input). Assume that

(i) The input u(t) and output y(t) are real-valued stationary stochastic processes with

E(u(t)) = E(y(t)) = 0.

(ii) Assume that u(t) is P -periodic for some P ∈ Z+, i.e., that

u(t+ P ) = u(t), ∀t ∈ Z.

(iii) Assume that the second order moments Ru(τ) = E(u(t)u(t − τ)) and Ryu(τ) =
E(y(t)u(t− τ)) exist and are P -periodic.
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In Assumptions A1(i), A2(i) and A3(i) it is required that both the input and the output
signal have zero mean. In practice, this assumption does not exclude systems with input
and output signals that vary around a nonzero set point from being analyzed using the
results in this thesis. For such systems, it is always possible to define new input and output
signals that describe the deviations from the set point by subtracting the corresponding
means of the two signals. By their construction, these new signals will have zero mean
and they will hence satisfy the zero mean assumption in this thesis.

Assumptions A1(ii) and A2(ii) imply that the second order moments of u(t) and y(t)
are bounded and that the z-spectra Φu(z) and Φy(z) and the z-cross-spectrum Φyu(z)
converge absolutely and are analytic in the annulus {z ∈ C | α < |z| < 1

α}. It should
be mentioned that the canonical spectral factorization in Assumption A1(iii) exists for all
rational Φu(z) without zeros on the unit circle (Kailath et al., 2000, pp. 198-199). For
a rational Φu(z), the conditions on L(z) in Assumption A1(iii) mean just that it should
be a monic minimum phase filter. However, we will not restrict ourselves only to rational
spectra here. The following example shows that also a nonrational z-spectrum can have a
canonical spectral factorization.

Example 4.1
The z-spectrum

Φu(z) = e1/z+z

can be factorized as Φu(z) = L(z)ruL(z−1) with L(z) = e1/z and ru = 1. The causal
series expansions

L(z) = e1/z =
∞∑
k=0

1
k!
z−k,

L−1(z) = e−1/z =
∞∑
k=0

(−1)k

k!
z−k

converge absolutely and are analytic for {z ∈ C | |z| > 0} and L(∞) = 1. Hence,
L(z)ruL(z−1) is the unique canonical spectral factorization of the nonrational z-spectrum
Φu(z).

Assumptions A1 and A2 give sufficient conditions for the type of LTI-SOE that will
be defined in Section 4.2 to be well-defined. However, for the second type of LTI-SOE
that will be introduced in Section 4.4 we will need another assumption. Let ζ(t) =
(u(t) y(t− 1))T . Then it follows that

Rζ(τ) =
(

Ru(τ) Ruy(τ + 1)
Ryu(τ − 1) Ry(τ)

)
, (4.2a)

Φζ(z) =
(

Φu(z) zΦuy(z)
z−1Φyu(z) Φy(z)

)
. (4.2b)

Assumption A4. Assume that the signals u(t) and y(t) fulfill Assumptions A1 and A2
and that they also are such that Φζ(z) in (4.2b) has a unique canonical spectral factoriza-
tion

Φζ(z) = T (z)QζTT (z−1),
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Figure 4.1: The output error model.

where T (z) and T−1(z) are analytic in {z ∈ C | |z| ≥ 1}, T (∞) = I andQζ is a positive
definite matrix, i.e., Qζ � 0. (Here, T−1 denotes the matrix inverse.)

Also the existence of a canonical factorization of a matrix-valued z-spectrum is guar-
anteed if, for example, Φζ(z) is a rational matrix without unit circle zeros (Kailath et al.,
2000, p. 205). Assumptions A1, A2 and A4 will be used in the derivations of LTI-SOEs
in the next section and in Section 4.4 and will be the standard assumptions throughout
this thesis.

4.2 The Output Error Model Type

In Section 2.1 it was mentioned that a general LTI model can be written as

y(t) = G(q)u(t) +H(q)e(t).

In general, both G and H in this model can be transfer functions of any order. Here,
however, at first we will only consider models where H is fixed to 1, i.e., output error
models (Ljung, 1999). If G is causal this implies that only the input components

u(t), u(t− 1), u(t− 2), . . .

are used to predict the output y(t) according to (2.2). The structure of an output error
model is shown in Figure 4.1.

Using only output error models, the mean-square error optimal LTI approximation of a
certain nonlinear system is simply the stable and causal LTI model G0,OE that minimizes
E((y(t)−G(q)u(t))2). This model is often called the Wiener filter for prediction of y(t)
from (u(t−k))∞k=0 (Wiener, 1949). However, we will not use the term Wiener filter here,
but instead call G0,OE the Output Error LTI Second Order Equivalent (OE-LTI-SOE) of
the nonlinear system. Hence, we have the following definition.

Definition 4.1. Consider a nonlinear system with input u(t) and output y(t) such that
Assumptions A1 and A2 are fulfilled. The Output Error LTI Second Order Equivalent
(OE-LTI-SOE) of this system is the stable and causal LTI modelG0,OE (q) that minimizes
the mean-square error E((y(t)−G(q)u(t))2), i.e.,

G0,OE (q) = arg min
G∈G

E((y(t)−G(q)u(t))2),

where G denotes the set of all stable and causal LTI models.
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There are two main reasons for the change of name from the commonly used Wiener
filter to OE-LTI-SOE. First, we want to avoid any ambiguities. Many different Wiener
filters can be constructed for a given pair of input and output signals. Here, however, we
are only interested in the Wiener filter that predicts y(t) from (u(t− k))∞k=0.

The second reason for the change of name is that we want to emphasize that the OE-
LTI-SOE is an equivalent to the nonlinear system in the sense that it can explain the causal
part of the cross-covariance function Ryu(τ) between the input and the output of the sys-
tem. This observation, which is rather obvious for OE-LTI-SOEs (see Corollary 4.2),
becomes more interesting if we study LTI models that contain a general error description,
i.e., models with H 6= 1. LTI-SOEs for this case will be defined later in Section 4.4 and
will be called General Error LTI Second Order Equivalent (GE-LTI-SOE). In Section 4.4,
it will be shown that GE-LTI-SOEs can explain both the covariance function Ry(τ) and
the cross-covariance function Ryu(τ). Hence, such a model is an equivalent to the non-
linear system in the sense that it is impossible to distinguish it from the true system if only
second order properties of the input, output and model residuals are considered. This will
be discussed in more detail in Section 4.4 (see the comments to Corollary 4.4 on page 56).

It should be noted that we are not only interested in the filtering and prediction ca-
pabilities of the OE-LTI-SOE (and the GE-LTI-SOE), but also in the model itself. For
example, we are not only interested in how good an estimate of y(t) the model can pro-
duce, but also in issues like how the model order and model coefficients depend on the
nonlinear system and on the input signal.

It should immediately be pointed out that the OE-LTI-SOE of a nonlinear system
depends on which input signal is used. Hence, we can only talk about the OE-LTI-SOE
of a nonlinear system with respect to a particular input signal. The fact that the OE-
LTI-SOE is input-dependent is natural if we view it as an example of undermodeling.
Undermodeling occurs when a system is approximated by a model of lower complexity.
An often studied example of undermodeling is when an LTI system is approximated with
an LTI model of lower order than the true system. Actually, also in this case of linear
undermodeling the mean-square error optimal approximation is input-dependent (Ljung,
1999, Sec. 8.5).

Another property of OE-LTI-SOEs that should be pointed out, besides their input-
dependency, is that they are assumed to be initialized at t = −∞ such that all transients
have died out. In Definition 4.1 it is assumed that the complete infinite sequence

(u(t− k))∞k=0

of random variables is available for the computation of an estimate of y(t).
The following theorem is a direct consequence of classic Wiener filter theory, and the

proof of the theorem is almost identical to the derivation of the scalar Wiener filter in
Kailath et al. (2000, pp. 231-234). It is included here for the sake of completeness.

Theorem 4.1 (OE-LTI-SOEs)
Consider a nonlinear system with input u(t) and output y(t) such that Assumptions A1
and A2 are fulfilled. Then the OE-LTI-SOE G0,OE of this system is

G0,OE (z) =
1

ruL(z)

[
Φyu(z)
L(z−1)

]
causal

, (4.3)
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where [. . .]causal denotes taking the causal part (see Section 2.1), and where L(z) is the
canonical spectral factor of Φu(z) from (4.1).

Proof: The criterion E((y(t)−G(q)u(t))2) that G0,OE should minimize is equivalent to
the Wiener-Hopf condition

Ryu(τ)−
∞∑
k=0

g0,OE(k)Ru(τ − k) = 0, τ ≥ 0 (4.4)

or, alternatively, to
Φyu(z)−G0,OE (z)Φu(z) = KOE(z), (4.5)

where KOE(z) is a stable and strictly anticausal transfer function. The Wiener-Hopf
criterion follows from the fact that for the optimal model, the error

y(t)−G0,OE (q)u(t)

should be orthogonal to {u(t− k)}∞k=0 (using the inner-product 〈u, v〉 = E(uv)). Using
the spectral factorization according to (4.1) and multiplying by L−1(z−1) now gives

K̃OE(z) , KOE(z)L−1(z−1) = Φyu(z)L−1(z−1)−G0,OE (z)L(z)ru, (4.6)

where K̃OE(z) is a stable and strictly anticausal transfer function due to the fact that it is
a product of the stable and strictly anticausal transfer function KOE(z) and the stable and
anticausal transfer function L−1(z−1). For (4.6) to hold it is necessary that the second
right hand term, which is a stable and causal transfer function, is equal to the causal part
of the first, i.e.,

G0,OE (z)L(z)ru =
[

Φyu(z)
L(z−1)

]
causal

(4.7)

and (4.3) follows.

In general, the OE-LTI-SOE has to be calculated as in (4.3), which means that the
canonical spectral factor L(z) of the input z-spectrum has to be obtained. However, in
some cases this is not necessary and the OE-LTI-SOE can be calculated using a simplified
expression. This is shown in the following corollary.

Corollary 4.1
Consider a nonlinear system with input u(t) and output y(t) such that Assumptions A1
and A2 are fulfilled, and assume that the ratio Φyu(z)/Φu(z) defines a stable and causal
LTI system. Then

G0,OE (z) =
Φyu(z)
Φu(z)

. (4.8)

Proof: Assume that

C(z) =
Φyu(z)
Φu(z)

is a stable and causal transfer function. Then

Φyu(z) = C(z)Φu(z) = C(z)L(z)ruL(z−1)
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and (4.3) gives

G0,OE (z) =
1

ruL(z)

[
C(z)L(z)ruL(z−1)

L(z−1)

]
causal

= C(z),

since C(z)L(z)ru is a stable and causal transfer function.

The OE-LTI-SOE of a system will be called regular if (4.8) holds. Hence, we have
the following definition.

Definition 4.2. An OE-LTI-SOE G0,OE (z) is regular if it can be written

G0,OE (z) =
Φyu(z)
Φu(z)

. (4.9)

The Wiener-Hopf condition (4.4) implies that the model residuals for the OE-LTI-
SOE are uncorrelated with past and current inputs. This is stated more clearly in the
following corollary.

Corollary 4.2
Consider a nonlinear system with input u(t) and output y(t) such that Assumptions A1
and A2 are fulfilled. Let the residuals be defined by

η0(t) = y(t)−G0,OE (q)u(t). (4.10)

Then
Φη0u(z) = Φyu(z)−G0,OE (z)Φu(z) is strictly anticausal (4.11)

and

Rη0(0) = Ry(0)− 1
2π

π∫
−π

|G0,OE (eiω)|2Φu(eiω) dω. (4.12)

Proof: The result (4.11) follows directly from (4.5). Furthermore, we can write

Φη0(z) = Φy(z)− Φyu(z)G0,OE (z−1)−G0,OE (z)Φuy(z)

+G0,OE (z)Φu(z)G0,OE (z−1)

= Φy(z)− (Φyu(z)−G0,OE (z)Φu(z))G0,OE (z−1)

−G0,OE (z)
(
Φuy(z)− Φu(z)G0,OE (z−1)

)
−G0,OE (z)Φu(z)G0,OE (z−1).

Since G0,OE (z−1) is anticausal and since Φyu(z)−G0,OE (z)Φu(z) by (4.11) is strictly
anticausal, it follows that

π∫
−π

(
Φyu(eiω)−G0,OE (eiω)Φu(eiω)

)
G0,OE (e−iω) dω = 0

and that
π∫

−π

G0,OE (eiω)
(
Φuy(eiω)− Φu(eiω)G0,OE (e−iω)

)
dω = 0.
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Because

Rη0(0) =
1
2π

π∫
−π

Φη0(e
iω) dω

we get

Rη0(0) =
1
2π

π∫
−π

Φy(eiω) dω

︸ ︷︷ ︸
=Ry(0)

− 1
2π

π∫
−π

|G0,OE (eiω)|2Φu(eiω) dω.

Corollary 4.2 shows that the OE-LTI-SOE really is the best output error model of the
true system as the remaining residuals η0(t) are uncorrelated with past and present input
signal components.

An example of the OE-LTI-SOE of a simple nonlinear system can be found below.
Note that the OE-LTI-SOE is nonstatic in this example although the nonlinear system is
static.

Example 4.2

Consider the static nonlinear system

y(t) = u(t)3 (4.13)

with the input

u(t) = e(t) +
1
2
e(t− 1),

where e(t) is a sequence of independent random variables with uniform distribution over
the interval [−1, 1]. Hence, E(e(t)2) = 1

3 and E(e(t)4) = 1
5 and, using the fact that e(t)

and e(t− 1) are independent, we get

Ryu(0) = E(u(t)4) = E(e(t)4) +
6
4
E(e(t)2e(t− 1)2) +

1
16

E(e(t− 1)4)

=
1
5

+
6
4
· 1
9

+
1
16
· 1
5

=
91
240

,

Ryu(1) = E(u(t)3u(t− 1))

= E(
(
e(t)3 +

3
2
e(t)2e(t− 1) +

3
4
e(t)e(t− 1)2 +

1
8
e(t− 1)3

)
·

·
(
e(t− 1) +

1
2
e(t− 2)

)
) =

3
2
E(e(t)2e(t− 1)2) +

1
8
E(e(t− 1)4)

=
3
2
· 1
9

+
1
8
· 1
5

=
46
240

,
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Ryu(−1) = E(u(t)3u(t+ 1))

= E(
(
e(t)3 +

3
2
e(t)2e(t− 1) +

3
4
e(t)e(t− 1)2 +

1
8
e(t− 1)3

)
·

·
(
e(t+ 1) +

1
2
e(t)

)
) =

1
2
E(e(t)4) +

3
8
E(e(t)2e(t− 1)2)

=
1
2
· 1
5

+
3
8
· 1
9

=
34
240

,

Ryu(τ) = 0 ∀τ ∈ Z \ {−1, 0, 1}.

This gives

Φyu(z) =
1

240
(34z + 91 + 46z−1) =

1
240

(
1 +

1
2
z

)(
68 + 46z−1

)
.

Furthermore, Lemma 2.1 gives

Φu(z) =
(

1 +
1
2
z−1

)
· 1
3
·
(

1 +
1
2
z

)
=

1
12
(
2z + 5 + 2z−1

)
and hence

Φyu(z)
Φu(z)

=
1
40
· 34 + 23z−1

1 + 1
2z
−1

.

Since the ratio Φyu(z)/Φu(z) here is stable and causal, the OE-LTI-SOE of the system
(4.13) for this input is

G0,OE (z) =
Φyu(z)
Φu(z)

=
1
40
· 34 + 23z−1

1 + 1
2z
−1

=
0.85 + 0.575z−1

1 + 0.5z−1
.

Note that although the nonlinear system is static the OE-LTI-SOE is not.

The fact that a static nonlinear system can have a nonstatic OE-LTI-SOE is a first in-
dication that LTI approximations of nonlinear systems in a mean-square error framework
are not as straightforward as one might expect. More examples of this will be presented
later in this thesis. In Chapters 6 and 7 we will also discuss classes of input signals which
guarantee that the output of the OE-LTI-SOE will depend on the same number of input
signal components as the nonlinear system.

For most systems, the order of the OE-LTI-SOE is unknown. In practice, this implies
that several output error models have to be estimated and that a validation procedure
has to be used in order to find the best model. Naturally, there is no guarantee that the
correct order of the OE-LTI-SOE will be found. As a matter of fact, the OE-LTI-SOE
can sometimes be an infinite order model. Hence, it is interesting to characterize in what
sense an output error model with lower order than the OE-LTI-SOE approximates the
OE-LTI-SOE.

This is a relevant question also when the true system is an LTI system. In that case, it
can be shown that a low order model will approximate the true system mainly for frequen-
cies where Φu(eiω) is large (Ljung, 1999, p. 266). As a matter of fact, this result holds
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also when the true system is nonlinear. In this case, a low order output error model will
approximate the OE-LTI-SOE instead of the true system as well as possible for frequen-
cies where Φu(eiω) is large according to the following theorem. This theorem is basically
a special case of Theorem 4.1 in Ljung (2001) and the proof is very similar to the outlined
proof in Problem 8G.5 in Ljung (1999).

Theorem 4.2
Consider a nonlinear system with input u(t) and output y(t) such that Assumptions A1
and A2 are fulfilled. Let G0,OE be the corresponding OE-LTI-SOE according to Theo-
rem 4.1. Suppose that a parameterized stable and causal output error model G(q, θ) is
fitted to the signals u and y according to

θ̂ = arg min
θ

E(η(t, θ)2), (4.14)

where

η(t, θ) = y(t)−G(q, θ)u(t). (4.15)

Then it follows that

θ̂ = arg min
θ

π∫
−π

|G0,OE (eiω)−G(eiω, θ)|2Φu(eiω) dω. (4.16)

Proof: The z-spectrum of η(t, θ) is

Φη(z, θ) =
(
−G(z, θ) 1

)(Φu(z) Φuy(z)
Φyu(z) Φy(z)

)(
−G(z−1, θ)

1

)
= Φy(z)−G(z, θ)Φuy(z)−G(z−1, θ)Φyu(z) +G(z, θ)Φu(z)G(z−1, θ)

=
(
G(z, θ)− Φyu(z)

Φu(z)

)
Φu(z)

(
G(z−1, θ)− Φyu(z−1)

Φu(z−1)

)
− Φyu(z)Φyu(z−1)

Φu(z)
+ Φy(z).

Let

A0 =
1
2π

π∫
−π

(
Φy(eiω)− |Φyu(eiω)|2

Φu(eiω)

)
dω,

B0 =
1
2π

π∫
−π

|Φη0u(eiω)|2

Φu(eiω)
dω,

where η0 is the residual signal defined in (4.10). Parseval’s relation gives

E(η(t, θ)2) =
1
2π

π∫
−π

Φη(eiω, θ) dω
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=
1
2π

π∫
−π

∣∣∣∣Φyu(eiω)
Φu(eiω)

−G(eiω, θ)
∣∣∣∣2 Φu(eiω) dω +A0

=
1
2π

π∫
−π

∣∣∣∣G0,OE (eiω) +
Φη0u(e

iω)
Φu(eiω)

−G(eiω, θ)
∣∣∣∣2 Φu(eiω) dω +A0

=
1
2π

π∫
−π

∣∣G0,OE (eiω)−G(eiω, θ)
∣∣2 Φu(eiω) dω

+
1
2π

π∫
−π

Φη0u(e
iω)(G0,OE (e−iω)−G(e−iω, θ)) dω

+
1
2π

π∫
−π

Φη0u(e
−iω)(G0,OE (eiω)−G(eiω, θ)) dω +A0 +B0,

where we have used (4.11) in the third equality. Since Φη0u(z) by (4.11) is strictly anti-
causal and since G0,OE (z) and G(z, θ) both are causal, a term-by-term integration shows
that

1
2π

π∫
−π

Φη0u(e
iω)(G0,OE (e−iω)−G(e−iω, θ)) dω = 0,

1
2π

π∫
−π

Φη0u(e
−iω)(G0,OE (eiω)−G(eiω, θ)) dω = 0.

Thus

E(η(t, θ)2) =
1
2π

π∫
−π

∣∣G0,OE (eiω)−G(eiω, θ)
∣∣2 Φu(eiω) dω +A0 +B0

and (4.16) follows as A0 and B0 are independent of θ.

Theorem 4.2 shows that a low order output error model approximation of an OE-LTI-
SOE results in the same kind of approximation as a low order approximation of an LTI
system. More specifically, (4.16) shows that if Φu(eiω) is large in a certain frequency
region, the parameter vector θ will be chosen such that

|G0,OE (eiω)−G(eiω, θ)|

is small in that frequency region.
However, it is important to remember that there is a major difference between the

linear and the nonlinear cases. If the true system is an LTI system, it is always desirable
to approximate it as well as possible, at least for some frequencies. On the other hand, if
the system is nonlinear, there is no guarantee that the OE-LTI-SOE is a good model of the
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system for any other input signals than the one that it was defined for. Actually, it might
be a bad model also for this signal.

If, for example, a second order output error model is estimated and the input power is
focused in a certain frequency region, the model will in general approximate a different
OE-LTI-SOE than if, for example, a white input signal had been used. Actually, input
signals with equal Φu(z) but different distributions will in general give rise to different
OE-LTI-SOEs of a nonlinear system. A simple example of this will be shown later in
Section 5.4. These observations make it much harder to design the input such that it is
suitable for low order LTI approximations when the system is nonlinear.

4.3 The Output Error Model Type for Periodic Inputs

For nonlinear systems with periodic inputs satisfying Assumption A3, OE-LTI-SOEs can
be defined using the following alternative definition.

Definition 4.3. Consider a nonlinear system with a P -periodic stochastic input u(t)
and an output y(t) such that Assumption A3 is fulfilled. An OE-LTI-SOE of this sys-
tem is a stable and causal LTI model G0,OE (q) that minimizes the mean-square error
E((y(t)−G(q)u(t))2), i.e.,

G0,OE (q) = arg min
G∈G

E((y(t)−G(q)u(t))2),

where G denotes the set of all stable and causal LTI models. Let G0,OE denote the set of
all OE-LTI-SOEs for this particular pair of input and output signals, i.e.,

G0,OE = {G0,OE (q)}.

Note that G0,OE always will contain more than one model. For example, consider
a system with an OE-LTI-SOE G0,OE ,0(q) for a particular P -periodic input u(t). Then
the models G0,OE ,k(q) = (1 + q−kP )G0,OE ,0(q)/2, k ∈ N, are OE-LTI-SOEs too,
since they will produce the same stationary output as G0,OE ,0(q). Obviously, the impulse
responses from these OE-LTI-SOEs are quite different, but this does not matter here since
the transient response of a model is not considered in the definition of the OE-LTI-SOE.

The fact that the OE-LTI-SOE of a nonlinear system with a periodic input is not unique
does not imply that there are not any uniquely determined features in these models. These
unique features are most easy to describe in the frequency domain. Hence, we will now
rewrite the mean-square error in the frequency domain in a similar way as the cost func-
tion was rewritten in Section 2.3.2. Consider a positive integer M and a P -periodic input
signal and an output such that Assumption A3 is satisfied. Applying the Discrete Fourier
Transform (DFT) to the input and output signal gives

UN (n) =
N−1∑
t=0

u(t)e−i2πnt/N , (4.17a)

YN (n) =
N−1∑
t=0

y(t)e−i2πnt/N , (4.17b)
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where N = MP . Note that we here consider stochastic processes, i.e., UN (n) and
YN (n) are random variables. Let ŷG(t) denote the output from the stable model G(q)
for the input u(t) and assume that the input has been applied at t = −∞ such that all
transients are gone at t ≥ 0, i.e., that ŷG(t) is P -periodic in the interval 0 ≤ t ≤ N − 1.
Furthermore, let ŶG,N (n) denote the DFT of ŷG(t), i.e.,

ŶG,N (n) =
N−1∑
t=0

ŷG(t)e−i2πnt/N .

Using the same reasoning as in (2.10), we obtain that

G(ei2πn/N ) = G̃N (n), (4.18)

where G̃N (n) is the DFT of

g̃N (t) =
∞∑
l=0

g(t+ lN), 0 ≤ t ≤ N − 1.

Since u(t) is a P -periodic signal and N = MP , with M ∈ Z+, u(t) is also N -periodic.
Hence,

ŷG(t) = G(q)u(t) =
N−1∑
k=0

g̃(k)u(t− k)

and this implies that

ŶG,N (n) = G̃N (n)UN (n) = G(ei2πn/N )UN (n), (4.19)

where we have used (4.18) in the last equality.
Since both the input and the output are stationary stochastic processes, the mean-

square error can be rewritten as

E((y(t)−G(q)u(t))2) = E(
1
N

N−1∑
t=0

(y(t)−G(q)u(t))2)

= E(
1
N2

N−1∑
n=0

∣∣∣YN (n)− ŶG,N (n)
∣∣∣2)

= E(
1
N2

N−1∑
n=0

∣∣∣YN (n)−G(ei2πn/N )UN (n)
∣∣∣2), (4.20)

where we have used Parseval’s formula in the second equality and (4.19) in the third.
Using this expression for the mean-square error, it is easy to show how the frequency
response of the OE-LTI-SOE can be calculated.

Theorem 4.3 (OE-LTI-SOEs for Periodic Inputs)
Consider a nonlinear system with a P -periodic input u(t) and output y(t) such that As-
sumption A3 is fulfilled and a positive integer M . Then an OE-LTI-SOE G0,OE of this
system has a frequency response with the property

G0,OE (ei2πn/N ) =
E(YN (n)UN (n))

E(|UN (n)|2)
, n ∈ Ω, (4.21)
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where Ω ⊂ {0, 1, . . . , N − 1} , ZN is the set of integers for which E(|UN (n)|2) 6= 0
and where N = MP .

Proof: Schwarz inequality for random variables (Råde and Westergren, 1995, p. 407) can
be used to show that E(|UN (n)|2) = 0 implies that

E(YN (n)UN (n)) = E(UN (n)YN (n)) = 0.

Let Ωc denote the set of integers in ZN that does not belong to Ω, i.e., the complement of
Ω in ZN . The mean-square error (4.20) can be rewritten as

E((y(t)−G(q)u(t))2) = E(
1
N2

N−1∑
n=0

∣∣∣YN (n)−G(ei2πn/N )UN (n)
∣∣∣2)

= E(
1
N2

∑
n∈Ω

∣∣∣YN (n)−G(ei2πn/N )UN (n)
∣∣∣2) + E(

1
N2

∑
n∈Ωc

|YN (n)|2).

The condition that G0,OE should minimize this criterion is equivalent to that G0,OE

should satisfy the Wiener-Hopf condition

Ryu(τ)−
∞∑
k=0

g0,OE(k)Ru(τ − k) = 0, τ ≥ 0 (4.22)

or, alternatively, that

E(YN (n)UN (n))−G0,OE (ei2πn/N )E(|UN (n)|2) = 0, n ∈ Ω. (4.23)

This equivalence follows from a similar orthogonality argument as the Wiener-Hopf con-
dition followed from in the proof of Theorem 4.1. The expression for the OE-LTI-SOE
in (4.21) follows readily from (4.23).

Note that since Ryu(τ) and Ru(τ) are P -periodic, the Wiener-Hopf criterion (4.22)
is satisfied if

Ryu(τ)−
∞∑
k=0

g0,OE(k)Ru(τ − k) = 0, 0 ≤ τ ≤ P − 1.

Actually, the periodicity implies that (4.22) is equivalent to the criterion

Ryu(τ)−
∞∑
k=0

g0,OE(k)Ru(τ − k) = 0, ∀τ ∈ Z. (4.24)

Theorem 4.3 shows that the frequency response of an OE-LTI-SOE of a nonlinear
system with a periodic input signal is uniquely determined only at the excited frequencies
ωn = 2πn/N , n ∈ Ω. The frequency response of the OE-LTI-SOE is arbitrary at all
other frequencies. Of course, this is not a surprising observation but merely a version of
a classic result from system identification literature (Ljung, 1999, Chap. 8).
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However, Theorem 4.3 gives a theoretical motivation to why a nonparametric fre-
quency response estimate can be particularly useful when the input is periodic. For ex-
ample, if NE experiments have been performed with different realizations of the input
signal, the nonparametric frequency response estimate

Ĝnp(n) =
∑NE

s=1 Ys,N (n)Us,N (n)∑NE

s=1 |Us,N (n)|2
=

1
NE

∑NE

s=1 Ys,N (n)Us,N (n)
1
NE

∑NE

s=1 |Us,N (n)|2
(4.25)

from (2.12) can be calculated at the excited frequencies. If NE is large, this estimate
will typically be a good approximation of the expression for the OE-LTI-SOE in (4.21).
Hence, by calculating a nonparametric frequency response estimate based on data from
several experiments, approximations of the properties that are common to all OE-LTI-
SOEs of the system can be obtained.

In the previous section, it was shown that the model residuals for the OE-LTI-SOE are
uncorrelated with past and current inputs but in general not with future input components.
However, for a periodic input, the residuals will actually be uncorrelated with all input
components. This observation is summarized in the following corollary.

Corollary 4.3
Consider a nonlinear system with a P -periodic input u(t) and output y(t) such that As-
sumption A3 is fulfilled, an OE-LTI-SOE G0,OE of this system and a positive integer M .
Let the residuals be defined by

η0(t) = y(t)−G0,OE (q)u(t) (4.26)

Then

E(H0,N (n)UN (n)) = E(YN (n)UN (n))−G0,OE (ei2πn/N )E(|UN (n)|2)
= 0, ∀n ∈ Ω, (4.27a)

Rη0u(τ) = Ryu(τ)−G0,OE (q)Ru(τ) = 0, (4.27b)

where H0,N (n) is the DFT of η0, N = MP and Ω defines the excited frequencies. Fur-
thermore, the variance of the residuals can be calculated as

Rη0(0) = Ry(0)− 1
N2

N−1∑
n=0

|G0,OE (ei2πn/N )|2E(|UN (n)|2). (4.28)

Proof: The results (4.27a) and (4.27b) follow directly from (4.23) and (4.24), respec-
tively. The expression for the variance of η0 can be shown using (4.21). Using Parseval’s
identity, we get

Rη0(0) = E(
1
N

N−1∑
t=0

(y(t)−G0,OE (q)u(t))2)

= E(
1
N2

N−1∑
n=0

|YN (n)−G0,OE (ei2πn/N )UN (n)|2)
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= E(
1
N2

N−1∑
n=0

(|YN (n)|2 − YN (n)UN (n)G0,OE (ei2πn/N )

−G0,OE (ei2πn/N )UN (n)YN (n) + |G0,OE (ei2πn/N )UN (n)|2))

= E(
1
N2

N−1∑
n=0

|YN (n)|2)− 1
N2

N−1∑
n=0

|G0,OE (ei2πn/N )|2E(|UN (n)|2),

where we have used (4.21) and the fact that E(|UN (n)|2) = 0 implies that

E(YN (n)UN (n)) = E(UN (n)YN (n)) = 0

in the last equality. Since

Ry(0) = E(
1
N

N−1∑
t=0

y(t)2) = E(
1
N2

N−1∑
n=0

|YN (n)|2),

(4.28) has been shown.

Although the results (4.27) in the previous corollary are rather obvious, they show
an important difference between OE-LTI-SOEs for nonperiodic inputs and OE-LTI-SOEs
for periodic inputs. However, it will be shown later that many nonperiodic signals also
give OE-LTI-SOEs with residual signals that are uncorrelated with the input signal.

If a parametric model is calculated by minimizing the variance of the residuals, it
will approximate the frequency response of the OE-LTI-SOE according to the following
theorem.

Theorem 4.4
Consider a nonlinear system with a P -periodic input u(t) and output y(t) such that As-
sumption A3 is fulfilled, an OE-LTI-SOE G0,OE of this system and a positive integer M .
Suppose that a parameterized stable and causal output error model G(q, θ) is fitted to the
signals u and y according to

θ̂ = arg min
θ

E(η(t, θ)2), (4.29)

where

η(t, θ) = y(t)−G(q, θ)u(t) (4.30)

Then it follows that

θ̂ = arg min
θ

N−1∑
n=0

|G0,OE (ei2πn/N )−G(ei2πn/N , θ)|2E(|UN (n)|2). (4.31)
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Proof: The variance of the model residual can be written

E(η(t, θ)2) = E(
1
N

N−1∑
t=0

(y(t)−G(q, θ)u(t))2)

= E(
1
N2

N−1∑
n=0

|YN (n)−G(ei2πn/N , θ)UN (n)|2)

= E(
1
N2

N−1∑
n=0

|H0,N (n) + (G0,OE (ei2πn/N )−G(ei2πn/N , θ))UN (n)|2)

=
1
N2

N−1∑
n=0

E(|H0,N (n)|2)

+
1
N2

N−1∑
n=0

|G0,OE (ei2πn/N )−G(ei2πn/N , θ)|2E(|UN (n)|2),

where H0,N (n) is the DFT of η0(t) in (4.26) and where we have used (4.27a) in the last
equality. The result (4.31) follows since

1
N2

N−1∑
n=0

E(|H0,N (n)|2)

is independent of θ.

Theorem 4.4 shows that if a parametric model is calculated by minimizing the variance
of the model residuals, this model will try to approximate the frequency response of the
OE-LTI-SOE at the excited frequencies. Note that there is no guarantee that θ̂ will be
unique. If the order of the parametric model is higher than the lowest order OE-LTI-SOE,
there will be many optimal values for θ̂. However, in this sense, there is no difference
between the results for nonperiodic and periodic inputs. No matter the type of input, if the
order of the parametric model is higher than for the OE-LTI-SOE, the optimal parametric
model will not be unique.

More properties of OE-LTI-SOEs will be presented in Chapter 5. First, we will turn
our attention to LTI-SOEs that contain a noise model.

4.4 The General Error Model Type

Consider once again the general LTI model (2.1) from Section 2.1. For this model, the
optimal predictor can be written as in (2.2). Predictors with this structure are used in the
prediction-error method to compute parameter dependent predictions of the output signal
of the system (cf. Section 2.3). The predicted output is compared with the measured
output and the parameters are selected such that a quadratic criterion is minimized.

With this in mind, it is natural to define the best general LTI model in the mean-square
error sense as the LTI model whose predictor (2.2) minimizes the mean-square error. The
optimal LTI model according to this definition will here be called the General Error LTI
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Second Order Equivalent (GE-LTI-SOE). It is described more clearly in the following
definition.

Definition 4.4. Consider a nonlinear system with input u(t) and output y(t) such that
Assumptions A1, A2 and A4 are fulfilled. The General Error LTI Second Order Equiva-
lent (GE-LTI-SOE) of this system is the pair of transfer operators (G0,GE (q), H0,GE (q))
that are formed as

G0,GE (q) = (1− q−1W̃y(q))−1W̃u(q),

H0,GE (q) = (1− q−1W̃y(q))−1.

Here, W̃u(q) and W̃y(q) are the stable and causal LTI filters that minimize the mean-
square error E((y(t)−Wu(q)u(t)−Wy(q)y(t− 1))2), i.e.,

(W̃u(q), W̃y(q)) = arg min
Wu,Wy∈G

E((y(t)−Wu(q)u(t)−Wy(q)y(t− 1))2),

where G denotes the set of all stable and causal LTI models.

GE-LTI-SOEs are, just like OE-LTI-SOEs, input-dependent and hence it is only pos-
sible to talk about the GE-LTI-SOE of a nonlinear system with respect to a particular
input signal. Another similarity between GE-LTI-SOEs and OE-LTI-SOEs is that W̃u(q)
and W̃y(q) are assumed to be initialized at t = −∞.

In the next theorem, expressions for the GE-LTI-SOE similar to the ones in Ljung
(2001) will be derived. The only differences between these two versions of GE-LTI-SOE
expressions are that the GE-LTI-SOE here is allowed to contain a direct term from the
input and that it is expressed explicitly using components of the canonical spectral factor
T (z) from Assumption A4. The proof of the theorem is very similar to the proof of
Theorem 4.1 and hence to the proof of the scalar Wiener filter in Kailath et al. (2000).

Theorem 4.5 (GE-LTI-SOEs)
Consider a nonlinear system with input u(t) and output y(t) such that Assumptions A1,
A2 and A4 are fulfilled. Then the GE-LTI-SOE (G0,GE (z), H0,GE (z)) of this system is

G0,GE (z) =
zT21(z)
T11(z)

, (4.32a)

H0,GE (z) =
T11(z)T22(z)− T12(z)T21(z)

T11(z)
, (4.32b)

where T11(z), T12(z), T21(z) and T22(z) are elements of the canonical spectral factor of
the z-spectrum for ζ(t) = (u(t), y(t− 1))T , i.e.,

Φζ(z) =
(

Φu(z) zΦuy(z)
z−1Φyu(z) Φy(z)

)
= T (z)QζTT (z−1), (4.33a)

T (z) =
(
T11(z) T12(z)
T21(z) T22(z)

)
. (4.33b)
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Proof: The GE-LTI-SOE is defined by means of the Wiener filter (W̃u(q), W̃y(q)) that
predicts y(t) from (y(t− k))∞k=1 and (u(t− k))∞k=0 using

ŷ(t) = W̃u(q)u(t) + W̃y(q)y(t− 1). (4.34)

The filter components W̃u(q) and W̃y(q) are defined as the stable and causal LTI filters
that minimize E((y(t)−Wu(q)u(t)−Wy(q)y(t− 1))2) or, equivalently, the filters that
satisfy the Wiener-Hopf conditions

Ryu(τ)−
∞∑
k=0

w̃y(k)Ryu(τ − k − 1)−
∞∑
k=0

w̃u(k)Ru(τ − k) = 0, τ ≥ 0,

(4.35a)

Ry(τ + 1)−
∞∑
k=0

w̃y(k)Ry(τ − k)−
∞∑
k=0

w̃u(k)Ruy(τ + 1− k) = 0, τ ≥ 0.

(4.35b)

Using the z-transform, these conditions can be rewritten as

Φyu(z)− W̃y(z)z−1Φyu(z)− W̃u(z)Φu(z) = K1(z), (4.36a)

zΦy(z)− W̃y(z)Φy(z)− W̃u(z)zΦuy(z) = K2(z), (4.36b)

where K1(z) and K2(z) are stable and strictly anticausal transfer functions. Equations
(4.36) and (4.2b) give(

K1(z) K2(z)
)

=
(
Φyu(z) zΦy(z)

)︸ ︷︷ ︸
=(0 z)Φζ(z)

−
(
W̃u(z) W̃y(z)

)
Φζ(z). (4.37)

Using the spectral factorization of Φζ(z) and multiplying by T−T (z−1) now gives

K̃(z) ,
(
K1(z) K2(z)

)
T−T (z−1) =

(
0 z

)
T (z)Qζ −

(
W̃u(z) W̃y(z)

)
T (z)Qζ ,

(4.38)
where K̃(z) is a stable and strictly anticausal transfer matrix, due to the fact that it is a
product of the stable and strictly anticausal transfer matrix (K1(z) K2(z)) and the stable
and anticausal transfer matrix T−T (z−1). For (4.38) to hold it is necessary that the second
right hand term, which is a stable and causal transfer matrix, is equal to the causal part of
the first, i.e.,(

W̃u(z) W̃y(z)
)
T (z)Qζ =

[(
0 z

)
T (z)Qζ

]
causal

=
[(
zT21(z)Qζ11 + zT22(z)Qζ21 zT21(z)Qζ12 + zT22(z)Qζ22

)]
causal

=
(
zT21(z)Qζ11 + z(T22(z)− 1)Qζ21 zT21(z)Qζ12 + z(T22(z)− 1)Qζ22

)
=
((

0 z
)
T (z)−

(
0 z

))
Qζ ,

where the third equality follows since T21(z) is a stable and strictly causal transfer func-
tion while T22(z) is a monic stable and causal transfer function. This gives(
W̃u(z) W̃y(z)

)
=
((

0 z
)
T (z)−

(
0 z

))
T−1(z)

=
(

zT21(z)
T11(z)T22(z)−T12(z)T21(z)

z(1− T11(z)
T11(z)T22(z)−T12(z)T21(z)

)
)
.

(4.39)
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Let
ε0(t) = y(t)− ŷ(t) = (1− q−1W̃y(q))y(t)− W̃u(q)u(t) (4.40)

and rewrite this expression in analogy with (2.1) and (2.2) as

y(t) = (1− q−1W̃y(q))−1W̃u(q)u(t) + (1− q−1W̃y(q))−1ε0(t). (4.41)

With

G0,GE (q) = (1− q−1W̃y(q))−1W̃u(q),

H0,GE (q) = (1− q−1W̃y(q))−1,

(4.41) can be written as

y(t) = G0,GE (q)u(t) +H0,GE (q)ε0(t). (4.42)

Hence, using (4.39) the GE-LTI-SOE of the nonlinear system turns out to be

G0,GE (z) =
zT21(z)
T11(z)

,

H0,GE (z) =
T11(z)T22(z)− T12(z)T21(z)

T11(z)
.

From (4.32) we see that the calculation of a GE-LTI-SOE requires knowledge of the
canonical spectral factorization of the matrix Φζ(z). Although there exists a number of
methods for making this factorization, it is definitely more complicated to perform than
the canonical factorization of the input z-spectrum that is required for the calculation of
the OE-LTI-SOE in Theorem 4.1. In Section 5.6, we will describe some classes of input
signals that simplify the calculation of GE-LTI-SOEs significantly.

It should be noted that the factor 1
T11(z)

in (4.32) should as usual be interpreted as a
causal series expansion. This is always possible because T11(z) is analytic on and outside
the unit circle and T11(∞) = 1. Let H−1

0,GE denote the transfer function of the inverse
model of H0,GE , i.e.,

H−1
0,GE (z) =

1
H0,GE (z)

. (4.44)

By the construction of the GE-LTI-SOE,H−1
0,GE (z)G0,GE (z) andH−1

0,GE (z) will be stable
transfer functions. However, neither G0,GE (z) nor H0,GE (z) needs to be stable since
T11(z) might have zeros outside the unit circle. The only thing that is guaranteed is that
all unstable poles to G0,GE (z) are also poles to H0,GE (z) and vice versa.

In the Section 4.2, it was shown that the OE-LTI-SOE of a nonlinear system with a
nonperiodic input can explain all correlations between the output and past and present
input signal components (see Corollary 4.2). As the inclusion of a noise model in the
GE-LTI-SOE makes this model more flexible than the OE-LTI-SOE, one might expect
that the GE-LTI-SOE should be able to explain more correlations than the OE-LTI-SOE.
In the following theorem it will be shown that this is also the case.
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Corollary 4.4
Consider a nonlinear system with input u(t) and output y(t) such that Assumptions A1, A2
and A4 are fulfilled. Let (G0,GE ,H0,GE ) be the corresponding GE-LTI-SOE according
to Theorem 4.5 and let ε0(t) be defined by (4.40). Then it holds that

Φε0u(z) = H−1
0,GE (z)(Φyu(z)−G0,GE (z)Φu(z))

= zQζ21T11(z−1) + zQζ22T12(z−1), (4.45a)

Φε0y(z) = H−1
0,GE (z)(Φy(z)−G0,GE (z)Φuy(z))

= Qζ21T21(z−1) +Qζ22T22(z−1), (4.45b)

Φε0(z) = H−1
0,GE (z)(Φyε0(z)−G0,GE (z)Φuε0(z)) = Qζ22 , λ0. (4.45c)

Furthermore, an alternative way to describe the relations between the z-spectra of u, y
and ε0 by the GE-LTI-SOE is

Φyu(z) = G0,GE (z)Φu(z) +H0,GE (z)Φε0u(z), (4.46a)
Φyε0(z) = G0,GE (z)Φuε0(z) +H0,GE (z)λ0, (4.46b)

Φy(z) =
(
G0,GE (z) H0,GE (z)

)( Φu(z) Φuε0(z)
Φε0u(z) λ0

)(
G0,GE (z−1)
H0,GE (z−1)

)
. (4.46c)

Proof: Note that (4.40) can be written

ε0(t) = H−1
0,GE (q)(y(t)−G0,GE (q)u(t)). (4.47)

This gives

Φε0u(z) = H−1
0,GE (z)(Φyu(z)−G0,GE (z)Φu(z)),

Φε0y(z) = H−1
0,GE (z)(Φy(z)−G0,GE (z)Φuy(z)).

Together with (4.32) and (4.33a) these expressions can be rewritten as

(
z−1Φε0u(z) Φε0y(z)

)
= H−1

0,GE (z)
(
z−1Φyu(z)− z−1G0,GE (z)Φu(z) Φy(z)−G0,GE (z)Φuy(z)

)
=

T11(z)
T11(z)T22(z)− T12(z)T21(z)

(
−T21(z)
T11(z)

1
)

Φζ(z) =
(
0 1

)
T−1(z)Φζ(z)

=
(
0 1

)
QζT

T (z−1) =
(
Qζ21 Qζ22

)
TT (z−1)

=
(
Qζ21T11(z−1) +Qζ22T12(z−1) Qζ21T21(z−1) +Qζ22T22(z−1)

)
.

Hence, (4.45a) and (4.45b) have been shown. Furthermore, (4.47) gives, using (4.32),
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(4.45a) and (4.45b), the following expression

Φε0(z) = H−1
0,GE (z)(Φyε0(z)−G0,GE (z)Φuε0(z))

=
T11(z)

T11(z)T22(z)− T12(z)T21(z)
(Qζ21T21(z) +Qζ22T22(z)

− zT21(z)
T11(z)

z−1 (Qζ21T11(z) +Qζ22T12(z)))

=
T11(z)

T11(z)T22(z)− T12(z)T21(z)

(
Qζ22T22(z)−Qζ22

T12(z)T21(z)
T11(z)

)
= Qζ22

and (4.45c) follows.
The expressions (4.45a) and (4.45c) can be rewritten as (4.46a) and (4.46b), respec-

tively. Finally, (4.46c) follows if (4.46a) and (4.46b) are inserted in (4.45b).

The main result of Corollary 4.4 is that Φε0u(z) and Φε0y(z) are strictly anticausal
and anticausal, respectively, and that Φε0(z) is a constant. Hence, (4.45) illustrates that
the GE-LTI-SOE really is the best possible LTI model of the nonlinear system as the
remaining residuals ε0(t) are uncorrelated with past outputs, past and present inputs and
with residuals at all other time instants.

In addition, Corollary 4.4 explains why the name LTI Second Order Equivalent is
natural. The alternative version of (4.45) in (4.46) emphasizes the filtering capabilities of
G0,GE and H0,GE . As a matter of fact, (4.46) shows that the GE-LTI-SOE is impossible
to distinguish from the true nonlinear system only by looking at second order properties
of y, u and ε0. The LTI system (G0,GE (q), H0,GE (q)) is thus equivalent to the nonlinear
system for the input in question if only second order properties are considered, hence the
name GE-LTI-SOE. The additional General Error in the name GE-LTI-SOE is added in
order to distinguish this type of LTI model from the previously described output error
model type, which does not include a noise model.

A fundamental observation about LTI-SOEs is that the OE-LTI-SOE G0,OE and the
GE-LTI-SOE G0,GE are not always equal. This is shown in Example 4.3. The particular
system and input signal used in this example have been taken from Forssell and Ljung
(2000), where it is used to show that Φyu(z)/Φu(z) can be noncausal. Here, however, we
will also derive the GE-LTI-SOE of this system.

Example 4.3

Consider the static nonlinear system

y(t) = u(t)2 − 3 (4.48)

with the input
u(t) = e(t) + e(t− 1)2 − 1,

where e(t) here is a white Gaussian process with zero mean and unit variance. Straight-
forward calculations (see Appendix A), which are similar to the ones in Example 4.2,
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give

Φu(z) = 3,
Φyu(z) = 2z + 8,

Φy(z) = 8z + 66 + 8z−1.

This gives

Φζ(z) =
(

3 2 + 8z
2 + 8z−1 8z + 66 + 8z−1

)
= T (z)QζTT (z−1),

T (z) =
(

1 0√
4161−33

12 z−1 1 + 65−
√

4161
8 z−1

)
,

Qζ =
(

3 2
2 23 +

√
4161
3

)
.

The spectral factor T (z) has been computed by a diagonalization of Φζ(z) followed
by a factorization of the derived diagonal matrix and an adjustment in order to achieve
T (∞) = I . The complete derivation of T (z) can be found in Appendix A. From the de-
rived transform expressions, the OE-LTI-SOE of the system (4.48) for this input is found
to be

G0,OE (z) =
8
3
≈ 2.6667,

while the GE-LTI-SOE is

G0,GE (z) =
√

4161− 33
12

≈ 2.6255,

H0,GE (z) = 1 +
65−

√
4161

8
z−1.

Note that G0,OE (z) 6= G0,GE (z) despite the fact that the system operates in open loop.

The fact thatG0,OE (z) 6= G0,GE (z) for some open-loop nonlinear systems and inputs
is the reason why a matrix-valued spectral factorization in general has to be performed
when the GE-LTI-SOE is calculated. IfG0,OE (z) andG0,GE (z) always would have been
equal, the GE-LTI-SOE could have been calculated using only scalar spectral factoriza-
tions. In Section 5.6 it will be shown that such a simplified calculation of the GE-LTI-SOE
is possible for some classes of input signals.

Just like in the case of OE-LTI-SOEs, it is in practice often hard to know the correct
order of the GE-LTI-SOE. As a matter of fact, it might actually be infinite dimensional.
Hence, it is also here interesting to understand in what sense a low order model can
approximate the GE-LTI-SOE of a nonlinear system. Also for GE-LTI-SOEs, this ap-
proximation is similar to a low order approximation of an LTI system, something which
is shown in the next theorem. Apart from the fact that a GE-LTI-SOE is here allowed to
contain a direct term from the input, this theorem is identical to Theorem 4.1 in Ljung
(2001). The proof is, just like for Theorem 4.2, similar to the outlined proof in Prob-
lem 8G.5 in Ljung (1999).
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Theorem 4.6
Consider a nonlinear system with input u(t) and output y(t) such that Assumptions A1, A2
and A4 are fulfilled. Let (G0,GE ,H0,GE ) be the corresponding GE-LTI-SOE according
to Theorem 4.5, let ε0(t) be defined by (4.40) and assume that both G0,GE and H0,GE

are stable. Consider a parameterized stable and causal model (G(q, θ), H(q, θ)), where
H(q, θ) is monic and where H−1(q, θ) is stable and causal. Suppose that this model is fit
to the signals u and y according to

θ̂ = arg min
θ

E(ε(t, θ)2), (4.49)

where

ε(t, θ) = y(t)−H−1(q, θ)G(q, θ)u(t)− (1−H−1(q, θ))y(t)

= H−1(q, θ)(y(t)−G(q, θ)u(t)). (4.50)

Then it follows that

θ̂ = arg min
θ

π∫
−π

∆GH(eiω, θ)T
(

Φu(eiω) Φuε0(e
iω)

Φε0u(e
iω) λ0

)
∆GH(e−iω, θ) dω, (4.51)

where

∆GH(z, θ) =
1

H(z, θ)

(
G0,GE (z)−G(z, θ)
H0,GE (z)−H(z, θ)

)
. (4.52)

Proof: Equation (4.42) can be used to rewrite (4.50) as

ε(t, θ) = H−1(q, θ)(y(t)−G(q, θ)u(t))

= H−1(q, θ)(G0,GE (q)u(t) +H0,GE (q)ε0(t)−G(q, θ)u(t))

= H−1(q, θ)((G0,GE (q)−G(q, θ))u(t) + (H0,GE (q)−H(q, θ))ε0(t))

+ ε0(t) =
(
∆GH(q, θ)T +

(
0 1

))(u(t)
ε0(t)

)
.

This gives

Φε(z, θ) =
(
∆GH(z, θ)T +

(
0 1

))( Φu(z) Φuε0(z)
Φε0u(z) λ0

)(
∆GH(z−1, θ) +

(
0
1

))
= ∆GH(z, θ)T

(
Φu(z) Φuε0(z)

Φε0u(z) λ0

)
∆GH(z−1, θ)

+ ∆GH(z, θ)T
(

Φuε0(z)
λ0

)
+
(
Φε0u(z) λ0

)
∆GH(z−1, θ) + λ0.
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Parseval’s relation gives

E(ε(t, θ)2) =
1
2π

π∫
−π

Φε(eiω, θ)dω

=
1
2π

π∫
−π

∆GH(eiω, θ)T
(

Φu(eiω) Φuε0(e
iω)

Φε0u(e
iω) λ0

)
∆GH(e−iω, θ) dω

+
1
2π

π∫
−π

∆GH(eiω, θ)T
(

Φuε0(e
iω)

λ0

)
dω

+
1
2π

π∫
−π

(
Φε0u(e

iω) λ0

)
∆GH(e−iω, θ) dω + λ0.

The transfer functionH−1(z, θ)(G0,GE (z)−G(z, θ)) is causal and, since bothH0,GE (z)
and H(z, θ) are monic, the transfer function

H−1(z, θ)(H0,GE (z)−H(z, θ))

is strictly causal. Since Φuε0(z) is strictly causal (cf. (4.45a)), this implies that a term-by-
term integration gives

1
2π

π∫
−π

∆GH(eiω, θ)T
(

Φuε0(e
iω)

λ0

)
dω = 0,

1
2π

π∫
−π

(
Φε0u(e

iω) λ0

)
∆GH(e−iω, θ) dω = 0.

Hence,

E(ε(t, θ)2) =
1
2π

π∫
−π

∆GH(eiω, θ)T
(

Φu(eiω) Φuε0(e
iω)

Φε0u(e
iω) λ0

)
∆GH(e−iω, θ) dω + λ0

and (4.51) follows since λ0 is independent of θ.

The previous theorem shows that the GE-LTI-SOE can be approximated by an LTI
model of lower order than the GE-LTI-SOE according to (4.51). Just like for OE-LTI-
SOEs, it is here important to remember that the GE-LTI-SOE is in general input-de-
pendent. Hence, different input signals will make a parameterized LTI model close to
different GE-LTI-SOEs.

Theorem 4.6 can be simplified if the true system actually is an open-loop LTI system.
In this case, there is no correlation between the residuals and the input signal, i.e., Φuε0(z)
is identically equal to zero (see Ljung, 1999, p. 265). However, for an open-loop nonlinear
system this is not true in general.
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Consider once again the system and input signal in Example 4.3. Using (4.45a) and the
expressions for T (z) and Qζ from Appendix A it is easy to verify that Φuε0(z) = 2z−1

in this case, despite the fact that the system in Example 4.3 is an open-loop system.
Without any prior knowledge about the structure of this system and using an intuitive

reasoning based on the linear case, a nonzero strictly causal Φuε0(z) might have been
taken as an indication that the system actually was a closed-loop system. Hence, it is a
justified question whether such a closed-loop interpretation of a GE-LTI-SOE can always
be made. This is the topic of the next section.

4.5 Interpretations of the GE-LTI-SOE

The fact that Φuε0(z) in general is nonzero in (4.46) has some implications on the LTI
interpretation. If we would like to interpret all second order correlations between u, y
and ε0 as results of linear filter connections we have to allow the overall linear system to
include some kind of feedback or feedforward connections. This is natural as we have not
imposed any restrictions on the true system that exclude the possibility that it in fact is a
linear closed-loop system.

It turns out that when the GE-LTI-SOE is well-defined according to Theorem 4.5 it
is always possible to compose a stable linear closed-loop system that fulfills (4.46) and
that also explains the correlation between u(t) and past ε0(t − k), i.e., it explains why
Φuε0(z) 6= 0. Consider the closed-loop system in Figure 4.2. This system is described by

u(t) = r0(t)− F0(q)N0(q)H̃0(q)ε0(t)− F0(q)N0(q)G̃0(q)u(t)

⇒ u(t) =
1

1 + F0(q)N0(q)G̃0(q)
r0(t) +

−F0(q)N0(q)H̃0(q)
1 + F0(q)N0(q)G̃0(q)

ε0(t), (4.53a)

y(t) = N0(q)H̃0(q)ε0(t) +N0(q)G̃0(q)r0(t)−N0(q)G̃0(q)F0(q)y(t)

⇒ y(t) =
N0(q)G̃0(q)

1 + F0(q)N0(q)G̃0(q)
r0(t) +

N0(q)H̃0(q)
1 + F0(q)N0(q)G̃0(q)

ε0(t). (4.53b)

Let N0(z) be a causal, possibly unstable, LTI system such that both G0,GE (z) and
H0,GE (z) can be factorized as

G0,GE (z) = G̃0(z)N0(z), (4.54a)

H0,GE (z) = H̃0(z)N0(z), (4.54b)

where G̃0 and H̃0 are causal and stable LTI systems. Furthermore, let

F0(z) = −Φuε0(z)
Φyε0(z)

(4.55)

and, as usual, interpret the factor 1
Φyε0 (z) in this expression as a causal series expansion.

This is always possible because Φyε0(z) = Qζ21T21(z) +Qζ22T22(z) is analytic on and
outside the unit circle and Φyε0(∞) = Qζ22 > 0 (see (4.45b)). Since Φuε0(z) is strictly
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G̃0

H̃0

−F0

N0Σ Σ
r0 u y

ε0

Figure 4.2: The GE-LTI-SOE can be interpreted as being part of a linear closed-loop
system.

causal (see (4.45a)), also F0(z) will be strictly causal. Note, however, that F0(z) might
be unstable.

The interpretation of the GE-LTI-SOE as a part of a linear closed-loop system is mean-
ingless if this system is unstable. Hence, it is crucial to check whether the transfer func-
tions in (4.53) are stable when the definitions (4.54) and (4.55) are used. First, (4.46b),
(4.54a) and (4.55) give

1 + F0(z)N0(z)G̃0(z)︸ ︷︷ ︸
=G0,GE (z)

=
Φyε0(z)−G0,GE (z)Φuε0(z)

Φyε0(z)
=
H0,GE (z)λ0

Φyε0(z)
.

Thus
1

1 + F0(z)N0(z)G̃0(z)
=

Φyε0(z)
H0,GE (z)λ0

(4.56)

is stable since H−1
0,GE (z) is stable and Φyε0(z) by its construction (4.45b) is analytic and

hence absolutely convergent on the unit circle. Since H−1
0,GE (z)G0,GE (z) is stable as

well, the stability property of Φyε0(z) also imply that

N0(z)G̃0(z)
1 + F0(z)N0(z)G̃0(z)

=
G0,GE (z)Φyε0(z)
H0,GE (z)λ0

,

N0(z)H̃0(z)
1 + F0(z)N0(z)G̃0(z)

=
Φyε0(z)
λ0

are stable. Finally,
−F0(z)N0(z)H̃0(z)

1 + F0(z)N0(z)G̃0(z)
=

Φuε0(z)
λ0

(4.57)

is stable since Φuε0(z) by (4.45a) is analytic and hence absolutely convergent on the unit
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circle. Hence, all transfer functions in (4.53) are stable, and since

F0(z)
1 + F0(z)N0(z)G̃0(z)

= − Φuε0(z)
H0,GE (z)λ0

is also stable, the closed-loop system is internally stable (Glad and Ljung, 2000, Def. 6.1).
As indicated in Figure 4.2, a reference signal r0 might have to be included as an

external input signal to the closed-loop model in order to explain the part of u that does
not originate from ε0. Unlike G0,GE and H0,GE , which are defined such that (4.42)
holds, F0 can only explain the correlation between u and ε0 and not the complete signal
u. If (4.54) and (4.55) are inserted in (4.53a) and the result is used to express Φuε0(z) in
Φr0ε0(z) and λ0 we get

Φuε0(z) =
1

1 + F0(z)N0(z)G̃0(z)
Φr0ε0(z) +

−F0(z)N0(z)H̃0(z)
1 + F0(z)N0(z)G̃0(z)

λ0

⇒ Φuε0(z) =
Φyε0(z)

H0,GE (z)λ0
Φr0ε0(z) +

Φuε0(z)
λ0

λ0

⇒ Φr0ε0(z) = 0, (4.58)

where (4.56) and (4.57) have been used to rewrite the closed-loop transfer functions.
Equation (4.58) shows that r0 is uncorrelated with ε0, which is natural if we want a
closed-loop interpretation.

Since the linear closed-loop system in Figure 4.2 is internally stable when F0 is de-
fined as in (4.55), it can always be used to show how the signals u and y could have been
generated from an LTI model. More specifically, it is impossible to disprove that the lin-
ear closed-loop system has not generated the signals merely by looking at second order
properties of u, y and ε0. Hence, the closed-loop model in Figure 4.2 with the definitions
in (4.54) and (4.55) might be called the complete second order equivalent LTI description
of the true system. Of course, since the GE-LTI-SOE is input-dependent, this description
is too.

Actually, it is sometimes possible to directly judge the quality of the GE-LTI-SOE if
some additional information about the system is available. For example, assume that the
input signal u has been generated in such a way that there can be no correlation between
u(t) and any system disturbances. If the GE-LTI-SOE of the true system for this u indeed
results in a nonzero Φuε0(z), then the GE-LTI-SOE cannot be a correct description of the
true system.

The interpretation of the GE-LTI-SOE can be somewhat simplified if both G0,GE and
H0,GE turn out to be stable. If this is the case, N0 can be set to 1 in (4.54). This makes
it possible to draw a simplified version of the closed-loop model from Figure 4.2. This
simplified closed-loop model is shown in Figure 4.3.

However, the closed-loop model in Figure 4.3 is not the only interpretation of a stable
GE-LTI-SOE. An alternative explanation of the cross-correlation between u and ε0 can
be given by the feedforward model in Figure 4.4. In this model, let

Ff0(z) =
Φuε0(z)
λ0

, (4.59a)

rf0(t) = u(t)− Ff0(q)ε0(t). (4.59b)
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G0,GE

H0,GE

−F0

Σ Σ
r0 u y

ε0

Figure 4.3: The GE-LTI-SOE can be interpreted as being part of a simplified linear
closed-loop system if both G0,GE and H0,GE are stable.

G0,GE

H0,GE

Ff0

Σ Σ
rf0 u y

ε0

Figure 4.4: The interpretation of the GE-LTI-SOE as a linear feedforward structure
when G0,GE and H0,GE are stable.

With this definition, the transfer function Ff0(z) is stable since Φuε0(z) by (4.45a) is
absolutely convergent on the unit circle. Furthermore, it follows that

Φrf0ε0(z) = Φuε0(z)− Ff0(z)λ0 = 0 (4.60)

and rf0 and ε0 are thus uncorrelated.
The conclusion that can be drawn from the discussion in this section is that a GE-

LTI-SOE always can be interpreted as being a part of an internally stable feedback or,
in the case of a stable GE-LTI-SOE, feedforward system. Hence, by looking only at
second order properties, it is impossible to disprove that any data set, with input and
output measurements that fulfill Assumptions A1, A2 and A4, might have been generated
by this closed-loop system. However, in some cases additional prior knowledge about
the structure of the nonlinear system is available, and this knowledge can influence the
interpretation of the LTI-SOE. In the next section, additional knowledge about the noise
in the system will be discussed.
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S Σ
u ynf y

w

Figure 4.5: In some cases, the noise is assumed to be output additive.

4.6 Assumptions on the Noise

In the derivation of the OE-LTI-SOE and GE-LTI-SOE in the previous sections, no as-
sumptions were made about the structure of the nonlinear system. Although structural as-
sumptions are not necessary for the existence of the OE-LTI-SOE and the GE-LTI-SOE, it
is hard to draw any conclusions about the properties and usefulness of these second order
equivalents without any further information about the nonlinear system.

One important structural property of a system is how the noise enters. For most of
the results in this thesis we will need the following assumption that says that the noise is
additive and uncorrelated with the input and the noise-free output.

Assumption A5. Assume that the output y(t) can be written

y(t) = ynf (t) + w(t), (4.61)

where ynf is the noise-free response of the nonlinear system and not influenced by any
other external signals than u, and where w is a noise term which is uncorrelated with u
and ynf .

In most cases, this assumption does not hold for a closed-loop system. This is due to
the fact that the measured output that is fed back to the controller in such a system usually
contains some noise. The input is thus in general correlated with the noise when it comes
from a closed-loop system. Hence, Assumption A5 can be viewed as an assumption that
the system has the structure shown in Figure 4.5.

However, the fact that Assumption A5 is needed for most of the results in this thesis
is not the only reason why LTI approximations for systems in closed loop are not studied
much here. Most of the results later in this thesis hold only for input signals with special
distributions, e.g., Gaussian inputs or LTI filtered white noise inputs. For an open-loop
system, this limitation is often not a problem since the input signal in many cases can be
designed rather freely by the user. On the other hand, for a nonlinear closed-loop system,
it is usually very hard to guarantee that the distribution of the input signal belongs to a
certain class. Hence, most parts of the remaining chapters in this thesis deal with open-
loop systems.

As has been mentioned previously, the fact that a certain system operates in open loop
can be used to disprove that the GE-LTI-SOE represents the true system. This can be
done because it may be necessary to view the GE-LTI-SOE as being a part of a closed-
loop system in order to explain a nonzero Φuε0(z) (cf. Example 4.3).

This concludes our introductory discussion about the notion of LTI Second Order
Equivalents. In this chapter, it has been shown that the OE-LTI-SOE and GE-LTI-SOE of
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a nonlinear system are well-defined for rather general classes of input and output signals.
Furthermore, properties and interpretations of these LTI approximations that hold for all
signals in these classes have been discussed. In the Chapters 5 to 8, we will consider
more restricted and specialized classes of input signals for which further properties of the
OE-LTI-SOEs and GE-LTI-SOEs can be shown.
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5
Basic Properties of LTI-SOEs

In Example 4.2 in the previous chapter, it was shown that the OE-LTI-SOE of a static
nonlinear system can be nonstatic. This observation can be viewed as an indication that
some caution is needed when conclusions are drawn about the behavior of OE-LTI-SOEs.
A behavior that intuitively seems correct, for example that the OE-LTI-SOE of a static
nonlinear system should be static, can actually be erroneous.

In this chapter, we will make some rather straightforward assumptions about the input
signals and investigate what these assumptions imply. More specifically, we will assume
that the input signal is symmetrically distributed and show that this implies that the OE-
LTI-SOE only depends on the odd part of the system. We will show that if a nonlinear
system can be written as a linear combination of several subsystems with the same input,
its OE-LTI-SOE can be written as a linear combination too. We will also consider input
signals generated by filtering white noise through a minimum phase filter. It turns out
that for such an input signal, spectral and residual analysis can be used for validation just
like in the LTI case. Furthermore, minimum phase filtered white noise can be useful if an
LTI system is identified in closed-loop and a nonlinear controller is used. This signal type
guarantees also that the G0,OE (z) and G0,GE (z) will be equal. This will be discussed
at the end of this chapter. First, however, we will investigate how output additive noise
affects the OE-LTI-SOE.

5.1 Additive Noise

Noise can affect a nonlinear system in many ways. For example, the noise can be added
to or multiplied with the input before it enters the actual system, or affect the output
of the system. Although a large variation of noise dependency can be found in appli-
cations, we will here mainly study one type of noise, namely output additive noise that
is uncorrelated with the input and the noise-free output as in Assumption A5. Actually,

67
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the following lemma shows that this type of noise does not affect the OE-LTI-SOE of a
nonlinear system.

Lemma 5.1
Consider a nonlinear system with input u(t) and output y(t) such that Assumptions A1,
A2 and A5 are fulfilled. This means that the additive noise w(t) in (4.61) is uncorrelated
with the input and the noise-free output ynf . Then the OE-LTI-SOE is not influenced
by w(t).

Proof: Since the noise w by Assumption A5 is uncorrelated with u and ynf , we have for
any stable LTI model G(q) that

E((y(t)−G(q)u(t))2) = E((ynf (t) + w(t)−G(q)u(t))2)

= E(ynf (t)−G(q)u(t)2) + E(w(t)2). (5.1)

Hence, the criterion in Definition 4.1 can be rewritten

G0,OE (q) = arg min
G∈G

E((y(t)−G(q)u(t))2) = arg min
G∈G

E((ynf (t)−G(q)u(t))2)

and this shows that the OE-LTI-SOE is not influenced by the additive noise.

The result of the previous lemma is the rather convenient fact that the OE-LTI-SOE
is independent of the noise if Assumption A5 holds. Although this assumption might
be considered rather restrictive, it will be used frequently in this thesis. Some results
about OE-LTI-SOEs where Assumption A5 is not required will be presented later in this
chapter (see Sections 5.4 and 5.5). First, however, we will draw some conclusions about
the different influence odd and even nonlinearities have on the OE-LTI-SOE.

5.2 Even and Odd Nonlinearities

Assume that Assumption A5 holds for a certain system and that the noise-free output ynf

can be written as ynf (t) = f((u(t−k))Mk=0) for some nonnegative integerM . This means
that the system is an NFIR system (see Section 2.2), and in this case, we can divide the
real-valued function f in an even part fe and an odd part fo

f((u(t− k))Mk=0) =
f((u(t− k))Mk=0) + f(−(u(t− k))Mk=0)

2︸ ︷︷ ︸
=fe((u(t−k))M

k=0)

+
f((u(t− k))Mk=0)− f(−(u(t− k))Mk=0)

2︸ ︷︷ ︸
=fo((u(t−k))M

k=0)

(5.2)

such that

fe(−(u(t− k))Mk=0) = fe((u(t− k))Mk=0),

fo(−(u(t− k))Mk=0) = −fo((u(t− k))Mk=0).
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If all simultaneous probability density functions for the process u are even functions,
the OE-LTI-SOE of an NFIR system will only depend on the odd part fo of the system.
Hence, we have the following lemma.

Lemma 5.2
Consider an NFIR system with input u(t) and output y(t) such that Assumptions A1, A2
and A5 are fulfilled. The noise-free output ynf from (4.61) can then, for some nonnegative
integer M , be written

ynf (t) = f((u(t− k))Mk=0) = fe((u(t− k))Mk=0) + fo((u(t− k))Mk=0), (5.3)

where fe and fo are even and odd functions, respectively. Assume that all simultaneous
probability density functions for the process u are even functions. Then the OE-LTI-SOE
depends only on the odd part fo of the system, i.e.,

G0,OE (q) = arg min
G∈G

E(
(
fo((u(t− k))Mk=0)−G(q)u(t)

)2
). (5.4)

Proof: From Lemma 5.1 we have

G0,OE (q) = arg min
G∈G

E((ynf (t)−G(q)u(t))2).

Using (5.3), this mean-square error criterion can be rewritten

E((ynf (t)−G(q)u(t))2) = E(
(
fo((u(t− k))Mk=0)−G(q)u(t)

)2
)

+ E(
(
fe((u(t− k))Mk=0)

)2
) + 2E(fo((u(t− k))Mk=0)fe((u(t− k))Mk=0))

− 2
∞∑
j=0

g(j)E(u(t− j)fe((u(t− k))Mk=0)).

The cross-terms in this expansion are equal to zero since

fo((u(t− k))Mk=0)fe((u(t− k))Mk=0)

and
u(t− j)fe((u(t− k))Mk=0),

j ∈ N, are odd functions of (u(t−k))max(M,j)
k=0 and since all probability density functions

of u are even functions. Hence

E((ynf (t)−G(q)u(t))2) = E(
(
fo((u(t− k))Mk=0)−G(q)u(t)

)2
)

+ E(
(
fe((u(t− k))Mk=0)

)2
) (5.5)

and (5.4) follows.

The fact that the OE-LTI-SOE is independent of even nonlinearities when a symmet-
rically distributed input signal is used implies that if two nonlinear systems only differ
by even nonlinearities, they will have the same OE-LTI-SOE. However, the variance of
the model residuals will of course be larger if a system contains large even nonlinearities.
The influence of the even and odd parts of a system on the variance and spectral density
of the model residuals is shown by the following lemma.
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Lemma 5.3
Consider an NFIR system with input u(t) and output y(t) such that Assumptions A1,
A2 and A5 are fulfilled. The noise-free output ynf (t) from (4.61) can then, for some
nonnegative integer M , be written as in (5.3). Assume that all simultaneous probability
density functions for the process u are even functions. Then the z-spectrum of the OE-
LTI-SOE residuals η0(t) can be written

Φη0(z) = Φdo(z) + Φye(z) + Φw(z), (5.6)

where do(t) = fo((u(t− k))Mk=0)−G0,OE (q)u(t) and ye(t) = fe((u(t− k))Mk=0).

Proof: Assumption A5 gives that

Rη0(τ) = E((ynf (t)−G0,OE (q)u(t))(ynf (t− τ)−G0,OE (q)u(t− τ)))
+Rw(τ), ∀τ ∈ Z

and using (5.3), we get

Rη0(τ) = E((do(t) + ye(t))(do(t− τ) + ye(t− τ))) +Rw(τ)
= Rdo(τ) +Rdoye(τ) +Ryedo(τ) +Rye(τ) +Rw(τ), ∀τ ∈ Z.

Since

Rdoye
(τ) = E(fo((u(t− k))Mk=0)fe((u(t− k − τ))Mk=0))

−
∞∑
j=0

g0,OE (j)E(u(t− j)fe((u(t− k − τ))Mk=0))

contains only expectations of odd functions and since all probability density functions of
u are even, we get Rdoye

(τ) = Ryedo
(τ) = 0 for all τ ∈ Z. Hence,

Rη0(τ) = Rdo(τ) +Rye(τ) +Rw(τ), ∀τ ∈ Z (5.7)

and (5.6) follows.

In particular, (5.7) shows that the variance of the OE-LTI-SOE residuals η0(t) can be
written

Rη0(0) = E(η0(t)2) = E(
(
fo((u(t− k))Mk=0)−G(q)u(t)

)2
)

+ E(
(
fe((u(t− k))Mk=0)

)2
) + E(w(t)2). (5.8)

This expression is valid when Assumption A5 holds and when the input signal has even
probability density functions, and it shows that there are three conceptually different con-
tributions to Rη0(0). The first term in (5.8) is the variance of the unmodeled part of the
odd nonlinearities, while the second and third terms are the variance of the even part of
the system and of the noise, respectively.

Usually, it is not obvious how the input signal should be designed in order to minimize
the variance of the residuals. In Section 5.4, we will consider inputs that have been
generated by filtering white noise through a minimum phase filter. Later in Section 5.5.1,
it will be shown that these inputs reduce the variance of the residuals. First, we will study
OE-LTI-SOEs for nonlinear systems with parallel subsystems.
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5.3 Sums of Nonlinear Systems

If the output from a nonlinear system can be written as the sum of the outputs from sev-
eral nonlinear subsystems with the same input, the OE-LTI-SOE of the complete system
will be the sum of the OE-LTI-SOEs of the corresponding subsystems according to the
following theorem.

Theorem 5.1
Consider a nonlinear system with input u(t) and output y(t) such that Assumptions A1,
A2 and A5 are satisfied. Assume also that the system can be written as a sum of several
nonlinear subsystems, i.e., as

y(t) =
M∑
i=1

yi(t) + w(t), (5.9a)

yi(t) = fi((u(t− k))∞k=0) (5.9b)

and that each nonlinearity fi has an OE-LTI-SOE G0,OE ,i(z). Then the OE-LTI-SOE of
the complete nonlinear system (from u to y) is

G0,OE (z) =
M∑
i=1

G0,OE ,i(z). (5.10)

Proof: The z-cross-spectrum can be written as

Φyu(z) =
M∑
i=1

Φyiu(z).

Hence, the OE-LTI-SOE of the complete system can be written

G0,OE (z) =
1

ruL(z)

[∑M
i=1 Φyiu(z)
L(z−1)

]
causal

=
M∑
i=1

1
ruL(z)

[
Φyiu(z)
L(z−1)

]
causal

=
M∑
i=1

G0,OE ,i(z),

where we have used (4.3) and the fact that the causality operator is linear.

Theorem 5.1 implies that OE-LTI-SOEs of parallel connected nonlinear systems can
be calculated by studying the subsystems. Hence, if a nonlinear system can be written
as a linear combination of a number of nonlinear subsystems with the same input, the
OE-LTI-SOE of this complete system can be written as the same linear combination of
the OE-LTI-SOEs of the subsystems. The OE-LTI-SOE can thus be viewed as a linear
operator on the set of all nonlinear systems.

In the next section, we will consider OE-LTI-SOEs for inputs generated by filtering
white noise through a minimum phase filter. It turns out that these inputs imply some
useful properties of the OE-LTI-SOEs.
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5.4 Minimum Phase Input Filters

A common way to generate a signal u such that its spectral density is equal to some pre-
defined function is to filter white noise e through an LTI filter L(z). Since, by Lemma 2.1,
the result of this procedure will be a signal with spectral density

Φu(eiω) = |L(eiω)|2Re(0),

it is often convenient to consider only |L(eiω)| when the filter L(z) is designed and let
the phase arg(L(eiω)) become whatever it becomes. For example, this works well if u is
going to be used as input to an LTI system in a linear identification experiment.

However, if the signal u is to be used for an LTI approximation of a nonlinear system,
the phase of the prefilter is crucial for the behavior of this approximation. In the following
theorem, it will be shown that in this case, it is beneficial to generate the input signal by
filtering white noise through an LTI filter which has the minimum phase property (see
Definition 2.4).

Theorem 5.2
Consider a nonlinear system with input u(t) and output y(t) such that Assumptions A1
and A2 are fulfilled. Assume that the input signal has been generated by filtering white,
possibly non-Gaussian, noise e(t) through a minimum phase filter Lm(z). Assume also
that any other external signals that affect the output are independent of u. Then the OE-
LTI-SOE is regular (see Definition 4.2) and can be written

G0,OE (z) =
Φyu(z)
Φu(z)

=
Φye(z)

Lm(z)Re(0)
. (5.11)

Proof: The canonical spectral factorization of Φu(z) (cf. (4.1)) is

L(z) =
Lm(z)
lm(0)

,

ru = lm(0)2Re(0).

Using (4.3) from Theorem 4.1, this gives

G0,OE (z) =
lm(0)

lm(0)2Re(0)Lm(z)

[
lm(0)Φyu(z)
Lm(z−1)

]
causal

=
1

Re(0)Lm(z)

[
Φyu(z)
Lm(z−1)

]
causal

=
1

Re(0)Lm(z)

[
Φye(z)Lm(z−1)

Lm(z−1)

]
causal

=
1

Re(0)Lm(z)
[Φye(z)]causal ,

where we have used Lemma 2.1 in the third equality. The nonlinear system is, by our
standard assumption, causal and u is independent of all other external signals that affect
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the output. This, together with the fact that e is a white noise process, implies that y(t) is
independent of e(t− τ) for all τ < 0. Hence Rye(τ) = 0 for all τ < 0 and

Φye(z) =
∞∑
τ=0

Rye(τ)z−τ .

Since the series Φye(z) contains no positive powers of z, taking the causal part does not
remove anything. Hence, we have

G0,OE (z) =
1

Re(0)Lm(z)
[Φye(z)]causal =

Φye(z)
Lm(z)Re(0)

=
Φyu(z)
Φu(z)

and we have shown (5.11).

The assumption in Theorem 5.2 that any other external signals that affect the output
should be independent of the input u implies that this theorem usually cannot be applied
if the system is a closed-loop LTI system. However, for open-loop systems, the conditions
in Theorem 5.2 are not very restrictive.

Actually, the reason why the OE-LTI-SOE in Example 4.2 on page 42 was regular
is that the input signal in that example was generated by filtering white noise through a
minimum phase filter. It is interesting to see what happens with the OE-LTI-SOE if the
input filter in Example 4.2 is replaced by a non-minimum phase filter giving the same
Φu(z). This is done in the following example.

Example 5.1
Consider the static nonlinear system

y(t) = u(t)3 (5.12)

with the input

u(t) =
1
2
e(t) + e(t− 1),

where e(t) is a sequence of independent random variables with uniform distribution over
the interval [−1, 1]. For the moment, let R̃yu(τ) denote the cross-covariance function in
Example 4.2. Then

Ryu(0) = E(u(t)4) = E(
(

1
2
e(t) + e(t− 1)

)4

) = E(
(
e(t) +

1
2
e(t− 1)

)4

)

= R̃yu(0) =
91
240

,

Ryu(1) = E(u(t)3u(t− 1))

= E(
(

1
2
e(t) + e(t− 1)

)3

·
(

1
2
e(t− 1) + e(t− 2)

)
)

= E(
(
e(t) +

1
2
e(t− 1)

)3

·
(
e(t+ 1) +

1
2
e(t)

)
)

= R̃yu(−1) =
34
240

,
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Ryu(−1) = E(u(t)3u(t+ 1))

= E(
(

1
2
e(t) + e(t− 1)

)3

·
(

1
2
e(t+ 1) + e(t)

)
)

= E(
(
e(t) +

1
2
e(t− 1)

)3

·
(
e(t− 1) +

1
2
e(t− 2)

)
)

= R̃yu(1) =
46
240

,

Ryu(τ) = R̃yu(τ) = 0, ∀τ ∈ Z \ {−1, 0, 1}.

This gives

Φyu(z) =
1

240
(46z + 91 + 34z−1) =

1
240

(
1 +

1
2
z−1

)
(68 + 46z) .

Furthermore, Lemma 2.1 gives

Φu(z) =
(

1
2

+ z−1

)
· 1
3
·
(

1
2

+ z

)
=

1
12
(
2z + 5 + 2z−1

)
.

The canonical spectral factor of Φu(z) is L(z) = 1 + 1
2z
−1 and ru = 1

3 . Theorem 4.1
gives

G0,OE (z) =
1

ruL(z)

[
Φyu(z)
L(z−1)

]
causal

=
3

1 + 1
2z
−1

[
46z + 91 + 34z−1

240(1 + 1
2z)

]
causal

=
1
80
· 1
1 + 1

2z
−1

[
9z

1 + 1
2z

+ 74 + 34z−1

]
causal

=
1
80
· 74 + 34z−1

1 + 1
2z
−1

=
1
40
· 37 + 17z−1

1 + 1
2z
−1

=
0.925 + 0.425z−1

1 + 0.5z−1
.

Here, just like in Example 4.2, the OE-LTI-SOE of the static nonlinear system y(t) =
u(t)3 is nonstatic. However, the OE-LTI-SOE in Example 4.2 is not equal to the OE-LTI-
SOE here, since the two input signals have different distributions.

The input signals in Examples 4.2 and 5.1 are similar in the sense that they have equal
z-spectra. Furthermore, the probability density function for one input signal component,
(or the amplitude distribution of every single u(t)), is the same in both examples. Since
the nonlinear system is static, this also implies that the probability density functions of a
single y(t) are equal in these examples.

Despite these similarities between the input signals in Example 4.2 and 5.1, these in-
puts generate different OE-LTI-SOEs because the simultaneous probability density func-
tions of u(t) and u(t − 1) are different in the two examples. As we have not calculated
Rη0(0) in these examples, it is not obvious which OE-LTI-SOE that is most successful
in approximating the true system. However, in the next section we will show that it is
always better to use an input generated by a minimum phase filter than a non-minimum
phase filter.
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5.5 Properties for Regular OE-LTI-SOEs

The fact that the OE-LTI-SOE is regular for, for example, input signals generated by filter-
ing white noise through a minimum phase filter is convenient, since it makes it possible
to calculate the OE-LTI-SOE without spectral factorization of the input z-spectrum. In
addition, OE-LTI-SOEs of this kind exhibit a number of interesting properties.

5.5.1 Optimality Properties

The perhaps most obvious property that holds for a regular OE-LTI-SOE concerns the
residuals η0(t). In the following lemma it will be shown that for such an OE-LTI-SOE
the residuals will be uncorrelated with all input signal components (cf. Corollary 4.2).

Lemma 5.4
Consider a nonlinear system with input u(t) and output y(t) such that Assumptions A1
and A2 are fulfilled. Assume that the OE-LTI-SOE is regular, i.e., that it can be written as

G0,OE (z) =
Φyu(z)
Φu(z)

, (5.13)

and let
η0(t) = y(t)−G0,OE (q)u(t). (5.14)

Then it follows that

Φη0u(z) = Φyu(z)−G0,OE (z)Φu(z) = 0, (5.15a)

Φη0(z) = Φy(z)−G0,OE (z)Φu(z)G0,OE (z−1). (5.15b)

Proof: The expression for Φη0u(z) in (5.15a) follows directly from (5.13) and (5.14).
Furthermore, using Lemma 2.1, (5.13) and (5.14) also give

Φη0(z) = Φy(z)−G0,OE (z)Φuy(z)− Φyu(z)G0,OE (z−1)

+G0,OE (z)Φu(z)G0,OE (z−1) = Φy(z)−G0,OE (z)Φu(z)G0,OE (z−1)

and hence (5.15b) has been shown.

The fact that (5.15a) holds when G0,OE (z) is regular shows that the OE-LTI-SOE in
this case really is the best noncausal LTI model since the model residuals are uncorrelated
with all input signal components. This is no surprise since it can be shown that the ratio
Φyu(z)/Φu(z) is always the mean-square error optimal noncausal LTI model, i.e., the
noncausal LTI-SOE (see Section 3.2.3). If this ratio is causal, it is of course equal to the
OE-LTI-SOE.

Intuitively, it seems that it should always be a good idea to use input signals for which
the OE-LTI-SOE is equal to the noncausal LTI-SOE. As a matter of fact, input signals for
which the OE-LTI-SOE of a nonlinear system is regular exhibit the following optimality
property.
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Theorem 5.3
Consider a nonlinear system with input u1(t) and output y1(t) such that Assumptions A1
and A2 are fulfilled. LetG0,OE ,1(z) denote the OE-LTI-SOE of the nonlinear system with
respect to u1 and assume that it is regular, i.e., that it can be written as

G0,OE ,1(z) =
Φy1u1(z)
Φu1(z)

.

Furthermore, let η0,1(t) = y1(t)−G0,OE ,1(q)u1(t).
Consider also another input signal u2(t) to the same nonlinear system. Assume that

this signal generates the output y2(t) and that u2(t) and y2(t) satisfy Assumptions A1
and A2. Let G0,OE ,2(z) denote the OE-LTI-SOE of the nonlinear system with respect to
u2 and let η0,2(t) = y2(t)−G0,OE ,2(q)u2(t). Assume that

Φu2(e
iω) = Φu1(e

iω), ∀ω ∈ [−π, π],

|Φy2u2(e
iω)| = |Φy1u1(e

iω)|, ∀ω ∈ [−π, π],
Ry2(0) = Ry1(0).

Then the model residual variance for the OE-LTI-SOE corresponding to u2 cannot be
smaller than it is for the one corresponding to u1, i.e.,

Rη0,2(0) ≥ Rη0,1(0). (5.16)

Proof: From (4.12) we have for any OE-LTI-SOE that

Rη0(0) = Ry(0)− 1
2π

π∫
−π

|G0,OE (eiω)|2Φu(eiω) dω.

For any input signal, the noncausal LTI-SOE is always Φyu(z)
Φu(z) . It is easy to verify

that (4.12) holds also for the noncausal LTI-SOE if G0,OE (eiω) is replaced by Φyu(eiω)
Φu(eiω) .

As the stable and causal LTI systems are a subset of the stable and noncausal, it follows
that the OE-LTI-SOE will always have a minimum mean-square error that is greater than
or equal to the minimum mean-square error that is obtained for the noncausal LTI-SOE.
Hence,

Rη0,2(0) ≥ Ry2(0)− 1
2π

π∫
−π

∣∣∣∣Φy2u2(e
iω)

Φu2(eiω)

∣∣∣∣2 Φu2(e
iω) dω

= Ry1(0)− 1
2π

π∫
−π

∣∣∣∣Φy1u1(e
iω)

Φu1(eiω)

∣∣∣∣2 Φu1(e
iω) dω = Rη0,1(0)

since G0,OE ,1(z) = Φy1u1 (z)

Φu1 (z) .

Theorem 5.3 shows that, for example, a given minimum phase generated input signal
is optimal over a set of other inputs in the sense that it minimizes the variance of the
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model residuals. Usually, it is not easy to describe this set of input signals and in some
cases it might actually be empty. However, the input signals in Examples 4.2 and 5.1
fulfill the assumptions in Theorem 5.3. Hence, it follows from (5.16) that the variance of
the model residual in Example 4.2 is less than or equal to the corresponding variance in
Example 5.1. Actually, it can be shown that the variance in the first example is strictly
less than the variance in the second one.

It should be noted that there is no guarantee that a regular OE-LTI-SOE will be a
useful model of a nonlinear system. The only thing that is guaranteed is that it will
be easier to see if an estimated model is close to the OE-LTI-SOE since some useful
validation methods will work in this case. This will be discussed more in the next section.

5.5.2 Spectral and Residual Analysis

A common way to validate an estimated model of an open-loop LTI system is to compare
the frequency response of the model with a nonparametric frequency response estimate
obtained by spectral analysis. If these frequency responses are similar this indicates that
the order of the parametric model is sufficiently high and that the numerical computation
of the estimate has been successful. In Ljung (1999, Sec. 6.4), it is shown that the spectral
analysis frequency response estimate ĜN (eiω0) based onN measurements can be written

ĜN (eiω0) =
Φ̂Nyu(e

iω0)

Φ̂Nu (eiω0)
,

where Φ̂Nu (eiω0) and Φ̂Nyu(e
iω0) are estimates of the spectral and cross-spectral densities

that can be written as smoothed periodograms.
If an LTI model is estimated for an open-loop nonlinear system, it might be tempting

to use spectral analysis as a validation method also in this case. However, the spectral
analysis frequency response estimate can be quite different from the frequency response
of the OE-LTI-SOE and is thus in general useless for validation purposes. Only when the
OE-LTI-SOE is regular, spectral analysis can be used as a validation method.

Example 5.2

Consider once again the system and input signals from Examples 4.2 and 5.1. In these
examples, it was shown that the OE-LTI-SOEs of this system are

G0,OE ,1(z) =
0.85 + 0.575z−1

1 + 0.5z−1

and

G0,OE ,2(z) =
0.925 + 0.425z−1

1 + 0.5z−1
,

respectively. Here, two data sets with 10 000 noise-free input and output measurements
have been generated. The first of these data sets was generated with a realization of the
minimum phase filtered signal from Example 4.2 as input while the second data set was
generated with a realization of the non-minimum phase filtered signal from Example 5.1
as input.
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(a) The OE-LTI-SOE (dashed) and the spec-
tral analysis estimate (solid) for an input gen-
erated by a minimum phase filter.
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(b) The OE-LTI-SOE (dashed) and the spec-
tral analysis estimate (solid) for an input gen-
erated by a non-minimum phase filter.

Figure 5.1: A nonparametric frequency response estimate will be a good approxi-
mation of the OE-LTI-SOE only when G0,OE (z) is regular.

Nonparametric frequency response estimates have been computed from these data
sets using spectral analysis with a Hamming window of lag size 30. These estimates
are shown in Figure 5.1 together with the frequency responses of the corresponding OE-
LTI-SOEs. The MATLAB code that has been used to generate this figure is available in
Appendix B.1.

In Figure 5.1 it can be seen that there is a close match between the OE-LTI-SOE and
the nonparametric frequency response estimate when the input has been generated by a
minimum phase filter. However, when the input has been generated by a non-minimum
phase filter, the OE-LTI-SOE is quite different from the nonparametric estimate.

The conclusion that can be drawn from Example 5.2 is that for LTI approximations of
nonlinear systems, spectral analysis can be used as a validation method only when an in-
put signal that guarantees that G0,OE (z) is regular has been used. An additional property
of such input signals is that they make the result of another validation method, residual
analysis, easier to interpret. Residual analysis can be used to check if there is remain-
ing correlation between the input and the residuals for a certain model. Such remaining
correlation indicates that the model order might be too low. If an accurate model of an
open-loop LTI system has been found, the residuals will be uncorrelated with the input
signal.

However, if the OE-LTI-SOE of a nonlinear system has been estimated, it will accord-
ing to (4.11) in general only have residuals that are uncorrelated with past and present
input signal components. If it is not known that the true system is nonlinear, the re-
maining correlation between the residuals and future input components might be taken
as an indication that the system actually is a closed-loop system. However, if an input
that guarantees that the OE-LTI-SOE is regular has been used, this cannot happen since
the residuals then by (5.15a) will be uncorrelated with all input components. In the next
section, this property will be used for another purpose.
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G0R Σ
r u y

w

Figure 5.2: A nonlinear closed-loop system.

5.5.3 Closed-loop Identification

One application where LTI approximations of nonlinear systems are useful is closed-
loop identification of LTI systems which operate under nonlinear feedback. Consider the
closed loop system in Figure 5.2. This system consists of an unknown LTI plant G0 and
a nonlinear controller R, and its output can be described as

y(t) = G0(q)u(t) + w(t), (5.17)

where u and w are correlated due to the feedback loop. The reference signal r is here
assumed to be independent of the process noise w.

Suppose that a model of G0 is desired and that measurements of r, u and y are avail-
able. In this case, the most natural way to estimate such a model is often to use the direct
prediction-error method (Ljung, 1999, Sec. 13.5). Provided that the model structure is
flexible enough to contain the true system, including the true noise description, this ap-
proach defines a consistent estimator of G0.

However, if the model of G0 is to be used for controller design, there might be one
drawback with the direct approach. When an approximate model is used for controller
design, it is usually appropriate that it is as accurate as possible in a frequency interval
around the desired crossover frequency. In the open-loop case, this accuracy can be in-
creased by the use of a frequency weighting. Unfortunately, in the closed-loop case, such
a frequency weighting cannot be used in the direct approach without making the estimator
of G0 biased.

A solution to this problem when the complete closed-loop system is linear is given by
the two-step method (Van den Hof and Schrama, 1993) or, when a nonlinear controller is
present, a version of this method called the projection method (Forssell and Ljung, 2000).
Both these methods can be viewed as ways to translate the closed-loop identification
problem to an open-loop problem where frequency weighting can be used. The main
idea used in the two-step and projection methods is to first estimate an LTI model S(z)
from r to u and then to use this model to construct a simulated input signal û(t) =
S(q)r(t). Finally, the identification of G0 is performed using measurements of y and of
the simulated input û instead of the true input u.

The reason why it is beneficial to use û instead of u in the identification of G0 is that
this enables the use of frequency weighting since û and the noise will be uncorrelated,
just like for an open-loop system. This is due to the fact that if an output error model

u(t) = S(q)r(t) + η(t)
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is used to describe the mapping from r to u and if the identification of S(z) is successful,
the result will, in the case of linear feedback, be that

S(z) =
Φur(z)
Φr(z)

. (5.18)

Let ũ(t) = u(t)− û(t). Then (5.18) implies that

Φũû(z) = Φuû(z)− Φû(z) = Φur(z)S(z−1)− S(z)Φr(z)S(z−1) = 0

and (5.17) can thus be rewritten as

y(t) = G0(q)û(t) + w̃(t), (5.19)

where w̃(t) = w(t) + G0(q)ũ(t) is uncorrelated with û since both w and ũ are uncor-
related with û. Hence, the system (5.19) can be viewed as an open-loop system and
frequency weighting can thus be used.

For a linear closed-loop system, S(z) is simply the ordinary sensitivity function,
which of course is causal. However, when a nonlinear controller is present in the closed-
loop system, the mapping from r to u is nonlinear. In that case, the ratio Φur(z)

Φr(z) might
be noncausal if we want a stable interpretation of it. This is also pointed out in Forssell
and Ljung (2000). The main difference between the projection method and the two-step
method is that in the former, a noncausal FIR model is used to model the mapping from
r to u, while in the latter only a causal S(z) is used. Hence, the projection method is
applicable to closed-loop systems with nonlinear controllers while the two-step method
in general is not.

However, from the discussion in Section 5.4 we know that if, for example, the refer-
ence signal has been generated by filtering white noise through a minimum phase filter,
then Φur(z)

Φr(z) will be causal since the nonlinear mapping from r to u is causal and r and
w are independent. This means that if a minimum phase generated input signal is used,
there is no need to use a noncausal S(z), and hence the two-step method can be applied
instead of the projection method.

One advantage of the two-step method is that S(z) can be a rational function. In the
projection method in Forssell and Ljung (2000), S(z) is a noncausal FIR model, which
means that the true sensitivity function usually cannot be modeled exactly even when the
controller is linear. With this observation in mind, it seems that the two-step method is at
least an as good alternative for closed-loop identification of an LTI system with nonlinear
feedback as the projection method, provided that the reference signal has been designed
such that Φur(z)

Φr(z) will be stable and causal independently of the structure of the controller.
One example of a class of such reference signals is minimum phase filtered white noise.

Finally, it should be emphasized that the discussion here is based on properties of OE-
LTI-SOEs and that it hence is valid mostly for large data sets. As a matter of fact, the use
of a noncausal S(z) in the projection method might be useful for smaller data sets also in
cases where S(z) asymptotically will be causal (Forssell and Ljung, 2000).
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5.6 LTI-SOEs with a General Error Model

In the previous section, it was shown that regular OE-LTI-SOEs exhibit a number of
interesting properties. It is thus a legitimate question whether these input signals also
generate GE-LTI-SOEs with special properties.

Hence, we will now shift focus and discuss GE-LTI-SOEs of nonlinear systems with
input signals such that the OE-LTI-SOE is regular. In Example 4.3, it was shown that
in general G0,OE (z) and G0,GE (z) are not equal even for open-loop nonlinear systems.
However, when the OE-LTI-SOE is regular, it follows that G0,GE (z) will be equal to
G0,OE (z). This is shown in the following theorem.

Theorem 5.4
Consider a nonlinear system with input u(t) and output y(t) such that Assumptions A1,
A2 and A4 are fulfilled. Assume that the input signal is such that the OE-LTI-SOE is
regular, i.e., that it can be written as

G0,OE (z) =
Φyu(z)
Φu(z)

. (5.20)

Assume also that

Φη0(z) = Φy(z)−G0,OE (z)Φu(z)G0,OE (z−1)

from (5.15b) has a canonical spectral factorization

Φη0(z) = Lη0(z)rη0Lη0(z
−1) (5.21)

with rη0 > 0. Then the GE-LTI-SOE is

G0,GE (z) = G0,OE (z) =
Φyu(z)
Φu(z)

, (5.22a)

H0,GE (z) = Lη0(z). (5.22b)

Proof: Let

T (z) =
(

L(z) 0
z−1G0,OE (z)L(z) Lη0(z)

)
,

Qζ =
(
ru 0
0 rη0

)
,

where L(z) and ru are factors in the canonical spectral factorization of Φu(z) according
to (4.1). Then

T (z)QζTT (z−1) =
(

L(z) 0
z−1G0,OE (z)L(z) Lη0(z)

)(
ru 0
0 rη0

)
·
(
L(z−1) zG0,OE (z−1)L(z−1)

0 Lη0(z
−1)

)
=
(

Φu(z) zΦuy(z)
z−1Φyu(z) Φy(z)

)
= Φζ(z),
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where we have used (5.20) in the second equality. Since T (z) and

T−1(z) =

(
1

L(z) 0

− z−1G0,OE (z)
Lη0 (z)

1
Lη0 (z)

)

both are analytic in {z ∈ C | |z| ≥ 1}, T (∞) = I and Qζ � 0, we have found the
canonical spectral factorization of Φζ(z), and from (4.32) in Theorem 4.5 we obtain

G0,GE (z) =
zT21(z)
T11(z)

= G0,OE (z),

H0,GE (z) =
T11(z)T22(z)− T12(z)T21(z)

T11(z)
= Lη0(z).

Theorem 5.4 shows that G0,OE (z) and G0,GE (z) will be equal if the OE-LTI-SOE
is regular and that H0,GE (z) in this case will be equal to the canonical spectral factor of
Φη0(z). Hence, the GE-LTI-SOE will be stable when the OE-LTI-SOE is regular and a
canonical spectral factorization of a matrix-valued z-spectrum will not be needed for the
calculation of the GE-LTI-SOE. Furthermore, Theorem 5.4 can be used to describe how
even and odd nonlinearities will affect the GE-LTI-SOE.

Consider an NFIR system with an input signal that has even probability density func-
tions and is such that Lemmas 5.2 and 5.3 and Theorem 5.4 can be applied. In this case,
G0,GE (z) = G0,OE (z) will, by Lemma 5.2, depend only on the odd nonlinearities. Fur-
thermore, (5.6) shows that

Φη0(z) = Φdo
(z) + Φye

(z) + Φw(z).

Hence, (5.22b) implies that there will be three different contributions to H0,GE (z). The
first, Φdo(z), is the z-spectrum of the unmodeled odd nonlinear part of the system output,
while Φye

(z) and Φw(z) are the z-spectra of the contributions to the output from the
even part and the noise, respectively. Furthermore, Theorem 5.4 also gives the following
corollary.

Corollary 5.1
Consider a nonlinear system with input u(t) and output y(t) such that Assumptions A1,
A2 and A4 are satisfied. Assume that the input signal is such that the OE-LTI-SOE is
regular. Assume also that

Φη0(z) = Φy(z)−G0,OE (z)Φu(z)G0,OE (z−1)

from (5.15b) has a canonical spectral factorization

Φη0(z) = Lη0(z)rη0Lη0(z
−1)

with rη0 > 0. Then it follows that ε0(t) (see (4.47)) has the following properties

Φε0u(z) = 0, (5.23a)
Φε0(z) = rη0 . (5.23b)



5.6 LTI-SOEs with a General Error Model 83

Proof: The fact thatG0,GE (z) = G0,OE (z) according to Theorem 5.4 implies that (4.47)
can be rewritten as

ε0(t) = H−1
0,GE (q)(y(t)−G0,GE (q)u(t))

= H−1
0,GE (q)(y(t)−G0,OE (q)u(t)) = H−1

0,GE (q)η0(t).

Using Lemmas 2.1 and 5.4, this gives

Φε0u(z) = H−1
0,GE (z)Φη0u(z) = 0,

Φε0(z) = H−1
0,GE (z)Φη0(z)H

−1
0,GE (z−1) = rη0 ,

where (5.21) and (5.22b) have been used in the last equality. The results in (5.23) have
thus been shown.

Corollary 5.1 shows that residual analysis without any further considerations can be
used as a validation method also for GE-LTI-SOEs when the corresponding OE-LTI-SOEs
are regular since there will be no spurious correlations between u(t) and past ε0(t − k).
In addition, this shows that there will be no need for a closed-loop interpretation of the
GE-LTI-SOE in this case.

In this chapter, the basic properties of OE-LTI-SOEs have been discussed. It has been
shown that an OE-LTI-SOE is independent of output additive noise that is uncorrelated
with the input and the noise-free output. Furthermore, it has been shown that the OE-LTI-
SOE often depends only on the odd nonlinearities in a system and that it can be viewed
as a linear operator. A class of input signals guaranteeing that the OE-LTI-SOE will be
regular, and some properties that the OE-LTI-SOE and GE-LTI-SOE exhibit in this case
have also been discussed. In the next chapter, we will turn our attention to NFIR systems
with separable inputs.
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6
NFIR Systems with Separable Inputs

Nonlinear finite impulse response (NFIR) systems are systems that can be written as

y(t) = f((u(t− k))Mk=0) + w(t) (6.1)

for some M ∈ N. The important special case of a static nonlinearity is obtained for
M = 0. Subsystems consisting of static nonlinearities are common in applications. For
example, many control systems contain various types of sensor and input nonlinearities
that often can be described as static. Furthermore, many nonlinear systems can be approx-
imated by NFIR models. However, we will not discuss such nonlinear approximations
here but instead consider how an NFIR system can be approximated by an LTI model.

Intuitively, the natural LTI approximation of an NFIR system is an FIR model. How-
ever, the mean-square error optimal LTI approximation, i.e., the OE-LTI-SOE, of such a
system will in general be an LTI system with an infinite impulse response. This might
not be a problem if the impulse response length M of the NFIR system is known, since
it is always possible to estimate an FIR model with the same impulse response length in
this case. Although this model might not be the optimal LTI model, it will at least have
a structure that probably can be viewed as reasonable compared to the structure of the
nonlinear system.

However, in the more realistic case that M is unknown, the structure of the OE-LTI-
SOE becomes important. If an NFIR system with impulse response length M has an OE-
LTI-SOE that is an FIR model with impulse response length M , it will be rather easy to
find an appropriate linear FIR model of this system. When the number of measurements
tends to infinity, the parameters of a chosen FIR model will converge to the parameter
values given by Theorem 4.2. The problem of finding the impulse response length M
of the NFIR system can thus be solved by estimating linear FIR models with different
impulse response lengths. If too large an impulse response length is chosen in the model,
the parameters that correspond to the extra terms in the impulse response will simply
approach zero asymptotically, just as if the NFIR system would have been a linear FIR
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system. Hence, it is possible to estimate M without more effort than if the true system
would have been linear.

On the other hand, if an NFIR system with impulse response length M has an OE-
LTI-SOE with an infinite impulse response length, it will be impossible to estimate M
using only linear approximations. In this case, an increase of the impulse response length
in an estimated FIR model will reduce the variance of the model residuals and make the
model a better approximation of the OE-LTI-SOE according to Theorem 4.2. Since the
OE-LTI-SOE has an infinite impulse response, no information about M can be derived
from the FIR approximations of it.

With the previous discussion in mind, it seems that it often should be desirable to pre-
serve the finite impulse response property when an NFIR system is approximated by its
OE-LTI-SOE. This is the main topic of this chapter and it turns out that this issue is related
to the notion of separable processes. An overview of the theory for separable processes
was given in Section 2.4. In this chapter, it will be shown that some random multisines are
separable. Since random multisines are a common choice of input signal in identification
experiments, this is a theoretical result with practical consequences. Here, the usefulness
of random multisines will be illustrated in the case of identification of Hammerstein sys-
tems. Furthermore, the notion of higher order separability will be introduced and it will
be shown that this type of separability gives a necessary and sufficient condition on the
input signal for the OE-LTI-SOE of an arbitrary NFIR system to be an FIR model.

6.1 Separability

As was shown in (2.31) in Section 2.4, it is easy to show that separability is a sufficient
condition for the invariance property

Ryu(τ) = b0Ru(τ), ∀τ ∈ Z

from (2.30) to hold. Using z-spectra, the invariance property can be written

Φyu(z) = b0Φu(z),

and thus, from Corollary 4.1, it follows that the OE-LTI-SOE of a static nonlinearity is
regular and equal to the constant b0. Hence, for a separable input, the OE-LTI-SOE of
a static nonlinearity is static. This result was shown in Nuttall (1958a) and it will be
generalized to NFIR systems in Section 6.3.

Although a number of separable processes can be found in literature (Nuttall, 1958a;
McGraw and Wagner, 1968), it seems that the problem of how to construct separable
processes has not been extensively studied. The generation of a particular nontrivial sep-
arable process is described in the following example.

Example 6.1
Consider a process u defined as

u(t) = e(t) + e(t− 1),

where e is a white process with exponential distribution over the interval [−1,+∞) such
that E(e(t)) = 0 and E(e(t)2) = 1. These properties follow if each random variable e(t)
has the probability density function p(x) = e−(x+1) for x ≥ −1.
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Since the process e is white, u(t + τ) and u(t) are independent if |τ | > 1. Hence,
E(u(t+ τ)|u(t)) = 0 for |τ | > 1. Furthermore, we have that

E(u(t+ 1)|u(t)) = E(e(t+ 1)|e(t) + e(t− 1))︸ ︷︷ ︸
=0

+E(e(t)|e(t) + e(t− 1))

= E(e(t)|e(t) + e(t− 1)),
E(u(t− 1)|u(t)) = E(e(t− 1)|e(t) + e(t− 1)) + E(e(t− 2)|e(t) + e(t− 1))︸ ︷︷ ︸

=0

= E(e(t− 1)|e(t) + e(t− 1)).

From these expressions we see that u is separable if e is such that

E(e(t)|e(t) + e(t− 1) = c) = E(e(t− 1)|e(t) + e(t− 1) = c) = b · c (6.2)

for some constant b that does not depend on c. We will now show that these equalities
hold.

Let X and Y be two independent random variables with probability density functions

pX(x) =
{
e−(x+1), if x ≥ −1,
0, if x < −1

and

pY (y) =
{
e−(y+1), if y ≥ −1,
0, if y < −1,

and let W = X + Y . Then the joint probability density function for X and W is

pX,W (x,w) = pX(x)pY (w − x) =
{
e−(w+2), if − 1 ≤ x ≤ w + 1,
0, otherwise.

For w ≥ −2, it follows that

pW (w) =

w+1∫
−1

pX,W (x,w) dx =

w+1∫
−1

e−(w+2) dx = (w + 2)e−(w+2)

such that

pW (w) =
{

(w + 2)e−(w+2), if w ≥ −2,
0, if w < −2.

This gives

pX|W=c(x) =

{
pX,W (x,c)
pW (c) = 1

c+2 , if − 1 ≤ x < c+ 1,
0, otherwise

and

E(X|W = c) =

c+1∫
−1

x

c+ 2
dx =

c

2
. (6.3)
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Replacing W with e(t) + e(t − 1) and X with either e(t) or e(t − 1) in (6.3) shows
that (6.2) holds with b = 1/2. Hence,

E(u(t+ 1)|u(t) = c) = E(u(t− 1)|u(t) = c) =
c

2
and u is thus separable.

In the previous example, a separable process was obtained by passing a white noise pro-
cess through a linear FIR filter, i.e., by linear filtering of a separable process. Alterna-
tively, this example can be viewed as an example where the sum of two dependent sep-
arable processes is separable. Just like the sum of two independent separable processes
is not separable in general (cf. Section 2.4 or Nuttall (1958a)), linear filtering of a sepa-
rable process will often result in a nonseparable process. For example, the input signal in
Example 4.2 is not separable since it gives a nonstatic OE-LTI-SOE of a static nonlinear
system. However, this input signal was generated by linear filtering of a white, and thus
separable, signal.

The observation that separability often is lost by linear filtering is an important result
that must be considered when a separable process is used in an identification experiment.
For example, most of the separable processes in Nuttall (1958a) will not be separable
after they have passed through a linear subsystem. However, Gaussian processes, which
are a subset of the class of separable processes, have the advantage that the Gaussianity,
and thus the separability, will not be affected by linear filtering. This property makes
these processes particularly useful for some types of identification problems, as will be
described later in Chapter 7.

Separable processes are useful not only for LTI approximations of static nonlinearities
but also for LTI approximations of Hammerstein systems. As has been mentioned previ-
ously in Section 3.2.2, the initial identification of the LTI part of a Hammerstein system
without considering the nonlinearity is an important step in many methods. In the follow-
ing theorem, it is shown that a scaled version of the LTI subsystem is an OE-LTI-SOE of
the system if the input is separable.

Theorem 6.1
Consider a Hammerstein system

y(t) = GL(q)v(t) + w(t), (6.4a)
v(t) = f(u(t)), (6.4b)

whereGL(q) is a stable and causal LTI system and where w(t) is measurement noise. As-
sume that Assumptions A1 and A2 hold if the input is nonperiodic and that Assumption A3
holds if it is periodic. Furthermore, assume that the input is separable and that Assump-
tion A5 holds. Then b0GL(q) with b0 = E

(
f(u(t))u(t)

)
/Ru(0) is an OE-LTI-SOE of

this system.

Proof: The invariance property

Rvu(τ) = E
(
f(u(t))u(t− τ)

)
= E

(
f(u(t))E

(
u(t− τ)|u(t)

))
=
Ru(τ)
Ru(0)

E
(
f(u(t))u(t)

)
= b0Ru(τ) (6.5)
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holds since u(t) is separable. Here, Lemma 2.2 has been used in the third equality. The
condition that G0,OE should minimize

E
(
(y(t)−G(q)u(t))2

)
is equivalent to G0,OE satisfying the Wiener-Hopf condition

Ryu(τ)−
∞∑
k=0

g0,OE(k)Ru(τ − k) = 0, τ ≥ 0. (6.6)

From the system description (6.4a), we have

Ryu(τ)−
∞∑
k=0

gL(k)Rvu(τ − k) = 0, ∀τ ∈ Z

and inserting (6.5) gives

Ryu(τ)−
∞∑
k=0

b0gL(k)Ru(τ − k) = 0, ∀τ ∈ Z.

Hence, b0GL(q) is an OE-LTI-SOE of the system.

Note that for a nonperiodic input and output satisfying Assumptions A1 and A2, the
model b0GL(q) is the unique OE-LTI-SOE of the system.

6.2 Separable Random Multisines

Although the separability of a single random phase sinusoid was shown in Nuttall (1958a),
there does not seem to be any results about separability of random multisines in literature.
However, it turns out that such signals are separable if all amplitudes are constant and
equal. This result is proven in the following lemma.

Lemma 6.1
A random multisine

u(t) =
Q∑
k=1

Ak cos(ωkt+ ψk),

where all Ak are constants, Ak = Ā, and all ψk are independent random variables with
uniform distribution on the interval [0, 2π), is separable.

Proof: The signals

uk(t) = Ak cos(ωkt+ ψk), k = 1, 2, . . . , Q

are independent and

fuk,1(ξ1) = ful,1(ξ1) = J0(Āξ1),

σ2
k = σ2

l =
Ā2

2
for all k, l ∈ {1, 2, . . . , Q} from Lemma 2.3. Hence, u(t) is separable according to
Theorem 2.2.
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Besides the fact that the separability of random multisines is theoretically interesting,
it gives a mathematical explanation to why these signals have turned out to be so useful for
identification of Hammerstein systems in previous works (Crama and Schoukens, 2001;
Crama et al., 2004; Crama and Schoukens, 2004, 2005).

For a separable random multisine, Theorem 6.1 shows that the LTI part of the system
can be estimated without compensating for or estimating the nonlinearity at the input of
the system. Hence, the model that minimizes the cost function VNE ,N defined in (2.8)
will usually be a good approximation of the LTI subsystem if the number of experiments
NE is large. Furthermore, Theorem 6.1 shows that the number of excited frequencies
does not affect the fact that the frequency response of the LTI subsystem can be estimated
consistently at these frequencies without considering the nonlinearity. This result is veri-
fied numerically in the following example.

Example 6.2
Consider the Hammerstein system

y(t) = GL(q)v(t) =
1.6− 1.6q−1 + 0.4q−2

1− 1.56q−1 + 0.96q−2
v(t), (6.7a)

v(t) = f(u(t)) = u(t)3, (6.7b)

with the input

u1(t) =
6∑
k=1

cos(ωkt+ ψk), (6.8)

where ωk = 2πk/40 and where ψk are independent random variables with uniform distri-
bution on the interval [0, 2π). 500 realizations of the phases have been generated and an
input signal with 400 samples has been constructed for each realization. For each input,
an identification experiment has been performed where the last periods (40 samples) of
the input and output signals have been collected.

Based on the 500 data sets, each consisting of 40 input and output measurements, a
nonparametric frequency response estimate Ĝ(eiωk) has been computed using the least-
squares solution (2.13) that minimizes the cost function VNE ,N in (2.8). A scaled version
of this estimate is shown in Figure 6.1 together with the linear part of the system. As
can be seen in this figure, the nonparametric frequency response estimate is very close to
being a scaled version of GL(eiω). Actually, the relative errors

ρk =
|Ĝ(eiωk)/ĉ0 −GL(eiωk)|

|GL(eiωk)|
, k = 1, 2, . . . , 6,

where

ĉ0 =
1
6

6∑
k=1

|Ĝ(eiωk)|
|GL(eiωk)|

,

are less than 4% here. An identical identification experiment has been performed with the
input

u2(t) =
6∑
k=1

25−k cos(ωkt+ ψk).
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Figure 6.1: The frequency response of the linear part GL(q) of the Hammerstein
system from Example 6.2 (solid line) and a scaled version of the nonparametric
frequency response estimate (circles).

However, in this case the relative errors were 27%, 5%, 12%, 12%, 12% and 17%, respec-
tively, i.e., significantly larger than for the separable random multisine. Furthermore, for
u2(t), the relative errors do not decrease if the number of phase realizations is increased.
Hence, it seems that for this input, the best LTI approximation is not a scaled version of
GL(q).

Example 6.2 illustrates the main benefit of using separable random multisines for Ham-
merstein system identification since it shows that for such an input signal, it is rather easy
to obtain good estimates of the LTI part of the system. Furthermore, the example indicates
that not all random multisines are separable.

6.3 Higher Order Separability

Since separability of an input signal is such a useful property for the analysis of systems
with static nonlinearities, it is interesting to investigate if this notion can be generalized.
It turns out that it is actually rather straightforward to define a more general type of sepa-
rability.

6.3.1 Definition and Basic Properties

As a matter of fact, the type of separability in Definition 2.6 should be denoted separability
of order one to distinguish it from a more general type of separability. However, in case
the order of separability is obvious from the context, we will continue to say that a process
is separable whenever there is no risk for ambiguities.

Separability of a process means that certain conditional expectations are linear. A
more general version of the previous definition of separability can be written as follows.

Definition 6.1 (Separability of order M + 1). Consider an integer M ≥ 0 and a sta-
tionary stochastic process u with zero mean. This process is separable of order M + 1
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if

E
(
u(t− τ)|u(t), u(t− 1) . . . , u(t−M)

)
=

M∑
i=0

aτ,iu(t− i), ∀τ ∈ Z, (6.9)

i.e., if the conditional expectation is linear in u.

Obviously, the previous definition of first order separability is a special case of Defi-
nition 6.1.

As was mentioned in Chapter 2, the notion of separability of order one is discussed
in detail in Nuttall (1958a) and it is also mentioned briefly (on page 55) that this notion
might be extended to separability of higher orders by considering integrals like

∞∫
−∞

xtp(xt, xt−τ1 , xt−τ2) dxt.

However, no further conclusions are drawn in Nuttall (1958a) and to the author’s knowl-
edge, no such extension has been made elsewhere.

It is not obvious that all first order separable processes are separable of higher orders
as well. However, there are at least a few such cases. For example, since (6.9) is a well-
known property of Gaussian signals (see, for example, Brockwell and Davis, 1987, p. 64),
it immediately follows that such signals are separable of order M + 1 for any M ∈ N.
Furthermore, it is easy to see that white, possibly non-Gaussian, signals satisfy (6.9) too.

It is straightforward to show that higher order separability implies lower order sepa-
rability.

Theorem 6.2 (Separability of different orders)
If a process u is separable of order M + 1, it is separable of order 1, 2, . . . ,M too.

Proof: It holds that

E
(
u(t− τ)|u(t), u(t− 1) . . . , u(t−M + 1)

)
= Eu(t−M)

(
E
(
u(t− τ)|u(t), u(t− 1) . . . , u(t−M)

))
= Eu(t−M)

( M∑
i=0

aτ,iu(t− i)
)

=
M−1∑
i=0

aτ,iu(t− i), ∀τ ∈ Z.

Hence, the process is separable of order M . The result follows by induction.

6.3.2 Higher Order Separability and OE-LTI-SOEs

We will here consider NFIR systems (6.1) with input signals u(t) that satisfy the condi-
tions in Assumption A1, i.e., real-valued inputs with zero mean, an exponentially bounded
covariance function and a z-spectrum with a canonical spectral factorization. For each
choice of such a stochastic process u, let Du be a class of Lebesgue integrable functions
such that

Du = {f : RM+1 → R | E
(
f((u(t− k))Mk=0)

)
= 0,

E
(
f((u(t− k))Mk=0)

2
)
<∞,

Ryu(τ) = E
(
f((u(t− k))Mk=0)u(t− τ)

)
exists ∀τ ∈ Z}.
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This class of functions is a straightforward generalization of the corresponding definition
for functions on R in (2.32). Note that the conditions in the definition of Du are weaker
than the related conditions on the output signal in Assumption A2. Here, we will use the
notation

RU =


Ru(0) Ru(1) . . . Ru(M)
Ru(1) Ru(0) . . . Ru(M − 1)

...
...

Ru(M) Ru(M − 1) . . . Ru(0)

 , (6.10)

RY U =
(
Ryu(0) Ryu(1) . . . Ryu(M)

)T
.

We will here discuss under which conditions the OE-LTI-SOE of an NFIR system
will be an FIR model. In this discussion, we will need the notion of the mean-square error
optimal FIR model of a system. The following lemma is a classic result (see, for example,
Kailath et al., 2000, Theorems 3.2.1 and 3.2.2) and holds for each fixed choice of u. It is
included here for the sake of completeness.

Lemma 6.2 (FIR approximation)
Consider an input signal u that fulfills the conditions in Assumption A1 and for which RU

is positive definite (RU � 0). Then for each NFIR system f in the corresponding class
Du, there exists a unique linear FIR model

G0,FIR(z) =
M∑
k=0

b̄f (k)z−k

of length M that is an optimal FIR approximation of length M in the mean-square error
sense. This FIR model has parameters

B̄f =
(
b̄f (0) b̄f (1) . . . b̄f (M)

)T = R−1
U RY U (6.11)

and satisfies

Ryu(τ) =
M∑
k=0

b̄f (k)Ru(τ − k), τ = 0, 1, . . . ,M. (6.12)

Proof: The parameters B̄f in the optimal FIR model of length M are obtained by mini-
mizing

E(

(
f((u(t− k))Mk=0)−

M∑
k=0

b(k)u(t− k)

)2

)

with respect to B. Differentiating this expression with respect to b(i) gives the following
equations for the stationary points of the mean-square error criterion

−2

(
Ryu(i)−

M∑
k=0

b̄f (k)Ru(i− k)

)
= 0, i = 0, 1, . . . ,M.

This can also be written as
RU B̄f = RY U

and (6.11) and (6.12) follows readily from this expression.



94 6 NFIR Systems with Separable Inputs

From (6.12) we see that G0,FIR can explain the cross-covariance function Ryu(τ)
for τ = 0, 1, . . . ,M . However, sometimes it can actually explain the complete cross-
covariance function, i.e.,

Ryu(τ) =
M∑
k=0

b̄f (k)Ru(τ − k), ∀τ ∈ Z (6.13)

or, equivalently,
Φyu(z) = G0,FIR(z)Φu(z).

In this case, we know from Corollary 4.1 that G0,FIR is not only the mean-square error
optimal FIR approximation of length M of the system, but also the OE-LTI-SOE of the
system. It turns out that this will always be true if the input process is separable of order
M + 1 and f ∈ Du.

First, we will here consider noise-free NFIR systems, i.e., nonlinear systems with
impulse response lengths M ≥ 0 that can be written as

y(t) = f((u(t− k))Mk=0).

We will use the following notation

RU,τ =
(
Ru(τ) Ru(τ − 1) . . . Ru(τ −M)

)T
,

and we will assume that RU (see (6.10)) is a positive definite matrix (RU � 0) such that
the vector

Cτ =
(
cτ,0 cτ,1 . . . cτ,M

)T = R−1
U RU,τ (6.14)

is well-defined.
We will now show that the definition of separability implies that the constants aτ,i

from Definition 6.1 satisfy aτ,i = cτ,i.

Lemma 6.3
Consider a signal u which is separable of order M + 1, i.e., that (6.9) holds for some
constants aτ,i. Then it holds that

Aτ = Cτ = R−1
U RU,τ , (6.15)

where
Aτ =

(
aτ,0 aτ,1 . . . aτ,M

)T
.

Proof: For k = 0, 1, . . . ,M , Definition 6.1 gives

Ru(τ − k) = E
(
u(t− k)u(t− τ)

)
= E

(
E
(
u(t− k)u(t− τ)|u(t), u(t− 1) . . . , u(t−M)

))
= E

(
u(t− k)E

(
u(t− τ)|u(t), u(t− 1) . . . , u(t−M)

))
=

M∑
i=0

aτ,iE
(
u(t− k)u(t− i)

)
=

M∑
i=0

aτ,iRu(k − i).
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The previous expression can also be written as

RUAτ = RU,τ .

This shows that (6.15) holds.

The previous lemma shows that separability of order M + 1 is equivalent to that the
property

E(u(t− τ)|u(t), u(t− 1) . . . , u(t−M)) =
M∑
i=0

cτ,iu(t− i), ∀τ ∈ Z (6.16)

holds. In the next lemma, we will show that separability of u is a necessary and sufficient
condition for the equality (6.13) to hold for all τ ∈ Z and for all f ∈ Du.

Lemma 6.4 (Separability of order M + 1)
Consider a fixed M ≥ 0 and a certain choice of input signal u that fulfills the conditions
in Assumption A1, and for which RU � 0 and E(|u(t)|) < ∞. Let B̄f denote the
parameters of the mean-square error optimal FIR approximation of length M of each
f ∈ Du, i.e., B̄f = R−1

U RY U according to Lemma 6.2. Then

Ryu(τ) =
M∑
k=0

b̄f (k)Ru(τ − k), ∀τ ∈ Z and ∀f ∈ Du (6.17)

if and only if u is separable of order M + 1.

Proof: Using (6.14) and (6.11), it follows that

M∑
k=0

b̄f (k)Ru(τ − k) = B̄Tf RU,τ = RT
Y UCτ =

M∑
i=0

cτ,iRyu(i). (6.18)

IF: Assume that u is separable of order M + 1, i.e., that (6.16) holds. By the construction
of B̄f , the equality (6.17) already holds for τ = 0, 1, . . . ,M for all f ∈ Du (cf. (6.11)).
Take an arbitrary f ∈ Du and let y(t) = f((u(t−k))Mk=0). Furthermore, take an arbitrary
τ > M or τ < 0. Then it follows that

Ryu(τ) = E
(
y(t)u(t− τ)

)
= E

(
E
(
y(t)u(t− τ)|u(t), u(t− 1), . . . , u(t−M)

))
= E

(
y(t)E

(
u(t− τ)|u(t), u(t− 1), . . . , u(t−M)

))
=

M∑
i=0

cτ,iE(y(t)u(t− i)) =
M∑
i=0

cτ,iRyu(i) =
M∑
k=0

b̄f (k)Ru(τ − k),

where the third equality follows from the fact that y(t) depends only on u(t), u(t −
1), . . . , u(t −M) while the fourth equality follows from (6.16) and the last from (6.18).
Since both f and τ were arbitrary, (6.17) holds for all τ ∈ Z and for all f ∈ Du.
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ONLY IF: Assume that (6.17) holds for a particular u. Take an arbitrary τ > M or τ < 0.
Using (6.18), (6.17) gives the equality

∫
RM+1

f(xt, . . . , xt−M )
( ∞∫
−∞

xt−τpτ (xt, . . . , xt−M , xt−τ ) dxt−τ

−
M∑
i=0

cτ,ixt−ip(xt, . . . , xt−M )
)
dxt . . . dxt−M = 0, ∀f ∈ Du, (6.19)

where p and pτ are the joint probability density functions of

(u(t), u(t− 1), . . . , u(t−M))T

and
(u(t), u(t− 1), . . . , u(t−M), u(t− τ))T ,

respectively. Let

vτ (xt, . . . , xt−M ) =

∞∫
−∞

xt−τpτ (xt, . . . , xt−M , xt−τ ) dxt−τ

−
M∑
i=0

cτ,ixt−ip(xt, . . . , xt−M )

and define a function

f0(xt, . . . , xt−M ) = sign(vτ (xt, . . . , xt−M ))− µ0,

where
µ0 = E

(
sign

(
vτ ((u(t− k))Mk=0)

))
.

Since

E
(
f0((u(t− k))Mk=0)

)
= 0,

E
(
f0((u(t− k))Mk=0)

2
)
<∞

and

|E
(
f0((u(t− k))Mk=0)u(t− σ)

)
|

= |E
(
sign

(
vτ ((u(t− k))Mk=0)

)
u(t− σ)

)
− µ0 E(u(t− σ))︸ ︷︷ ︸

=0

|

= |E
(
sign

(
vτ ((u(t− k))Mk=0)

)
u(t− σ)

)
|

≤ E
(
|sign

(
vτ ((u(t− k))Mk=0)

)
u(t− σ)|

)
≤ E(|u(t− σ)|) <∞, ∀σ ∈ Z,
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it follows that f0 ∈ Du. Hence, (6.19) holds for f = f0 and this implies that∫
RM+1

|vτ (xt, . . . , xt−M )| dxt . . . dxt−M

− µ0 E(u(t− τ))︸ ︷︷ ︸
=0

+µ0

M∑
i=0

cτ,i E(u(t− i))︸ ︷︷ ︸
=0

= 0

⇒
∫

RM+1

|vτ (xt, . . . , xt−M )| dxt . . . dxt−M = 0

⇒ vτ (xt, . . . , xt−M ) = 0 almost everywhere.

The conditional probability density function of u(t − τ) given u(t) = xt, u(t − 1) =
xt−1, . . . , u(t−M) = xt−M is

pτ,c(xt−τ ) =
pτ (xt, . . . , xt−M , xt−τ )

p(xt, . . . , xt−M )

if p(xt, . . . , xt−M ) > 0. Hence, the fact that

vτ (xt, . . . , xt−M ) = 0

implies that

∞∫
−∞

xt−τpτ,c(xt−τ ) dxt−τ =
M∑
i=0

cτ,ixt−i

or, equivalently, that (6.16) holds for the chosen τ . Since τ was arbitrary, (6.16) follows
and u is thus separable of order M + 1.

Lemma 6.4 is an extension of the corresponding theorem about separability of order
one in Nuttall (1958a). Just like this classic result can be used to study linear approxi-
mations of static nonlinearities, Lemma 6.4 can be used to characterize exactly for which
input signals the OE-LTI-SOE of an arbitrary NFIR system will be an FIR model.

Besides the results about mean-square error optimal stable and causal LTI predictors,
which here have been used to define OE-LTI-SOEs, classic Wiener filtering theory also
contains results about mean-square error optimal stable noncausal LTI predictors, usually
known as Wiener smoothers or noncausal Wiener filters (see, for example, Kailath et al.,
2000, Theorem 7.3.1). For a nonlinear system with input u and output y that satisfy
Assumptions A1 and A2, these results show that the best, in mean-square error sense,
stable but possibly noncausal LTI approximation of this system is given by the ratio

Φyu(z)
Φu(z)

. (6.20)

A simple example of a causal nonlinear system with an input such that (6.20) becomes
noncausal can be found in Forssell and Ljung (2000). However, for a separable input, this
cannot happen since the following result holds.
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Theorem 6.3
Consider a fixed M ≥ 0 and a certain input signal u that fulfills the conditions in As-
sumption A1, and for which RU � 0 and E(|u(t)|) <∞. Consider NFIR systems

y(t) = ynf (t) + w(t) = f((u(t− k))Mk=0) + w(t),

where the noise w(t) is such that Assumption A5 is fulfilled for all f . Then the OE-LTI-
SOE of such a system will be well-defined and equal to a linear FIR model

G0,OE (z) =
Φyu(z)
Φu(z)

=
M∑
k=0

b̄f (k)z−k, (6.21)

where B̄f = R−1
U RY U for all f ∈ Du, if and only if u is separable of order M + 1.

Proof: Assumption A5 gives Φyu(z) = Φynf u(z). Hence, the OE-LTI-SOE is not influ-
enced by the noise term w(t). Since the input satisfies the conditions in Lemma 6.4, we
have that

Φynf u(z) =
M∑
k=0

b̄f (k)z−kΦu(z), (6.22)

where B̄f = R−1
U RY U for all f ∈ Du, if and only if u is separable of order M + 1. If

(6.22) holds for all f ∈ Du, the NFIR systems that correspond to these functions have
outputs that satisfy Assumption A2. Hence, the OE-LTI-SOEs of these NFIR systems are
well-defined and Corollary 4.1 can be applied to show that

G0,OE (z) =
Φynf u(z)
Φu(z)

=
M∑
k=0

b̄f (k)z−k

for all f ∈ Du. The theorem has thus been shown.

Theorem 6.3 shows that separability of order M + 1 is a necessary and sufficient
condition for the OE-LTI-SOE to be equal to an FIR model of length M for all NFIR
systems defined by functions in Du. Furthermore, this theorem shows that even if we
consider noncausal LTI models, a separable input will give an optimal model that is a
causal FIR model.

In many cases, it is possible to shed some light on a theoretical result by interpreting
it in a geometrical framework. This can be done also in our case. For a fixed t, we can
view the output y(t) and the components of the input signal u(τ), τ ∈ Z as vectors in
an infinite dimensional inner-product space with the inner product 〈u, v〉 = E(uv) (see
Brockwell and Davis, 1987).

The output from the OE-LTI-SOE of the NFIR system will in this framework be the
orthogonal projection of y(t) into the linear subspace that is spanned by

u(t), u(t− 1), . . . , u(t−∞).

From (6.21) we can draw the conclusion that this projection actually lies in the finite
dimensional linear subspace that is spanned by

u(t), u(t− 1), . . . , u(t−M)

if u is separable. This is a compact and intuitive way to describe the theoretical results
presented previously in this section.
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6.3.3 Identification of Generalized Hammerstein Systems

Just like first order separability can be used when a Hammerstein system is approximated
by an LTI model, higher order separability can be used to characterize the OE-LTI-SOE of
a more general class of systems that we will call generalized Hammerstein systems. These
systems consist of an NFIR system followed by an LTI system and the OE-LTI-SOE of
such a system with a separable input is described in the following theorem.

Theorem 6.4
Consider a generalized Hammerstein system

y(t) = GL(q)v(t) + w(t), (6.23a)

v(t) = f((u(t− k))Mk=0), (6.23b)

where GL(q) is a stable and causal LTI system and where w(t) is measurement noise.
Assume that the input to this system is separable of orderM+1 and that Assumptions A1,
A2 and A5 hold. Then

G0,OE (q) = GL(q)B(q), (6.24)

where

B(q) =
M∑
k=0

b̄f (k)q−k

and B̄f = R−1
U RV U .

Proof: Assumption A5 implies that

Φyu(z) = GL(z)Φvu(z)

and Lemma 6.4 gives
Φvu(z) = B(z)Φu(z).

Hence,
Φyu(z) = GL(z)B(z)Φu(z)

and (6.24) follows from Corollary 4.1.

Since B(q) is an FIR model, the previous theorem shows that the denominator of
GL(q) can be consistently estimated without compensating for the NFIR subsystem.

The focus of this chapter has been on FIR approximations of NFIR systems. The
separability of a class of random multisines has been shown. Furthermore, it has been
shown that separability of orderM+1 is a necessary and sufficient condition on the input
signal for the OE-LTI-SOE of any NFIR system in a rather wide class of systems to be an
FIR model. In the next chapter, NFIR systems with Gaussian inputs will be studied and it
will be shown that a couple of additional useful properties hold for Gaussian inputs.
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7
NFIR Systems with Gaussian Inputs

Random variables and processes with Gaussian distributions play a rather special role
in probability theory and applications. They exhibit a large number of properties that
simplify many statistical problems or make the solutions to the problems more general.
One interesting property that holds if two random variables have a simultaneous Gaussian
distribution, is that these variables are independent if and only if they are uncorrelated.

This property implies that a Gaussian process u, whose z-spectrum has a canonical
spectral factorization, can always be viewed as if it has been generated by filtering white
Gaussian noise through a minimum phase LTI filter. This results follows from the fact that
any signal can be viewed as if it has been generated by filtering an uncorrelated signal
with a minimum phase filter. Hence, the OE-LTI-SOE of an arbitrary causal nonlinear
system with a Gaussian input will be

G0,OE (z) =
Φyu(z)
Φu(z)

provided that the input and output signals fulfill the conditions in Theorem 5.2. This
implies that all properties from Sections 5.5 and 5.6 will hold also for Gaussian input
signals. However, in this chapter we will show that OE-LTI-SOEs for Gaussian inputs
also have properties that other minimum phase generated inputs do not have.

For example, a Gaussian process is separable of any order. This observation was made
in the previous chapter and implies that for an NFIR system with a Gaussian input, the
cross-covariance function between y and u can always be written as in (6.13). This result
is a kind of generalization of Bussgang’s theorem (Theorem 3.1) to NFIR systems. The
reason why (6.13) is not a proper generalization of Bussgang’s theorem is that it is not
obvious that the coefficients b̄f (k) can be calculated as expectations of derivatives of f
in the same way as b0 = E(f ′(u(t))) in Theorem 3.1. In the next section, a generalized
version of Bussgang’s theorem will be shown.

This result implies that the OE-LTI-SOEs of NFIR systems with Gaussian inputs al-
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ways will be linear FIR models and that the coefficients in these models will have a natural
definition in terms of properties of the true system. This relation between the FIR model
parameters and the true system and the fact that, unlike separability, Gaussianity of a
process is preserved under linear filtering turn out to be useful in some applications.

It will be shown later in this chapter that these properties of Gaussian signals can
be used for structure identification of NFIR systems and for identification of classes of
systems that here will be called generalized Wiener-Hammerstein systems. However, first
we will show the generalization of Bussgang’s classic theorem.

7.1 OE-LTI-SOEs of NFIR Systems with Gaussian In-
put Processes

The generalization of Bussgang’s theorem to NFIR systems can be found in, for example,
Scarano et al. (1993) and has also previously been used in the research area of stochastic
mechanical vibrations (see, for example, Atalik and Utku, 1976; Lutes and Sarkani, 1997).
We will however restate the result here under the following technical assumptions.

Assumption A6. Assume that the real-valued functions f(x) and p(x̃), where x ∈ RN
and x̃ = (xT , xN+1)T ∈ RN+1, are such that f ·p, f ′xi

·p and f · x̃i ·p, i = 1, . . . , (N+1)
all belong toL1(RN+1) and that f(x)p(x̃) → 0 when |x̃| → +∞. (Here, f ′xi

is the partial
derivative of f with respect to xi).

Assumption A7. Consider two stationary stochastic processes u and y such that y(t) =
f((u(t−k))Mk=0). Assume that u is a Gaussian process with zero mean and that E(y(t)) =
0. Form random vectors

ωσ = (u(t), u(t− 1), . . . , u(t−M), u(t− σ))T (7.1)

with σ < 0 or σ > M . Let Pσ and pσ denote the covariance matrices and joint probability
density functions of these vectors, respectively. Assume that detPσ 6= 0 and that f and
pσ satisfy Assumption A6 for all σ < 0 or σ > M .

Assumptions A6 and A7 assure that the input is Gaussian and that the function f(x)
does not grow too fast. Assumption A6 holds if, for example, f is a polynomial and p is
a Gaussian probability density function. This assumption is used in the following lemma.

Lemma 7.1
Let

x̃ = (xT , xN+1)T = (x1, x2, . . . , xN , xN+1)T (7.2)

be a jointly Gaussian distributed random vector with zero mean and covariance matrix
C with detC 6= 0. Let f : RN → R be a differentiable function of x with E(f(x)) = 0
and let p denote the probability density function of x̃. Furthermore, assume that f and p
satisfy Assumption A6. Then

E(f(x)x̃) = Cw, (7.3)
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where

w =


E(f ′x1

(x))
E(f ′x2

(x))
...

E(f ′xN
(x))

0

 .

Proof: Factorize C as C = Q̃Q̃T and define a new stochastic vector z as z = Q̃−1x̃.
Then z is jointly normally distributed with zero mean and a covariance matrix that is equal
to the identity matrix. Let Q denote the matrix that is obtained from Q̃ by removing the
last row. Then x = Qz and we get

E(f(x)x̃) = Q̃E(f(x)Q̃−1x̃) = Q̃E(f(Qz)z)

= Q̃


E(∂f(Qz)∂z1

)
E(∂f(Qz)∂z2

)
...

E(∂f(Qz)∂zN+1
)

 = Q̃Q̃T


E(f ′x1

(x))
E(f ′x2

(x))
...

E(f ′xN
(x))

0

 = Cw.

The third equality follows from the fact that E(h(z)zi) = E(h′zi
(z)) when z has an

N(0, I) distribution. This equality holds since

∞∫
−∞

g(r)re−r
2/2 dr =

[
−g(r)e−r

2/2
]∞
r=−∞

+

∞∫
−∞

g′(r)e−r
2/2 dr.

Furthermore, the fourth equality in the derivation above follows from the chain rule, which
can be written here as

∂f(Qz)
∂zi

=
∂f(Qz)
∂x1

Q1i +
∂f(Qz)
∂x2

Q2i + . . .+
∂f(Qz)
∂xN

QNi.

Lemma 7.1 is used in the following generalization of Bussgang’s theorem.

Theorem 7.1
Let y(t) = f((u(t− k))Mk=0) be an NFIR system with a stationary Gaussian process u as
input. Assume that u and y satisfy Assumption A7. Then it follows that

Ryu(τ) =
M∑
k=0

b(k)Ru(τ − k), ∀τ ∈ Z, (7.4)

where
b(k) = E

(
f ′u(t−k)

(
(u(t− j))Mj=0

))
.
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Proof: Choose an arbitrary σ < 0 or σ > M and let

x = (u(t), u(t− 1), . . . , u(t−M))T

and xN+1 = u(t− σ) in Lemma 7.1. Then Equation (7.3) gives

E(y(t)


u(t)

u(t− 1)
...

u(t−M)
u(t− σ)

) =


Ru(0) Ru(1) . . . Ru(M) Ru(σ)

Ru(1) Ru(0) . . . Ru(M−1) Ru(σ−1)

...
...

. . .
...

...
Ru(M) Ru(M−1) . . . Ru(0) Ru(σ−M)

Ru(σ) Ru(σ−1) . . . Ru(σ−M) Ru(0)

w, (7.5)

where wi+1 = E
(
f ′u(t−i)

(
(u(t − k))Mk=0

))
for i = 0, . . . ,M and wM+2 = 0. Equa-

tion (7.5) can be written more compactly as

Ryu(τ) =
M∑
k=0

b(k)Ru(τ − k), τ = 0, 1, . . . ,M, σ,

where b(k) = wk+1 = E
(
f ′u(t−k)

(
(u(t − j))Mj=0

))
. As σ was chosen arbitrarily, this

relation holds for all τ ∈ Z.

Using z-transforms, the result (7.4) can also be written as

Φyu(z) = B(z)Φu(z), (7.6)

where B(z) =
∑M
k=0 b(k)z

−k. This relation can be used to characterize the OE-LTI-
SOE of an NFIR system with a Gaussian input. The OE-LTI-SOE is in general obtained
by the Wiener filter construction in (4.3). However, from (7.6) we see that the ratio
Φyu(z)/Φu(z) is stable and causal if the nonlinear system is an NFIR system with a
Gaussian input. Hence, with Corollary 4.1 in mind we can state the following theorem.

Theorem 7.2
Consider an NFIR system

y(t) = f((u(t− k))Mk=0) + w(t)

with a Gaussian input u(t) such that Assumptions A1, A2, A5 and A7 are satisfied. Then
the OE-LTI-SOE of this system is the linear FIR model

G0,OE (z) =
Φyu(z)
Φu(z)

=
M∑
k=0

b(k)z−k, (7.7)

where
b(k) = E

(
f ′u(t−k)

(
(u(t− j))Mj=0

))
. (7.8)

The fact that (7.8) holds for a Gaussian input but not for a general separable input
might seem like a minor difference. However, it will be shown in the next section that (7.8)
can be rather useful if the purpose of estimating a linear model is to obtain information
about the structure of the nonlinear system. In this case, a Gaussian process is a more
suitable choice of input signal than a general separable process. Furthermore, Gaussianity
of a process is preserved under linear filtering while separability in general is not. An
application where this fact is crucial will also be described in the next section.
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7.2 Applications

The characterization (7.7) of the OE-LTI-SOE of an NFIR system with a Gaussian input
is not only theoretically interesting, but can also be useful in some applications of system
identification. We will here briefly discuss two such applied identification problems.

7.2.1 Structure Identification of NFIR Systems

The most obvious application of the result (7.7) is perhaps to use it for guidance when
an NFIR system is going to be identified. However, linear models are not useful for all
types of NFIR systems. Any NFIR system can be written as a sum of an even and an
odd function. Since all Gaussian probability density functions with zero mean are even
functions, the OE-LTI-SOE of an NFIR system is only influenced by the odd part of the
system (cf. Lemma 5.2).

Hence, we will here only consider odd NFIR systems, i.e., NFIR systems y(t) =
f((u(t− nk − j))Mj=0) where

f((−u(t− nk − j))Mj=0) = −f((u(t− nk − j))Mj=0).

When such an odd NFIR system is going to be identified, it is in general not obvious how
the time delay nk and order M should be estimated in an efficient way. However, if the
input is Gaussian and sufficiently many measurements can be collected, nk and M can
both be obtained from an impulse response estimate. Such an estimate can be computed
very efficiently by means of the least-squares method.

Furthermore, if only a few of the input terms

u(t− nk), u(t− nk − 1), . . . , u(t− nk −M)

enter the system in a nonlinear way, it might be interesting to know which these terms are.
If a nonlinear model of the system is desired, this knowledge can be used to reduce the
complexity of the proposed model. A coefficient b(j) in (7.7) will be invariant of the input
properties if the corresponding input term u(t− j) only affects the system linearly, while
an input term that affects the system in a nonlinear way will have an input dependent
b-coefficient in (7.7).

This fact makes it possible to extract information about which nonlinear terms are
present in the system simply by looking at the differences between FIR models that have
been estimated with different Gaussian input signals. The coefficients that correspond to
an input term that enters the system in a nonlinear way will be different in these estimates,
provided that the covariance functions of the inputs are different. This idea is used in the
following example.

Example 7.1

Consider the nonlinear system y(t) = u(t) + u(t− 1)3 and assume that the input to this
system is Gaussian and such that the conditions in Theorem 7.2 are fulfilled. Then the
OE-LTI-SOE of this system will be

G0,OE (q) = b(0) + b(1)q−1,
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LTI NFIR LTI
u y

Figure 7.1: A generalized Wiener-Hammerstein system.

where b(0) = 1 and b(1) = 3Ru(0). If the variance of the input is changed, b(1) will
change too, while b(0) will remain equal to one. Hence, it is easy to see which input
signal component affects y(t) in a nonlinear way.

An overview of other methods for structure identification of nonlinear systems can be
found in Haber and Unbehauen (1990).

7.2.2 Identification of Generalized Wiener-Hammerstein Systems

It has been mentioned previously in Section 3.2.2 that Bussgang’s theorem has been used
to show important results concerning the identification of Hammerstein and Wiener sys-
tems (see, for example, Billings and Fakhouri, 1982). In principle, these results state that
an estimated LTI model will converge to a scaled version of the linear part of a Hammer-
stein or Wiener system when the number of measurements tends to infinity, provided that
the input is Gaussian. These results simplify the identification of Wiener and Hammer-
stein systems significantly.

Hence, it is interesting to investigate if the result (7.7) about the OE-LTI-SOEs of
NFIR systems can be used to prove similar results for extended classes of systems. In this
section, we will study a type of systems that we will call generalized Wiener-Hammerstein
systems.

More specifically, we will call a nonlinear system a generalized Wiener-Hammerstein
system if it consists of an LTI system n(t) = G1(q)u(t) followed by an NFIR system
v(t) = f((n(t − k))Mk=0) followed by an LTI system y(t) = G2(q)v(t) as is shown in
Figure 7.1. The following corollary to Theorem 7.2 shows that the OE-LTI-SOE of such
a system has a certain structure.

Corollary 7.1
Consider a generalized Wiener-Hammerstein system y(t) = G2(q)v(t) + w(t) where
v(t) = f((n(t − k))Mk=0) and n(t) = G1(q)u(t) and where G1(q) and G2(q) are stable
and causal LTI systems. Assume that u(t) is Gaussian and that u(t) and y(t) fulfill
Assumptions A1, A2 and A5. Assume also that n(t) and v(t) fulfill Assumptions A1, A2
and A7. Then the OE-LTI-SOE of this system is

G0,OE (z) = G2(z)B(z)G1(z), (7.9)

where B(z) =
∑M
k=0 b(k)z

−k and

b(k) = E
(
f ′n(t−k)

(
(n(t− j))Mj=0

))
.
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Proof: We have

Φyu(z) = G2(z)Φvu(z), (7.10a)

Φvn(z) = Φvu(z)G1(z−1), (7.10b)

Φn(z) = G1(z)Φu(z)G1(z−1). (7.10c)

In addition, Theorem 7.2 gives that

Φvn(z) = B(z)Φn(z). (7.11)

Inserting (7.10b) and (7.10c) in (7.11) gives

Φvu(z) = B(z)G1(z)Φu(z), (7.12)

and inserting (7.10a) in (7.12) gives

Φyu(z) = G2(z)B(z)G1(z)Φu(z).

Hence, (7.9) follows from Corollary 4.1.

Corollary 7.1 shows that the OE-LTI-SOE of a generalized Wiener-Hammerstein sys-
tem with a Gaussian input will be G2(z)B(z)G1(z), and hence an estimated output error
model will approach this model when the number of measurements tends to infinity. In
particular, as B(z) is an FIR model, this shows that the denominator of the estimated
model will approach the product of the denominators of G1 and G2 if the degree of the
model denominator polynomial is correct.

We will thus get consistent estimates of the poles ofG1 andG2 despite the presence of
the NFIR system. This is particularly useful if either G1 or G2 is equal to one, i.e., if we
have either a generalized Hammerstein or a generalized Wiener system. The consistency
of the pole estimates for a generalized Hammerstein system is verified numerically in
Example 7.2.

Example 7.2
Consider a generalized Hammerstein system

y(t) = G(q)f(u(t), u(t− 1)) + w(t),

where

G(q) =
1

1 + 0.6q−1 + 0.1q−2
,

f(u(t), u(t− 1)) = arctan(u(t)) · u(t− 1)2

and where w(t) is white Gaussian noise with E(w(t)) = 0 and E(w(t)2) = 1.
Let the input u(t) be generated by linear filtering of a white Gaussian process e(t)

with E(e(t)) = 0 and E(e(t)2) = 1 such that

u(t) =
1− 0.8q−1 + 0.1q−2

1− 0.2q−1
e(t),
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and assume that e(t) and w(s) are independent for all t, s ∈ Z.
This input signal has been used in an identification experiment where a data set con-

sisting of 100 000 measurements of u(t) and y(t) was collected. The large number of
measurements has been chosen since the convergence towards the OE-LTI-SOE might be
slow. A linear output error model ĜOE with nb = nf = 2 and nk = 0 has been estimated
from this data set and the result was

ĜOE (q) =
0.7481− 0.7164q−1

1 + 0.6045q−1 + 0.1031q−2
. (7.13)

As can easily be seen from (7.13), the denominator of ĜOE (q) is indeed close to the
denominator of G(q). This is exactly what one would expect as the previous theoretical
discussion give that the OE-LTI-SOE of the generalized Hammerstein system is the prod-
uct between G(q) and an FIR model B(q). The MATLAB code that has been used in this
example is available in Appendix B.2.

The following example verifies Corollary 7.1 also for a particular generalized Wiener
system.

Example 7.3
Consider a generalized Wiener system consisting of the same linear and nonlinear blocks
as the generalized Hammerstein system in Example 7.2 but with the linear block before
the nonlinear, i.e.,

y(t) = f(n(t), n(t− 1)) + w(t),
n(t) = G(q)u(t),

where

G(q) =
1

1 + 0.6q−1 + 0.1q−2
,

f(n(t), n(t− 1)) = arctan(n(t)) · n(t− 1)2,

and where w(t) is white Gaussian noise with E(w(t)) = 0 and E(w(t)2) = 1.
Let the input u(t) be generated in the same way as in Example 7.2, i.e.,

u(t) =
1− 0.8q−1 + 0.1q−2

1− 0.2q−1
e(t),

where e(t) is a white Gaussian process with E(e(t)) = 0 and E(e(t)2) = 1 such that e(t)
and w(s) are independent for all t, s ∈ Z.

An identification experiment has been performed on this generalized Wiener system
with a realization of this u(t) as input and 100 000 measurements of u(t) and y(t) have
been collected. A linear output error model ĜOE (q) with nb = nf = 2 and nk = 0 has
been estimated from the measurements and the result was

ĜOE (q) =
0.9292− 2.066q−1

1 + 0.5971q−1 + 0.09784q−2
. (7.14)
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From (7.14) we can see that the denominator of ĜOE (q) is close to the denominator
of G(q) also when the data has been generated by a generalized Wiener system. The
MATLAB code that has been used in this example is available in Appendix B.3.

In this chapter we have studied OE-LTI-SOEs of NFIR systems with Gaussian inputs.
We have shown that the OE-LTI-SOE of such a system is always an FIR model with
certain coefficients and that this fact can be used for structure identification of NFIR
systems. More specifically, it can be used to tell which input signal components that
actually affect the output in a nonlinear way. Furthermore, we have shown that the OE-
LTI-SOE of a generalized Wiener-Hammerstein system always will be the product of
the LTI parts of the system and an FIR model. Hence, it is possible to estimate the
denominator polynomials of the linear parts consistently without compensating for any
nonlinearities.

In the next chapter, OE-LTI-SOEs of nonlinear systems that are almost linear will
be studied. In particular, the sensitivity of the OE-LTI-SOE to small nonlinearities will
be investigated and it will be shown that this sensitivity in some cases depends on how
non-Gaussian the input signal is.
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8
Almost Linear Systems

When system identification is used to model real-life systems, it is very common to ne-
glect the presence of small nonlinearities in the true system. This works well in many
cases but, as we will see in the beginning in this chapter, LTI approximations of almost
linear systems can sometimes exhibit a rather strange behavior. Later in this chapter, a
convergence result that holds when the nonlinearities tend to zero will also be shown. Fi-
nally, a bound on the distance between the OE-LTI-SOE of an almost linear NFIR system
and the linear part of that system will be given.

8.1 Almost Linear Systems

The use of a linear model is very natural when the true system is close to being linear. In
many cases, the behavior of an almost linear system can be understood, at least intuitively,
from the theory of linear systems. Hence, it is a legitimate question to ask whether this
linear intuition can be extended also to OE-LTI-SOEs for almost linear systems. An
almost linear system will here be defined as a system that for a certain input signal can be
written

y(t) = Gl(q)u(t) + αyn(t) + w(t),

where the linear termGl(q)u(t) has much larger variance than the nonlinear term αyn(t).
Here, the parameter α defines the size of the nonlinear part of the system and w(t) is a
noise term.

If the nonlinear contribution to the output is small for a certain input, one might as-
sume that the corresponding OE-LTI-SOE would be close to the linear part of the system
in some sense. However, as we will see in the following example, this is not always the
case.

111
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Example 8.1
Consider the nonlinear system

y(t) = yl(t) + αyn(t),
yl(t) = u(t),

yn(t) = u(t)3.

The output from this system consists of a linear part, yl(t), and a nonlinear part, αyn(t),
whose size is controlled by the parameter α. Here, the transfer function Gl(q) of the
linear part is equal to one. For bounded input signals, small values of α will give a system
output that is close to the output from Gl. In this sense, α defines how close the nonlinear
system is to the linear system Gl(q). Let the input signal be

u(t) = Lm(q, c)e(t), (8.1)

where
Lm(q, c) =

(
1− cq−1

)2
= 1− 2cq−1 + c2q−2, 0 < c < 1 (8.2)

and where e(t) is a white noise process with uniform distribution over the interval [−1, 1].
For all c with 0 < c < 1, the input is bounded, −4 < u(t) < 4. For this input, a small
value of α like, for example, α = 0.01 will give an output that is very similar to the
output from Gl, i.e., the output when α = 0. This can be seen in Figure 8.1a for a
particular realization of the input signal. However, the small differences between these
output signals will sometimes give rise to totally different OE-LTI-SOEs.

Since the input is generated by filtering white noise through a minimum phase filter,
Theorem 5.2 gives that the OE-LTI-SOE can be written

G0,OE (z, α, c) =
Φyu(z, α, c)

Φu(z, c)
= Gl(z)︸ ︷︷ ︸

=1

+α
Φyne(z, c)

Lm(z, c)Re(0)
. (8.3)

If yn(t) is expanded we get

yn(t) = e(t)3 − 6ce(t)2e(t− 1) + 3c2e(t)2e(t− 2) + 12c2e(t)e(t− 1)2

− 12c3e(t)e(t− 1)e(t− 2) + 3c4e(t)e(t− 2)2 − 8c3e(t− 1)3

+ 12c4e(t− 1)2e(t− 2)− 6c5e(t− 1)e(t− 2)2 + c6e(t− 2)3.

Using the fact that E(e(t)2) = 1
3 and E(e(t)4) = 1

5 and that e(t) and e(t − k) are
independent when k 6= 0, the cross-covariance function Ryne(τ, c) can be calculated as

Ryne(0, c) = E(yn(t)e(t)) = E(e(t)4) + 12c2E(e(t)2e(t− 1)2)

+ 3c4E(e(t)2e(t− 2)2) =
1
5

+ 12c2
1
9

+ 3c4
1
9

=
1
15
(
3 + 20c2 + 5c4

)
,

Ryne(1, c) = E(yn(t)e(t− 1)) = −6cE(e(t)2e(t− 1)2)− 8c3E(e(t− 1)4)

− 6c5E(e(t− 1)2e(t− 2)2) = −6c
1
9
− 8c3

1
5
− 6c5

1
9

= − 1
15
(
10c+ 24c3 + 10c5

)
,
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Ryne(2, c) = E(yn(t)e(t− 2)) = 3c2E(e(t)2e(t− 2)2) + 12c4E(e(t− 1)2e(t− 2)2)

+ c6E(e(t− 2)4) = 3c2
1
9

+ 12c4
1
9

+ c6
1
5

=
1
15
(
5c2 + 20c4 + 3c6

)
,

Ryne(τ, c) = 0 ∀τ ∈ Z \ {0, 1, 2}.

Inserted in (8.3) this gives

G0,OE (z, α, c) =

= 1 +
α

5
·
(
3 + 20c2 + 5c4

)
−
(
10c+ 24c3 + 10c5

)
z−1 +

(
5c2 + 20c4 + 3c6

)
z−2

1− 2cz−1 + c2z−2
.

(8.4)

Let ∆G(z, α, c) ,
∑∞
k=0 δG(k, α, c)z−k = G0,OE (z, α, c)−Gl(z). Then the static gain

of ∆G is

∆G(1, α, c) =
α

5
· 3− 10c+ 25c2 − 24c3 + 25c4 − 10c5 + 3c6

(1− c)2
. (8.5)

From (8.5) we see that the numerator of ∆G(1, α, c) approaches 12αwhen c→ 1, i.e., for
c close to 1 we have ∆G(1, α, c) ≈ 12α

5(1−c)2 . This implies that no matter how small α > 0
we select, we can always make ∆G(1, α, c) arbitrarily large by choosing a c sufficiently
close to 1. That is, no matter how linear the system is, there is always a bounded input
signal such that its OE-LTI-SOE is far from Gl(eiω) for ω = 0. The difference between
|G0,OE (eiω, 0.01, 0.99)| and |Gl(eiω)| is shown in Figure 8.1b. Furthermore, since

|∆G(1, α, c)| = |
∞∑
k=0

δG(k, α, c)| ≤
∞∑
k=0

|δG(k, α, c)|,

it follows that for any α > 0, the l1-norm of the impulse response of ∆G can be made
arbitrarily large by an appropriate choice of c. It can also be shown that, for any fixed
α > 0,

∞∑
k=0

δG(k, α, c)2 =
1
2π

π∫
−π

|∆G(eiω, α, c)|2 dω

can be made arbitrarily large by taking a c close to 1.

The previous example is a clear indication that the OE-LTI-SOE not always can be under-
stood from linear theory. There is no corresponding behavior in the linear case, since a
small linear, time-invariant deviation from Gl in Example 8.1 only would have given rise
to exactly the same small deviation in the OE-LTI-SOE. It should be noted that for small
α values, Gl is a good model of the true system and it can predict the output very well
from the input signal. Despite this, the prediction error estimate will not converge to Gl
but to G0,OE when the number of measurements tends to infinity.

In the case of linear undermodeling, i.e., when a linear system is approximated by
a model of lower order, the optimal approximation depends only of the spectral density
of the input Ljung (1999) and not on the distribution of the input signal components.
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(a) It is hard to distinguish the output y(t)
(dashed) of the nonlinear system (with α =
0.01 and c = 0.99) in Example 8.1 from the
output yl(t) = u(t) (solid) of the linear part
of that system for a particular realization of
the input signal.
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(b) The frequency response of the OE-LTI-
SOE G0,OE (eiω, 0.01, 0.99) (dashed) differs
from the one of the linear part Gl(e

iω) (solid)
of the system in Example 8.1.

Figure 8.1: The frequency response of the OE-LTI-SOE can be far from the response
of the linear part of the system also when the nonlinear contributions to the output
are small.

However, when a nonlinear system is approximated with a linear model, the distribution
of the input affects the result significantly. For example, in Example 8.1 the input is
generated from the white uniformly distributed signal e(t). If this signal is replaced with
a white Gaussian signal with the same variance, the corresponding OE-LTI-SOE will be
completely different. This is shown in the next example.

Example 8.2
Consider once again the nonlinear system in Example 8.1 but now with an input u(t)
generated by filtering a white Gaussian process e(t) with zero mean and variance 1/3
through the filter Lm(q, c) in (8.2). Since the system is static and the input is Gaussian,
Theorem 3.1 gives that

Ryu(τ, α, c) = Ru(τ) + αE(3u(t)2)Ru(τ)

= (1 + α(1 + 4c2 + c4))Ru(τ), (8.6)

where we have used that E(u(t)2) = (1 + 4c2 + c4)/3. Since (8.6) implies that

Φyu(z, α, c) = (1 + α(1 + 4c2 + c4))Φu(z),

the OE-LTI-SOE of the system is

G0,OE (z, α, c) = (1 + α(1 + 4c2 + c4))

for this particular input. Hence, the fact that the input is Gaussian implies the OE-LTI-
SOE is static. Furthermore, it is obvious that the deviation of the OE-LTI-SOE from the
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linear part (i.e., from 1) is bounded in this case. With ∆G(z, α, c) = G0,OE (z, α, c) −
Gl(z) = α(1 + 4c2 + c4) and 0 < c < 1, we have

|∆G(z, α, c)| < 6|α|.

Here, unlike in Example 8.1, we cannot make ∆G large for an arbitrarily small α > 0 by
selecting c < 1 sufficiently close to 1. For example, α = 0.01 and c = 0.99 give

G0,OE (z, 0.01, 0.99) ≈ 1.0588 (8.7)

and |∆G(z, α, c)| ≈ 0.0588, which can be compared with the large ∆G that is obtained
when e(t) is uniformly distributed (see Figure 8.1b).

From Example 8.2 we see that the fact that the input is Gaussian can, at least in some
cases, prevent the OE-LTI-SOE from being far from the linear part of an almost linear
system. Probably, this is often a desirable property and hence one could argue that Gaus-
sian inputs should always be used in identification experiments where slightly nonlinear
systems are approximated with LTI models. However, an input with a distribution that
is similar to a Gaussian distribution might also work fine. This is illustrated in the next
example.

Example 8.3
Again, consider the nonlinear system in Example 8.1 with an input u(t) generated by fil-
tering a white process e(t) with zero mean and variance 1/3 through the filter Lm(q, c)
in (8.2). Let c = 0.99 and α = 0.01. In the two previous examples, it has been shown that
this choice of parameters and a uniformly distributed e(t) give an OE-LTI-SOE with the
frequency response shown in Figure 8.1b while a Gaussian e(t) gives the OE-LTI-SOE
in (8.7). Here, it will be shown that for non-Gaussian choices of e(t) with distributions
that are more Gaussian than the uniform distribution, the OE-LTI-SOEs will have fre-
quency responses that are closer to the linear part of the system. Let

eM (t) =
1√
M

M∑
k=1

ẽk(t), M ∈ Z+,

where ẽk(t) are independent white signals with uniform distribution over the interval
[−1, 1] and zero mean. In this way, E(eM (t)2) = 1/3 for all M and the central limit
theorem implies that eM (t) will become more Gaussian for larger M . Let

uM (t) = Lm(q, 0.99)eM (t)

be inputs to the nonlinear system and let the OE-LTI-SOE of the system for each of these
inputs be denoted by G0,OE ,M (z). In this way, u1(t) and G0,OE ,1 (z) correspond to
the input and the OE-LTI-SOE in Example 8.1, respectively. Since all inputs have been
generated in the same way as this input,

G0,OE ,M (z) =
b0(M) + b1(M)z−1 + b2(M)z−2

1− 1.98z−1 + 0.9801z−2
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Figure 8.2: The frequency responses of the estimated output error models
Ĝ0,OE ,G(z) (dash-dotted), Ĝ0,OE ,1 (z) (thin dashed), Ĝ0,OE ,2 (z) (solid) and
Ĝ0,OE ,8 (z) (thick dashed) from Example 8.3.

for all M . Furthermore, let uG(t) denote the Gaussian input in Example 8.2 that is ob-
tained when e(t) is a white Gaussian input with zero mean and variance 1/3 and let
G0,OE ,G(z) be the corresponding OE-LTI-SOE (i.e., the OE-LTI-SOE in (8.7)).

Data sets with 50 000 measurements of uM (t) for M = 1, 2 and 8, uG(t) and of
the corresponding system outputs have been generated in MATLAB and an output error
model Ĝ0,OE ,M (z) with nb = 3, nf = 2 and nk = 0 has been estimated for each data
set. The frequency responses of these estimated models are shown in Figure 8.2.

By comparing this figure with Figure 8.1b, it can be seen that Ĝ0,OE ,1 (z) indeed is
close to the exact OE-LTI-SOE. Furthermore, Figure 8.2 shows that the OE-LTI-SOEs for
the non-Gaussian inputs get closer to the OE-LTI-SOE for the Gaussian input if the input
has a more Gaussian-like distribution.

The results in Example 8.3 indicate that the distance between the OE-LTI-SOE and the
linear part of an almost linear system depends on how non-Gaussian the input is. With
this in mind, it seems preferable to use inputs that are as Gaussian as possible in this case.

Examples 8.1 to 8.3 show that the OE-LTI-SOE in some cases can be far from the
linear part of the system. This can in some circumstances be an undesirable property,
e.g., if the OE-LTI-SOE is supposed to be used as a basis for robust control design. Such
a design puts restrictions on the control laws in order to guarantee the stability of the
resulting true closed-loop system, despite the presence of model errors.

Assume that the true system is almost linear in the sense that it deviates from an LTI
system Gl by a nonlinearity with a small gain. In this case, Gl is a very good basis for
robust control design, since the small nonlinearity often only gives rise to rather mild
restrictions on the controller. However, if an OE-LTI-SOE that is far from Gl is used for
the controller design, the restrictions on the controller might become much harder, since
the gain of the model error now is large. Hence, it is interesting to investigate under what
circumstances we can guarantee that the OE-LTI-SOE will be close to the linear part of
the system when the nonlinearities are small. Some answers to this question will be given
in this chapter.
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Consider a system y(t) = f((u(t−k))∞k=0, α) where α, just like in the previous exam-
ples, is a parameter that defines the size of the nonlinear part of f . Let SA denote the set
of all inputs such that they, and the system outputs they generate, fulfill Assumptions A1
and A2. Assume that f is continuous at α = 0 and that

f((u(t− k))∞k=0, 0)

is a stable and causal LTI system Gl, i.e.,

f((u(t− k))∞k=0, 0) =
∞∑
k=0

gl(k)u(t− k) = Gl(q)u(t). (8.8)

Let G0,OE (z, α) denote the OE-LTI-SOE that is obtained for a particular input signal u
and a particular α. The conclusion that we can draw from Example 8.1 is that we cannot
in general assume that, for example,

sup
u∈SA

|G0,OE (eiω, α)−Gl(eiω)| (8.9)

will approach 0 when α→ 0 for a fixed ω ∈ [−π, π]. For some systems we can, whenever
there is a small nonlinear term in the system output, find a u for which the OE-LTI-SOE
is far from Gl. This property of the OE-LTI-SOE makes it different from, for example, a
linearization based on a Taylor series expansion. Since such a linearization is based only
on local properties of the nonlinear system, e.g., for u(t) ≡ 0, it will converge uniformly
when α→ 0. However, as we will see in the next section, it is possible to show that also
OE-LTI-SOEs exhibit some, less general, convergence properties.

8.2 A Convergence Result

Despite the fact that it even for an almost linear system is not true that the OE-LTI-SOEs
will be close to the linear part of the system for all inputs that fulfill Assumptions A1
and A2, it is possible to say something about the behavior of the OE-LTI-SOE for a more
restricted class of input signals, whose main feature is that their spectral densities are
strictly positive. This is done in the following theorem.

Theorem 8.1
Consider a nonlinear system y(t) = f((u(t − k))∞k=0, α) + w(t) such that the function
f((x(t− k))∞k=0, α) → f((x(t− k))∞k=0, 0) =

∑∞
k=0 gl(k)x(t− k) uniformly on the set

of sequences Mf = {(x(t− k))∞k=0 | |x(t− k)| < umax ∀k ∈ N} when α→ 0. Assume
that the limit Gl(q) is a stable and causal LTI system. Let Sf denote the set of stochastic
input signals that fulfill the following conditions

(i) P (|u(t)| ≥ umax) = 0,

(ii) E(|u(t)|) ≤ mc <∞,

(iii) Φu(eiω) ≥ µc > 0 for all ω ∈ [−π, π],

(iv) u(t) is such that G0,OE (z, α) is regular for all α with |α| < αmax,
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(v) u(t) and y(t) = f((u(t− k))∞k=0, α) +w(t) fulfill Assumptions A1, A2 and A5 for
all α with |α| < αmax,

(vi) ∃Mc ∈ Z+, λc, 0 ≤ λc < 1, Kc > 0 such that |Ryu(τ, α)| < Kcλ
|τ |
c when

|τ | > Mc ∀α with |α| < αmax,

where umax, mc, µc, αmax, Mc, λc and Kc are given constants. Then

sup
u∈Sf

π∫
−π

|G0,OE (eiω, α)−Gl(eiω)|n dω → 0, α→ 0, n = 1, 2. (8.10)

Proof: Take an arbitrary τ ∈ Z. Then

sup
u∈Sf

|Ryu(τ, α)−Ryu(τ, 0)|

= sup
u∈Sf

∣∣∣∣∣E(

(
f((u(t− k))∞k=0, α)−

∞∑
k=0

gl(k)u(t− k)

)
u(t− τ))

∣∣∣∣∣
≤ sup
u∈Sf

E(

∣∣∣∣∣f((u(t− k))∞k=0, α)−
∞∑
k=0

gl(k)u(t− k)

∣∣∣∣∣ |u(t− τ)|)

≤ sup
u∈Sf

E( sup
x∈Mf

∣∣∣∣∣f((x(t− k))∞k=0, α)−
∞∑
k=0

gl(k)x(t− k)

∣∣∣∣∣ |u(t− τ)|)

= sup
x∈Mf

∣∣∣∣∣f((x(t− k))∞k=0, α)−
∞∑
k=0

gl(k)x(t− k)

∣∣∣∣∣ sup
u∈Sf

E(|u(t− τ)|)

≤ sup
x∈Mf

∣∣∣∣∣f((x(t− k))∞k=0, α)−
∞∑
k=0

gl(k)x(t− k)

∣∣∣∣∣mc → 0, α→ 0.

Here, we have used (i) and (ii) in the second and last inequality, respectively. Since τ was
arbitrary it follows that

sup
u∈Sf

|Ryu(τ, α)−Ryu(τ, 0)| → 0, α→ 0, ∀τ ∈ Z. (8.11)

Now we need to show that supu∈Sf

∫ π
−π |Φyu(e

iω, α) − Φyu(eiω, 0)|2 dω → 0 when
α → 0. Take an arbitrary ε > 0. By Parseval’s identity, which holds for all α with
|α| < αmax according to (vi), we get

sup
u∈Sf

π∫
−π

|Φyu(eiω, α)− Φyu(eiω, 0)|2 dω

= sup
u∈Sf

2π
∞∑

τ=−∞
|Ryu(τ, α)−Ryu(τ, 0)|2

= sup
u∈Sf

2π
C0∑

τ=−C0

|Ryu(τ, α)−Ryu(τ, 0)|2 +Q(C0, α).
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Choose C0 such that the term Q(C0, α) is less than ε/2 for all α with |α| < αmax. (This
is possible since the tails of the series above will be small for all α according to (vi)).
Then, from (8.11) it follows that ∃δε > 0 such that

|α| < δε ⇒ sup
u∈Sf

2π
C0∑

τ=−C0

|Ryu(τ, α)−Ryu(τ, 0)|2 < ε/2.

Thus supu∈Sf

∫ π
−π |Φyu(e

iω, α) − Φyu(eiω, 0)|2 dω < ε if |α| < δε and since ε was
arbitrary we get

sup
u∈Sf

π∫
−π

|Φyu(eiω, α)− Φyu(eiω, 0)|2 dω → 0, α→ 0. (8.12)

Using (iii) and (iv) together with (8.12), we obtain

sup
u∈Sf

π∫
−π

|G0,OE (eiω, α)−Gl(eiω)|2 dω

= sup
u∈Sf

π∫
−π

|Φyu(eiω, α)− Φyu(eiω, 0)|2

Φu(eiω)2
dω

≤ sup
u∈Sf

1
µ2
c

π∫
−π

|Φyu(eiω, α)− Φyu(eiω, 0)|2 dω → 0, α→ 0

and thus we have shown (8.10) for n = 2. Finally, Schwarz inequality gives

sup
u∈Sf

π∫
−π

|G0,OE (eiω, α)−Gl(eiω)| dω

≤ sup
u∈Sf

√
2π

 π∫
−π

|G0,OE (eiω, α)−Gl(eiω)|2 dω

1/2

→ 0, α→ 0.

Hence, we have shown (8.10) also for n = 1.

Theorem 8.1 gives conditions on the system and set of input signals that guarantee a
uniform convergence of the OE-LTI-SOEs when α tends to zero, i.e., when the system
becomes linear. The reason why we cannot apply this theorem in Example 8.1 is that the
set of input signals generated by (8.1) for all c with 0 < c < 1 does not fulfill condition
(iii) since Φu(1) = (1−c)2

3 . Hence, there is no constant µc > 0 such that all considered
input signals fulfill Φu(eiω) ≥ µc for all ω in the interval [−π, π].

Furthermore, Theorem 8.1 shows that it does not matter if G0,OE (z) and Gl(z) have
different orders. For input signals in Sf , G0,OE (z) will still approach Gl(z) in a well-
behaved way according to (8.10) when the nonlinearities tend to zero.
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8.3 Almost Linear NFIR Systems

The theorem in the previous section tells us that the OE-LTI-SOE will converge to the
linear part of the system when the nonlinearities tend to zero if u ∈ Sf , but not how fast
this convergence is. In order to be able to derive an upper bound on the distance between
the OE-LTI-SOE and the linear part of a system with a nonzero nonlinearity of a certain
size, we will have to make some new restrictions on the types of systems and excitation
signals.

Hence, we will in this section only consider NFIR systems with white input signals
that can be written like y(t) = f((u(t − k))Mk=0) + w(t) and that are close to a linear
system z(t) =

∑M
k=0 gl(k)u(t−k)+w(t). The following theorem gives an upper bound

on the distance between the OE-LTI-SOE and the linear part of such a nonlinear system.

Theorem 8.2
Consider an NFIR system

y(t) = f((u(t− k))Mk=0) + w(t),

where u(t) is a white input signal and where f satisfies∣∣∣∣∣f((u(t− k))Mk=0)−
M∑
k=0

gl(k)u(t− k)

∣∣∣∣∣ < a, ∀t ∈ Z (8.13)

for every realization of u. Assume that the output y(t) together with u(t) fulfill the condi-
tions in Assumptions A1, A2 and A5. Then

π∫
−π

|G0,OE (eiω)−Gl(eiω)| dω < a2π
√

(M + 1)
(

E(|u(t)|)
E(u(t)2)

)
, (8.14a)

π∫
−π

|G0,OE (eiω)−Gl(eiω)|2 dω < a22π(M + 1)
(

E(|u(t)|)
E(u(t)2)

)2

. (8.14b)

Proof: We start by proving the following inequality∣∣∣∣∣Ryu(τ)−
M∑
k=0

gl(k)Ru(τ − k)

∣∣∣∣∣ < aE(|u(t− τ)|), ∀τ ∈ Z. (8.15)

Take an arbitrary τ ∈ Z. Then Assumption A5 gives∣∣∣∣∣Ryu(τ)−
M∑
k=0

gl(k)Ru(τ − k)

∣∣∣∣∣
=

∣∣∣∣∣E(ynf (t)u(t− τ))−
M∑
k=0

gl(k)E(u(t− k)u(t− τ))

∣∣∣∣∣
=

∣∣∣∣∣E((ynf (t)−
M∑
k=0

gl(k)u(t− k)
)
u(t− τ)

)∣∣∣∣∣
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≤ E(|ynf (t)−
M∑
k=0

gl(k)u(t− k)||u(t− τ)|)

< aE(|u(t− τ)|).

Since τ was arbitrary, (8.15) follows. The assumption that u(t) consists of independent
random variables implies that Φu(eiω) = Ru(0),

M∑
k=0

gl(k)Ru(τ − k) = gl(τ)Ru(0), 0 ≤ τ ≤M,

and that Ryu(τ) = 0 when τ > M or τ < 0. This, together with Parseval’s identity and
Equation (8.15) give

π∫
−π

|G0,OE (eiω)−Gl(eiω)|2 dω

=
1

Ru(0)2

π∫
−π

|Φyu(eiω)−Gl(eiω)Ru(0)|2 dω

=
2π

Ru(0)2

M∑
τ=0

|Ryu(τ)− gl(τ)Ru(0)|2

< a22π(M + 1)
(

E(|u(t)|)
E(u(t)2)

)2

.

Finally, Schwarz inequality gives

π∫
−π

|G0,OE (eiω)−Gl(eiω)| dω ≤

 π∫
−π

|G0,OE (eiω)−Gl(eiω)|2 dω

1/2

√
2π

< a2π
√

(M + 1)
(

E(|u(t)|)
E(u(t)2)

)
.

Theorem 8.2 tells us that the distance
π∫

−π

|G0,OE (eiω)−Gl(eiω)| dω

between the OE-LTI-SOE and Gl is less than a bound that is proportional to a, i.e., to the
upper bound on the size of the nonlinearity in (8.13). Furthermore, this theorem shows
the effect on the OE-LTI-SOE of a scaling of the input signal.

The use of ũ = νu as input instead of u will result in a new OE-LTI-SOE. The
distance in (8.14a) between this new OE-LTI-SOE and Gl will have an upper bound that



122 8 Almost Linear Systems

is 1
|ν| times the original bound. When a white input signal is used, it is thus possible

to reduce the distance between the OE-LTI-SOE and the linear part of a nonlinear FIR
system that fulfill (8.13) simply by scaling the input signal. This is natural, since the
relative error gets smaller for large inputs.

The main objective of this chapter has been to describe the behavior of OE-LTI-SOEs
for almost linear systems. It has been shown that the OE-LTI-SOE sometimes can be far
from the linear part of such a system and that the distribution of the input is very important
for this behavior. Furthermore, a convergence result has been derived and, finally, a bound
on the distance between the OE-LTI-SOE of an almost linear NFIR system with a white
input signal has been presented.



9
Discussion

A number of results about LTI-SOEs have been shown in the previous chapters of this
thesis. Since some of these results have practical implications, it might be appropriate to
compile some guidelines for the user. This will be done in this chapter.

It should once again be pointed out that the conclusions that have been drawn in
Chapters 4 to 8 concern asymptotic properties of prediction-error model estimates, i.e.,
properties when the number of measurements and, in some cases, the number of exper-
iments tends to infinity. Hence, the results are usually only applicable to identification
problems where large data sets are used.

Previously, we have seen that there can be remaining correlation between the input
and the model residuals both for the OE-LTI-SOE and the GE-LTI-SOE. If no additional
knowledge about the system structure is available, this correlation might be taken as an
indication that the system operates in closed loop.

However, for some classes of input signals, this cannot happen for an open-loop non-
linear system. If the input has been generated by filtering white noise through a minimum
phase filter, there will be no spurious correlation between the input and the residuals of
the OE-LTI-SOE and the GE-LTI-SOE according to Lemma 5.4 and Corollary 5.1, re-
spectively. Furthermore, these input signals have the following properties.

• Each minimum phase generated input signal is optimal over a class of other input
signals in the sense that the variance of the residuals of the OE-LTI-SOE is mini-
mized (see Theorem 5.3).

• Residual and spectral analysis can be used to validate an estimated model and to
see if it is sufficiently close to the OE-LTI-SOE of the system (see Section 5.5.2).

• A minimum phase generated input signal is a good choice of reference signal for
closed-loop identification using the two-step method since it implies that only a
causal S(z) has to be estimated (see Section 5.5.3).

123



124 9 Discussion

If the nonlinear system is a generalized Hammerstein system, it might be desirable to
use a separable input signal. These signals have the following properties.

• For a separable input signal there will be no extra dynamics in the OE-LTI-SOE.
Hence, the OE-LTI-SOE of an NFIR system will be an FIR model of the same
order and the OE-LTI-SOE of a generalized Hammerstein system will be the cas-
cade product of an FIR model and the linear part of the system (see Theorems 6.3
and 6.4). Hence, it is possible to estimate the denominator polynomial of the linear
part consistently without compensating for the nonlinearities.

• In particular, for a separable input, the OE-LTI-SOE of a Hammerstein system will
be a scaled version of the linear part of the system (see Theorem 6.1).

One particular choice of a separable input signal is Gaussian noise with arbitrary color.
This class of input signals is also a subset of the class of minimum phase generated signals
and it has the following properties in addition to the ones above.

• For a Gaussian input signal, the OE-LTI-SOE of an NFIR system will be an FIR
model with coefficients that are expectations of the partial derivatives of the non-
linear function (see Theorem 7.2). This simplifies structure identification of such a
system significantly.

• Furthermore, the OE-LTI-SOE of a generalized Hammerstein, Wiener or Wiener-
Hammerstein system will be the cascade product of the linear parts of that system
and an FIR model (see Corollary 7.1). Again, this implies that it is possible to
estimate the denominator polynomials of the linear parts consistently without com-
pensating for the nonlinearities.

With the properties mentioned above in mind, it is possible to give a general advice
concerning LTI approximations of nonlinear systems using the prediction-error method.
Although there might be circumstances where this advice is not suitable, it is at least
applicable to the identification problems studied in this thesis.

Use a Gaussian signal, a separable random multisine or any other separable
signal as the input in the identification experiment. If this is not possible, use
any other signal generated by filtering white noise through a minimum phase
filter. Collect a large data set by using either one long realization of the input
or a large number of different realizations, depending on the type of input
signal used.



Part II

Identification and Control
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10
Robust Control

A number of properties of LTI approximations of nonlinear systems have been discussed
in the previous chapters. In most cases, these properties have been considered from a
system identification point of view, i.e., the focus has been more on theoretical approxi-
mation issues and on questions like under which circumstances the LTI model will inherit
structural properties from the true system. However, it is important to remember that in
most applications, the modeling of a system is done for a specific purpose. Different
modeling issues are relevant depending on this purpose and on the type of application.

In this chapter, some aspects of robust control design based on LTI models of non-
linear systems will be discussed. In most modern control design methods, the controller
is calculated based on a model of the true systems. Such a controller is robust to model
errors if it can be guaranteed that the differences between the model and the system will
not cause instability when the controller is used with the true system. Control design
based on an approximate model has been studied for a long time and there are thus a large
number of different robustness results.

For example, when both the true system and the model are linear, and thus also the
model error, several methods exist where the robustness issues can be considered explic-
itly in the design process (Zhou et al., 1996). Furthermore, many engineering guidelines
concerning controller tuning and classic methods, such as loop shaping and state feed-
back, have intrinsic robustness properties. Typically, controllers designed with any of
these methods will be robust to at least some linear model errors.

Also the common case when the true system is nonlinear and the design is based on a
linear model has been studied previously. In principle, it is possible to analyze this setup
using the small gain theorem (Vidyasagar, 1993; Sastry, 1999; Khalil, 2002). However,
such an analysis will often be rather pessimistic. Intuitively, the result in the small gain
theorem is that a closed-loop system will be stable if the product of the gains of the
subsystems in the loop is less than one (see, for example, Sastry, 1999, p. 147). The gain
‖S‖ of a system S with input u(t) and output y(t) can be defined as the smallest constant
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β for which
‖y‖ ≤ α+ β‖u‖, ∀u(t), (10.1)

where α is a constant and where ‖ · ‖ denotes the signal norm

‖z‖2 =
∞∑
t=0

z(t)T z(t).

The small gain theorem can be used to prove a robustness result that says that the true
system is stable if the product of the gain of the model error and the gain from an output
disturbance to u in the closed-loop system is less than one (Sastry, 1999, pp. 150-151).
However, this result is most useful when the gain of the model error is small compared to
the gain of the model.

As a simple example, consider a saturation system, i.e., the nonlinear system

y(t) =


1, u(t) > 1,
u(t), |u(t)| ≤ 1,
−1, u(t) < −1

and assume that a linear approximation

ŷ(t) = b0u(t)

of this system should be defined such that the gain of the model error is as small as
possible. However, it is easy to see that for every choice of b0, the gain of the model error
is equal to b0. Of course, a model of a system is not very useful if the model error is of
the same size as the model.

The same problem as in this example occurs when most nonlinear systems are approx-
imated with a linear model. However, there are many successful real-life applications of
control design based on an LTI model of a nonlinear system and thus, the robustness re-
sult based on the small gain theorem seems to be too pessimistic. In this chapter, it will
be shown that a more useful theoretical robustness result can be obtained if the definition
of the gain of a system is modified. The method used here is closely related to optimal
control (see, for example, Bryson and Ho, 1975; van der Schaft, 1992). Furthermore,
different approaches to robust stability of linear systems with input saturation have been
investigated previously (Kim and Bien, 1994; Henrion and Tarbouriech, 1999).

It should also be mentioned that there are many results about system identification
for control purposes available in the literature (Hjalmarsson, 2005). However, we will
not discuss identification of LTI models for control design for nonlinear systems in this
chapter, but merely point out that LTI models really can be useful for this purpose and
that robust control design can be done also when a bound on the model error is known
only for a subset of all possible input signals. Most of the results in this chapter have
previously been published in Glad et al. (2005) and some related results can be found also
in Glad et al. (2004). In the next section, the robustness result will first be described for
general models while the special case of LTI models and saturated inputs will be studied
in Section 10.2.
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10.1 Robust Control for Constrained Inputs

Consider a general state-space model M that can be written as

xM(t+ 1) = fM(xM(t), u(t)),
yM(t) = hM(xM(t), u(t)),
xM(0) = xM,0

(10.2)

of a system with input u(t) ∈ Rm and output y(t) ∈ Rp. Note that the model (10.2)
contains an assumption about the initial state. The output y(t) from the true system can
be written

y(t) = yM(t) + ε(t), (10.3)

where the signal ε(t) contains both the effects of model errors and external disturbances.
Assume that the simple model error model

u(t) ∈ U, 0 ≤ t ≤ N ⇒ ‖ε‖N ≤ α(N) + β‖u‖N (10.4)

holds. Here, U is a subset of Rm, α is a function with α(N) ≥ 0 for all N , β ≥ 0 is a
constant and ‖ · ‖N denotes the truncated norm

‖z‖2N =
N∑
t=0

z(t)T z(t).

For example, the function α(N) can be used to describe both the effects of erroneous
initial conditions in the model (10.2) and bounded external disturbances. By comparing
(10.4) with (10.1), it is obvious that (10.4) can be used as an alternative gain definition,
valid only for a restricted class of inputs. Hence, β is an upper bound on the gain of the
model error for these restricted inputs. It should be mentioned also that, although the
model error model (10.4) looks simple, it can be a demanding task to establish it for a
particular system.

Assume that a controller is to be designed using the modelM in (10.2) and (10.3) and
with the objective to keep a signal z(t) small despite the influence from the error signal
ε(t). Here, the signal z(t) is assumed to be the output of a filter W with y(t) as input.
Furthermore, it is assumed that the filter W can be written as

xW(t+ 1) = fW(xW(t)) + gW(xW(t))y(t),
z(t) = hW(xW(t)),

xW(0) = xW,0.

(10.5)

The model M in (10.2), which can be used when u(t) ∈ U , the filter W in (10.5) and the
output description (10.3) can be combined into a complete state-space model

x(t+ 1) = f(x(t), u(t)) + n(x(t))ε(t),
y(t) = h(x(t), u(t)) + ε(t),
z(t) = m(x(t)),
x(0) = x0,

(10.6)
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where

x(t) =
(
xM(t)
xW(t)

)
and

f(x(t), u(t)) =
(

fM(xM(t), u(t))
fW(xW(t)) + gW(xW(t))hM(xM(t), u(t))

)
,

n(x(t)) =
(

0
gW(xW(t))

)
,

h(x(t), u(t)) = hM(xM(t), u(t)),
m(x(t)) = hW(xW(t)),

x0 =
(
xM,0

xW,0

)
.

Let

JN =
N∑
t=0

(m(x(t))Tm(x(t)) + u(t)Tu(t)− γ2ε(t)T ε(t))

and consider the problem of finding u(t) = k(x(t)) such that JN ≤ 0 for all N ≥ 0. One
approach for solving this problem is described in the following theorem.

Theorem 10.1
Consider the model (10.6) and suppose that there is a positive semidefinite function
V (x(t)) and a control law u = k(x) such that u(t) = k(x(t)) implies that u(t) ∈ U
for all t ≥ 0 and that

m(x)Tm(x) + k(x)T k(x)− γ2εT ε+ V (f(x, k(x)) + n(x)ε)− V (x) ≤ 0 (10.7)

for all x and for all ε. Here, γ is a nonnegative constant. Then the inequality

‖z‖2N + ‖u‖2N ≤ V (x(0)) + γ2‖ε‖2N (10.8)

holds for every signal ε and for every N ≥ 0 when u(t) = k(x(t)).

Proof: Since the equality

V (x(0))− V (x(N + 1)) +
N∑
k=0

(V (x(k + 1))− V (x(k))) = 0

holds for any function V , we have that

JN − V (x(0)) =
N∑
t=0

(
m(x(t))Tm(x(t)) + k(x(t))T k(x(t))− γ2ε(t)T ε(t)

+ V
(
f(x(t), k(x(t))) + n(x(t))ε(t)

)
− V

(
x(t)

))
− V (x(N + 1)) ≤ 0,

where we have used (10.7) and the fact that V is positive semidefinite in the last inequality.
The fact that

JN − V (x(0)) ≤ 0

implies that (10.8) holds for every ε.
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Theorem 10.1 describes a discrete-time control design problem where a function k(x)
should be found. For this control design problem to be solved, the inequality (10.7)
must hold for all x and all ε. However, if V is assumed to be a quadratic function,
V (x) = xTPx, for some choice of a symmetric, positive semidefinite matrix P , it turns
out that ε can be eliminated from (10.7). In this case, the robust control design problem
involves finding a solution to an inequality for all x, i.e., to solve an easier problem. Using
a quadratic V such that Q = (γ2I − nTPn) is positive definite, we have

zT z + uTu− γ2εT ε+ fTPf + fTPnε+ εTnTPf + εTnTPnε− xTPx

= zT z + uTu+ fTPf + fTPnQ−1nTPf − xTPx

− (ε−Q−1nTPf)TQ(ε−Q−1nTPf)

≤ zT z + uTu+ fTPf + fTPnQ−1nTPf − xTPx.

Hence, the condition (10.7) in Theorem 10.1 is satisfied if a positive semidefinite matrix
P and a function k(x) can be found such that Q(x, P ) = γ2I − n(x)TPn(x) is positive
definite and

m(x)Tm(x) + k(x)T k(x) + f(x, k(x))TPf(x, k(x))

+ f(x, k(x))TPn(x)Q(x, P )−1n(x)TPf(x, k(x))− xTPx ≤ 0 (10.9)

for all x.
Intuitively, the result (10.8) says that the gain of the closed-loop system from ε to

z and u is less than γ whenever Theorem 10.1 can be applied. Since this theorem also
implies that u(t) ∈ U for all t ≥ 0, it can be used to prove the following result, which can
be viewed as a version of the small gain theorem.

Theorem 10.2
Consider a system and a model such that the model error model (10.4) holds and assume
that the robust control design problem in Theorem 10.1 has been solved for some γ ≥ 0
such that γβ < 1. If the controller u = k(x) from Theorem 10.1 is used for the true
system, the obtained closed-loop system satisfies

‖z‖2N ≤ V (x(0)) +
γ2α(N)2

1− γ2β2
. (10.10)

Proof: Inserting the model error model (10.4) in (10.8) gives

‖z‖2N + ‖u‖2N ≤ V (x(0)) + γ2(α(N) + β‖u‖N )2.

By completing squares, this expression can be rewritten as

‖z‖2N + (1− γ2β2)(‖u‖N −
γ2α(N)β
1− γ2β2

)2 ≤ V (x(0)) + γ2α(N)2 +
γ4α(N)2β2

1− γ2β2

= V (x(0)) +
γ2α(N)2

1− γ2β2

and since γβ < 1, deleting the positive term on the left hand side gives the result
in (10.10).
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Theorem 10.2 shows that ‖z‖2N has an upper bound that depends on the size of α(N)
in the model error model (10.4). If α(N) is bounded, 0 ≤ α(N) ≤ α0 for all N ≥ 0,
(10.10) implies that the true closed-loop system is stable in the sense that

lim
N→∞

‖z‖N <∞.

If ε(t) contains a signal component, which can be both a result of model errors and an
external disturbance, with an upper bound at each time instant, the choice α(N) = α0

√
N

is natural. For such an α(N), Theorem 10.2 can be used to show that the power of z(t)
will be bounded.

A nice property of the controller u = k(x) is that the control signal is computed only
from the states of the model. Hence, no observer has to be designed and the complete
controller can be written as

x(t+ 1) = f
(
x(t), k(x(t))

)
+ n

(
x(t)

)(
y(t)− h(x(t), k(x(t)))

)
,

u(t) = k(x(t)),
x(0) = x0

or, equivalently, as

xM(t+ 1) = fM
(
xM(t), k

(
(xM(t)T , xW(t)T )T

))
,

xW(t+ 1) = fW
(
xW(t)

)
+ gW

(
xW(t)

)
y(t),

u(t) = k((xM(t)T , xW(t)T )T ),
xM(0) = xM,0,

xW(0) = xW,0.

However, it is important to verify that it is possible to compute the states in this controller
with sufficiently high accuracy before using it in practice. For example, it should always
be verified that the state-space model used in the controller is stable.

In the next section, robust control design for a nonlinear system based on an LTI model
will be discussed.

10.2 Robust Control Using LTI Models

In this section, the special case of LTI models with input saturation will be considered.
Assume that (10.6) can be written as

x(t+ 1) = Ax(t) +Bu(t) +Nε(t),
y(t) = Cx(t) +Du(t) + ε(t),
z(t) = Mx(t),
x(0) = x0,

(10.11)

where A, B, C, D, M and N are matrices. This implies that the condition (10.9), which
can be used instead of (10.7) if

Q(P ) = γ2I −NTPN
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is positive definite, can be written

xTMTMx+ uTu+ xTATPAx+ xTATPBu+ uTBTPAx+ uTBTPBu

+ (Ax+Bu)TPNQ(P )−1NTP (Ax+Bu)− xTPx ≤ 0. (10.12)

Furthermore, this condition can be rewritten as

xT (ATPA− P +MTM +ATPNQ(P )−1NTPA− T (P )TW (P )−1T (P ))x

+ (u+W (P )−1T (P )x)TW (P )(u+W (P )−1T (P )x) ≤ 0, (10.13)

where

W (P ) = I +BTPB +BTPNQ(P )−1NTPB,

T (P ) = BTPA+BTPNQ(P )−1NTPA.

Consider the case of a single input single output system and let

u(t) = k(x(t)) ,


−u0, W (P )−1T (P )x(t) > u0,

−W (P )−1T (P )x(t), |W (P )−1T (P )x(t)| ≤ u0,

u0, W (P )−1T (P )x(t) < −u0,

(10.14)

where u0 > 0 is a constant such that U = {v ∈ R | |v| ≤ u0}. When

W (P )−1T (P )x(t) > u0,

we obtain the condition

xT (ATPA− P +MTM +ATPNQ(P )−1NTPA− T (P )TW (P )−1T (P ))x

+ (−u0 +W (P )−1T (P )x)TW (P )(−u0 +W (P )−1T (P )x)

= xT (ATPA− P +MTM +ATPNQ(P )−1NTPA)x

+ u2
0W (P )− 2u0T (P )x ≤ 0 (10.15)

by inserting the expression for the control signal in (10.14) into (10.13). Since

u2
0W (P )− 2u0T (P )x = u0W (P )(u0 − 2W (P )−1T (P )x) ≤ 0,

condition (10.15) is satisfied if

xT (ATPA− P +MTM +ATPNQ(P )−1NTPA)x ≤ 0.

Using, similar calculations, this result can also be obtained when

W (P )−1T (P )x(t) < −u0.

If a positive definite matrix P such that

ATPA− P +MTM +ATPNQ(P )−1NTPA 4 0, (10.16a)

Q(P ) = γ2 −NTPN > 0 (10.16b)

can be found, the conditions in Theorem 10.1 are thus satisfied for V (x) = xTPx and the
control law in (10.14). Here, 4 0 means negative semidefiniteness of the left hand side.
Hence, for an LTI model, a solution to the robust control design problem can be found by
solving the Riccati inequality (10.16a) and checking that the solution satisfies (10.16b).
This approach is illustrated in the following example.
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Example 10.1
Consider the slightly nonlinear system

y(t) = yl(t) + δyn(t) + w(t),

yl(t) = GL(q)u(t) =
2q − 1

q2 − q + 0.2
u(t),

yn(t) = u(t)3,

where δ = −1/15 is a constant and w(t) is a disturbance. Assume that the linear transfer
function GL(q) is known and that we want to use it for robust control design where the
objective is to reduce the effects of low-frequent disturbances w(t) on y(t). This control
objective is formulated using the filter

z(t) = W (q)y(t) =
0.2

q − 0.9
y(t).

The model GL(q) and the filter W (q) give the complete state-space model

x(t+ 1) = Ax(t) +Bu(t) +Nε(t),
y(t) = Cx(t) + ε(t),
z(t) = Mx(t),
x(0) = 0,

where

A =

1.0 −0.4 0
0.5 0 0
0.2 −0.2 0.9

 ,

B =

2
0
0

 ,

N =

 0
0

0.2

 ,

C =
(
1 −1 0

)
,

M =
(
0 0 1

)
.

For example, with γ = 2.1, the matrix

P =

 2.11 −1.67 3.64
−1.67 1.34 −2.95
3.64 −2.95 7.95


is one solution to the Riccati inequality (10.16a) obtained for this state-space model. Fur-
thermore, this choice of P satisfies (10.16b). This solution has been found using MAT-
LAB and the Riccati equation solver dare. With GL(q) as model, the gain of the nonlin-
ear model error is β = u2

0/15. In order to achieve γβ < 1, the input has to be saturated.
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For example, the saturation can be at u0 = 2.5 since this value gives the gain

β =
5
12

<
10
21

=
1
γ

of the model error. The resulting control law is

u(t) = k(x(t)) =


−2.5, Lx(t) > 2.5,
−Lx(t), |Lx(t)| ≤ 2.5,
2.5, Lx(t) < −2.5,

where

L =
(
0.429 −0.337 0.709

)
and the complete controller can be written

x(t+ 1) = Ax(t) +Bk(x(t)) +N(y(t)− Cx(t)),
u(t) = k(x(t)),
x(0) = 0.

The closed-loop system that is obtained when this controller is used for the true non-
linear system has been simulated using MATLAB. In this simulation, the true system was
initialized at zero and the disturbance w(t) was a unit step at t = 5, i.e.,

w(t) =

{
1, t ≥ 5,
0, t < 5.

This corresponds to a function

α(N) =

{√
N − 4, N ≥ 5,

0, N < 5

in the model error model. The output signal from the simulation experiment is shown in
Figure 10.1. As can be seen in this figure, the feedback controller reduces the station-
ary effect of the disturbance with more than 60%. Furthermore, from the design of the
controller, we know that there is no risk of instability due to the model errors.

Example 10.1 shows that an input saturation might be needed to limit the size of the model
error in a nonlinear closed-loop system. In this example, removing the restrictions on the
input signal would result in a model error with infinite gain.
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Figure 10.1: The output signal from the closed-loop system in Example 10.1 when
a unit step disturbance is added to the output at t = 5.

10.3 Discussion

In this chapter, some issues concerning robust control design have been discussed. In par-
ticular, a gain definition valid only for a restricted set of input signals has been presented.
In some cases, this gain definition gives less pessimistic results than the standard gain def-
inition concerning, for example, robust control using LTI models of nonlinear systems. It
has been shown that a robust control law can be found by solving (10.7) in Theorem 10.1
for a γ > 0 that is smaller than the inverse of the gain of the model error for restricted
inputs. Hence, the main difference between the approach presented here and an approach
based on the small gain theorem is the use of the alternative gain definition.

Furthermore, the special case of LTI models of nonlinear systems has been investi-
gated. In this case, the robust control design problem can be solved by finding a solution
to the Riccati inequality (10.16a). The method presented here for robust control using lin-
ear models of nonlinear systems illustrates one general feature of this type of problems,
namely that some restrictions on the input signal typically have to be added in order to
reduce the size of the nonlinear model error.



11
Mixed Parametric Nonparametric

Identification

The OE-LTI-SOE of a nonlinear system is defined as the LTI model that minimizes the
mean-square error and considering only this criterion, there is thus no better LTI approxi-
mation. However, the mean-square error is not always a suitable measure of how good or
accurate a model is. In the previous chapters, it has been shown that the OE-LTI-SOE of a
nonlinear system sometimes can be very sensitive to small nonlinearities. Since this effect
is usually undesirable, it is interesting to investigate how it can be reduced. If the input
signal to the system can be modified, a careful input design can give an OE-LTI-SOE that
is less sensitive to small nonlinearities. For example, as was discussed in Chapter 6, a
separable input signal might be useful in some cases. However, if the user is not free to
design the input signal, other ways of improving the LTI approximation are necessary.

Of course, one approach for obtaining an LTI approximation of a nonlinear system is
to estimate first a nonlinear model. When an accurate nonlinear model of the system has
been found, it can be linearized analytically to provide the user with both an LTI model
and a detailed mathematical description of the model errors. However, estimating a non-
linear model of a system can be a challenging task where the user has many options. There
are various methods for nonlinear system identification and usually a number of nonlin-
ear model structures that can be used with each method (see, for example, Giannakis and
Serpedin, 2001).

The use of linear models of complex, nonlinear systems is common in many real-life
applications of system identification. For example, tuning of control loops in process
industry is often done based on approximate linear models. The reason why nonlinear
models are not desired can be that such models are considered too time consuming to es-
timate. Hence, there are applications where an improved method designed for estimation
of LTI models of nonlinear systems might be useful.

In the standard prediction-error method, the obtained estimates of the model param-
eters are such that the correlation between the model residuals and the past and present
input signal components is minimized. Actually, this correlation is zero for the OE-LTI-
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SOE (cf. Corollary 4.2). However, if there are small nonlinearities in the system, it might
be better not to try to model all correlation between the input and the output but to allow
for a small correlated term in the model residuals. This idea was proposed in Mäkilä
(2005), but no method was presented there. Here, however, we will discuss one such
method for identification of nonlinear autoregressive systems with external inputs (NARX
systems) (Sjöberg et al., 1995). This method is described also in Roll et al. (2005a).

NARX systems are a straightforward generalization of linear ARX systems that has
been used in many applications. For an NARX system, the mean-square error optimal
one step ahead predictor is a nonlinear function of a finite number of past output and past
and present input components. Using a version of the prediction-error method (Ljung,
1999), we will here simultaneously estimate both a nonparametric NARX model and a
parametric ARX model such that their sum give an as good prediction of the output as
possible. Related model structures have been used in semiparametric or partially linear
models (see, for example, Heckman, 1988; Chen et al., 2001).

The proposed method can be viewed both as a way to handle insignificant nonlineari-
ties when a linear model is estimated and as a method for nonlinear system identification.
A nonparametric nonlinear model will always be estimated but can be ignored if only a
linear model is desired. It is interesting to consider nonparametric methods for nonlinear
system identification since the assumptions about the true system are usually weaker for
such methods than for parametric methods. For a nonlinear system, it can be hard to tell in
advance whether a specific assumption about, for example, the shape of the nonlinearities
is reasonable or not. Here, the only assumption about the true NARX system is that its
nonlinearities are Lipschitz continuous.

This assumption makes it possible to use an approach where the identification prob-
lem is formulated as a quadratic programming (QP) problem. By solving this problem,
both the parameters of the linear ARX model and the nonparametric NARX model can
be estimated at the same time. A version of this idea, without the linear, parametric part,
has previously been used for nonparametric regression and for maximum likelihood esti-
mation of unknown parameters in probability density functions (Bertsimas et al., 1999).
Other methods for nonparametric regression can be found in, for example, Fan and Gij-
bels (1996). Lipschitz conditions are a common way to guarantee that a function, or some
of its derivatives, will be smooth. For example, functions with a Lipschitz continuous gra-
dient can be identified using local modeling such that the worst-case mean-square error is
minimized (Roll et al., 2005b).

The method presented in this chapter can sometimes make the estimate of the linear
model more robust against nonlinearities in the system since the nonparametric NARX
model can compensate for some of the nonlinear effects. A related concept is the notion
of unknown but bounded noise and set membership identification (Garulli et al., 1999),
since a bounded nonlinearity might affect the system output in a similar way as such a
noise term.
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11.1 Identification of NARX and NOE Systems

Consider an NARX system with input u(t) and output y(t) that can be written as

y(t) = θT0 ϕ(t) + r0(ϕ(t)) + e(t), (11.1)

where

ϕ(t) =



−y(t− 1)
...

−y(t− na)
u(t− nk)

...
u(t− nk − nb)


(11.2)

is a regression vector and e(t) is white noise. The constant vector θ0 defines a linear ARX
part of the system while the function r0 can be nonlinear. Assume that (e(t))∞t=−∞ and
(ϕ(t))∞t=−∞ are stationary stochastic processes such that the signal components e(s) and
ϕ(s) are independent for every s ∈ Z and that r0 is a Lipschitz continuous function with
Lipschitz constant L0, i.e., that

|r0(ϕ1)− r0(ϕ2)| ≤ L0|ϕ1 − ϕ2|, ∀ϕ1, ϕ2 ∈ Rn, (11.3)

where n = na + nb + 1. Furthermore, assume that a data set (ϕ(t), y(t))Nt=1 consisting
of N measurements of the regression vector and the system output is available.

Using this data set, estimates θ̂N and r̂N of θ0 and r0, respectively, can be obtained
by solving the QP problem

minimize
θN ,ρN

1
N

∑N
t=1(y(t)− θTNϕ(t)− ρN (t))2

subject to ρN (t)− ρN (s) ≤ L|ϕ(t)− ϕ(s)|,
∀s, t ∈ {1, 2, . . . , N}

±θN,i ≤ mθ,i,
∀i ∈ {1, 2, . . . , na + nb + 1}.

(11.4)

In this problem, θN is a vector with na + nb + 1 elements θN,i and ρN is a vector with
N elements ρN (t) that can be viewed as estimates of r0(ϕ(t)). The constraints on the
variables ρN (t) imply that these variables will satisfy

|ρN (t)− ρN (s)| ≤ L|ϕ(t)− ϕ(s)|

for all s, t ∈ {1, 2, . . . , N}. If the variables ρN (t) are viewed as samples from some
function, this means that a Lipschitz condition holds for the sample points (ϕ(t))Nt=1.
Note that N of the constraints on ρN in (11.4) are trivial (0 ≤ 0) and present in (11.4)
only for notational convenience. These constraints can be removed without changing the
solution of the problem. Furthermore, the constraints on θN are needed mainly when
consistency is proved and can be removed in most applications. In these cases, the QP
problem

minimize
θN ,ρN

1
N

∑N
t=1(y(t)− θTNϕ(t)− ρN (t))2

subject to ρN (t)− ρN (s) ≤ L|ϕ(t)− ϕ(s)|,
∀s, t ∈ {1, 2, . . . , N},

(11.5)
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which has fewer constraints, can be solved instead of (11.4).
An optimal solution (θ̂N , ρ̂N ) to the problem (11.4) or (11.5) can be used to construct

one step ahead predictions
ŷN (t) = θ̂TNϕ(t) + ρ̂N (t) (11.6)

of the system output for the observed regression vectors (ϕ(t))Nt=1. In order to obtain a
predictor that can be used for an arbitrary regression vector, the nonparametric function
estimate ρ̂N has to be interpolated.

When ϕ(t) is a scalar, linear interpolation is probably the most natural type of inter-
polation. However, for ϕ(t) ∈ Rn with n > 1, linear interpolation of the variables ρ̂N (t)
will in general not result in a function that satisfies the Lipschitz condition for the choice
of L used in (11.4). Instead, for n > 1, an estimate r̂N of r0 can be defined as

r̂N (ϕ) =
1
2

max
1≤t≤N

(ρ̂N (t)− L|ϕ− ϕ(t)|) +
1
2

min
1≤t≤N

(ρ̂N (t) + L|ϕ− ϕ(t)|) (11.7)

using a similar construction as in Bertsimas et al. (1999). The function r̂N is Lipschitz
continuous since it is the mean of two Lipschitz continuous functions. Of course, other
interpolation methods that can be used instead of (11.7) as long as they guarantee that the
resulting function will be Lipschitz continuous with the Lipschitz constant L. Using θ̂N
and r̂N , a general one step ahead predictor function

f̂N (ϕ) = θ̂TNϕ+ r̂N (ϕ) (11.8)

can be constructed.
At first sight, it might seem that the N + n variables used in the problem (11.4) and

for the construction of the model (11.8) are too many since there are only N measure-
ments. However, thanks to the randomness of the disturbance e(t) in (11.1), the con-
straints in (11.4) will impose an averaging effect on the nonparametric function estimate.
Without these constraints, one optimal solution to (11.4) is θN = 0, ρN (t) = y(t) for
t = 1, 2, . . . , N . Of course, since the measurements of the output are noisy, such a solu-
tion does not give a good model of the true system. By adding constraints like in (11.4),
two variables ρN (t) and ρN (s) are allowed to differ only marginally from each other if
the distance |ϕ(t)− ϕ(s)| between the corresponding regression vectors is small. In this
way, the ρ variables are imposed to have similar properties as samples from the true Lip-
schitz continuous function r0. If the set of regression vectors gets more dense when N
increases, θ̂TNϕ(t)+ ρ̂N (t) will approach θT0 ϕ(t)+ r0(ϕ(t)). For an intuitive understand-
ing of this convergence, consider a small region in Rn which contains many regression
vectors. The corresponding ρ variables will with a high probability be close to the mean
of y(t) − θ̂TNϕ(t) since the constraints in (11.4) implies that the ρ variables should have
values close to each other. The consistency of the predictor function estimator (11.8) will
be discussed in Section 11.2.

Several types of extensions can be made to the identification method presented here.
For example, if any prior knowledge about the true system can be written as linear
constraints on θN and ρN , this knowledge can easily be incorporated in the QP prob-
lem (11.4). Examples of such prior knowledge are:

• Bounds on the function r0 are known in a subset of its domain.
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• The function r0 is only piecewise Lipschitz continuous (with known breakpoints).

• The function r0 satisfies different Lipschitz conditions in different parts of its do-
main.

• The function r0 is known to be odd or even.

• An expression for the function r0 is known in a subset of its domain.

Sometimes it could be interesting to estimate only a Lipschitz continuous function.
Such an estimate can be obtained by setting all mθ,i = 0 in (11.4). Hence, a nonparamet-
ric function estimate can be calculated by solving the QP problem

minimize
ρN

1
N

∑N
t=1(y(t)− ρN (t))2

subject to ρN (t)− ρN (s) ≤ L|ϕ(t)− ϕ(s)|,
∀s, t ∈ {1, 2, . . . , N}.

(11.9)

The construction of r̂N using the interpolation method (11.7) can be used also in this case.
An advantage with the presented method is that the underlying optimization prob-

lem (11.4) is convex (Boyd and Vandenberghe, 2004). This convexity follows from the
fact that only NARX models are considered. However, OE models have been the stan-
dard choice in the earlier chapters of this thesis and thus it would be nice if the mixed
parametric and nonparametric method could be generalized to handle this case as well.
It turns out that such a generalization is easy to formulate, but that it gives a nonconvex
optimization problem. This problem can be formulated as

minimize
θN ,ρN

1
N

∑N
t=1(y(t)−G(q, θN )u(t)− ρN (t))2

subject to ρN (t)− ρN (s) ≤ L|ϕ(t)− ϕ(s)|,
∀s, t ∈ {1, 2, . . . , N}

θN ∈ Dθ,

(11.10)

where ϕ(t) now only contains input components, G(q, θN ) is a parameterized LTI model
and Dθ is a set of parameters that give stable and causal models. The model in this
problem has a particular nonlinear output error (NOE) structure such that the model output
can be written as the sum of the outputs from a linear OE model and an NFIR model.

In most cases, the optimization problem (11.10) is nonconvex and thus, the problem
of finding its global minimum seems hard. However, it is easy to use a procedure where
the problems

A: Keep ρN fixed and estimate the parameters θN by solving (11.10) for these variables.

B: Keep θN fixed and estimate the parameters ρN by solving (11.10) for these variables.

are solved iteratively until convergence. Problem A is a standard OE modeling problem
while problem B is equivalent to an NFIR version of (11.9). The method can, for example,
be initiated with ρN = 0. Usually, this procedure will give a model that corresponds to
a local minimum of (11.10), but we will not analyze the convergence properties of this
method here. However, the consistency of the presented nonparametric identification
methods based on (11.4) and (11.9) will be shown in the next section.
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11.2 Consistency

The identification methods given by (11.4) and (11.9), respectively, turn out to have rather
attractive asymptotic properties when the number of measurements tends to infinity. In
this section, it will be shown that the prediction function estimator defined by the solution
to the optimization problem (11.4) under fairly general conditions is consistent. Since
(11.9) is a special case of (11.4), the consistency of the nonparametric function estimator
without a linear part follows from the more general case.

A related consistency result for the estimator defined by (11.9) is shown in Bertsi-
mas et al. (1999) using results from Vapnik (1998). However, the result in the following
theorem is based on different assumptions and is shown using an alternative proof.

Theorem 11.1
Consider data sets (ϕ(t), y(t))Nt=1 generated from the nonlinear system

y(t) = θT0 ϕ(t) + r0(ϕ(t)) + e(t) , f0(ϕ(t)) + e(t), (11.11)

where e(t) is a white stationary stochastic process with zero mean and bounded variance
σ2 and where ϕ(t) is a stationary stochastic process. For each data set, let θ̂N and ρ̂N (t)
be the optimal solution to (11.4). Furthermore, let f̂N be the predictor function given by
this solution, i.e.,

f̂N (ϕ) = θ̂TNϕ(t) + r̂N (ϕ),

where r̂N is defined in (11.8). Suppose that

1. ϕ(t) ∈ Φ, where Φ is a compact set such that the probability density function p(ϕ)
for ϕ(t) is positive for all ϕ ∈ Φ and that for any ε > 0, Φ can be partitioned

Φ =
d⋃
i=1

Φi, (11.12)

where ϕ1, ϕ2 ∈ Φi ⇒ |ϕ1 − ϕ2| ≤ ε and pi = P (ϕ(t) ∈ Φi) > 0 for all
i = 1, 2, . . . , d,

2. the stochastic process ϕ(t) is such that Ni/N → pi when N → ∞ w.p.1 for all i
in any ε-partitioning (11.12) where

Ni = card(Ti) and Ti = {t | ϕ(t) ∈ Φi, t ≤ N}, (11.13)

3. e(t) and ϕ(t) are independent, but ϕ(t) may depend on past e(s),

4. |r0(ϕ1)− r0(ϕ2)| ≤ L|ϕ1 − ϕ2| for all ϕ1, ϕ2 ∈ Φ,

5. |f0(ϕ1)− f0(ϕ2)| ≤ L̃|ϕ1 − ϕ2| for all ϕ1, ϕ2 ∈ Φ, where L̃ = L+Mθ and

M2
θ =

na+nb+1∑
i=1

m2
θ,i.
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Then

lim
N→∞

1
N

N∑
t=1

(f̂N (ϕ(t))− f0(ϕ(t)))2 = 0 w.p.1 (11.14)

and

f̂N (ϕ) → f0(ϕ) uniformly on Φ as N →∞ w.p.1. (11.15)

Proof: Take an arbitrary ε > 0 and consider an ε-partitioning such that the first assump-
tion is satisfied. Let IΦi(ϕ) be the indicator function for the set Φi, i.e.,

IΦi
(ϕ) =

{
1, ϕ ∈ Φi,
0, otherwise.

Consider arbitrary realizations of the processes ϕ(t) and e(t). With probability one, these
realizations are such that Ni/N → pi as N →∞ and that

lim
N→∞

1
piN

∑
t∈Ti

e(t) = lim
N→∞

1
piN

N∑
t=1

IΦi(ϕ(t))e(t) = 0, (11.16a)

lim
N→∞

1
piN

∑
t∈Ti

|e(t)| = lim
N→∞

1
piN

N∑
t=1

IΦi
(ϕ(t))|e(t)| ≤ C, (11.16b)

lim
N→∞

1
N

N∑
t=1

e(t)2 = σ2 (11.16c)

for some constant C and for all i = 1, 2, . . . , d. The limits (11.16) follow from the law of
large numbers. Let

ẽ(t) = IΦi(ϕ(t))e(t),

and consider two arbitrary different time instants s and t. Without loss of generality, we
can assume that s > t. Since ϕ(t), ϕ(s) and e(t) are all independent of e(s), this implies
that

E(ẽ(t)ẽ(s)) = E
(
IΦi(ϕ(t))e(t)IΦi(ϕ(s))

)
E
(
e(s)

)
= 0,

i.e., that ẽ(t) and ẽ(s) are uncorrelated. Similarly, with

e∗(t) = IΦi(ϕ(t))(|e(t)| − E(|e(t)|)),

e∗(t) and e∗(s) can be shown to be uncorrelated. Furthermore, the variances of ẽ(t)
and e∗(t) are finite. Hence, the version of the strong law of large numbers in Theo-
rem 5.1.2 in Chung (1974) imply that (11.16a) and (11.16b) hold. The convergence of the
series in (11.16c) follows from the strong law of large numbers for independent variables
(Chung, 1974, Theorem 5.4.2).

For two fixed realizations of ϕ(t) and e(t) for which (11.16) holds, we can thus find
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an N ′(ε) such that ∣∣∣∣∣ 1
piN

∑
t∈Ti

e(t)

∣∣∣∣∣ ≤ ε, ∀i ∈ {1, 2, . . . , d}, (11.17a)

1
piN

∑
t∈Ti

|e(t)| ≤ 2C, ∀i ∈ {1, 2, . . . , d}, (11.17b)

1
N

N∑
t=1

e(t)2 ≤ 2σ2 (11.17c)

for all N > N ′(ε). This result follows since the partitioning is finite for any ε.
The fourth and fifth assumption in the theorem imply that

fN (ϕ(t)) , θTNϕ(t) + ρN (t) = f0(ϕ(t))

is a feasible choice of function in the optimization problem (11.4), either with ρN (t) =
r0(ϕ(t)) and θN = θ0 or sometimes with some smaller θN and larger ρN (t):s. Hence,
we have

1
N

N∑
t=1

(y(t)− f̂N (ϕ(t)))2 ≤ 1
N

N∑
t=1

(y(t)− f0(ϕ(t))2 =
1
N

N∑
t=1

e(t)2,

which means that

1
N

N∑
t=1

(f0(ϕ(t))− f̂N (ϕ(t)))2 ≤

∣∣∣∣∣ 2
N

N∑
t=1

e(t)(f0(ϕ(t))− f̂N (ϕ(t)))

∣∣∣∣∣ . (11.18)

Note first that, by applying Cauchy-Schwarz inequality to the right hand side, we obtain
that

1
N

N∑
t=1

(f0(ϕ(t))− f̂N (ϕ(t)))2 ≤ 4
N

N∑
t=1

e(t)2.

Since f0 is bounded by Cf0 = supϕ∈Φ |f0(ϕ)| and (11.17c) holds for all N > N ′(ε),
f̂N (ϕ) as defined by (11.7) and (11.8) must be bounded too. Hence, we can choose a
constant Cf̂ , such that for N > N ′(ε) we have Cf̂ > supϕ∈Φ |f̂N (ϕ)|.

Since Ni →∞ for all i, there will be many ϕ(t) in every set Φi in the ε-partitioning.
Choose t∗i ∈ Ti and let

fi = f0(ϕ(t∗i )),

f̂N,i = f̂N (ϕ(t∗i )).

This means that for t ∈ Ti, it holds that

|f0(ϕ(t))− fi| ≤ L̃ε
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and
|f̂N (ϕ(t))− f̂N,i| ≤ L̃ε.

Inserting this into the expression (11.18) gives

1
N

N∑
t=1

(f0(ϕ(t))− f̂N (ϕ(t)))2

≤

∣∣∣∣∣ 2
N

N∑
t=1

e(t)(f0(ϕ(t))− f̂N (ϕ(t)))

∣∣∣∣∣
=

∣∣∣∣∣ 2
N

d∑
i=1

∑
t∈Ti

e(t)(f0(ϕ(t))− fi + fi − f̂N (ϕ(t)) + f̂N,i − f̂N,i)

∣∣∣∣∣
=

∣∣∣∣∣2
d∑
i=1

pi

((
1
piN

∑
t∈Ti

e(t)
)(

fi − f̂N,i

)

+
(

1
piN

∑
t∈Ti

e(t)(f0(ϕ(t))− fi − f̂N (ϕ(t)) + f̂N,i)
))∣∣∣∣∣

≤ 2
d∑
i=1

pi

(
εmax

i
|fi − f̂N,i|+

1
piN

∑
t∈Ti

|e(t)|2L̃ε
)

≤ C ′ε for N > N ′(ε),

where C ′ = 2Cf0 + 2Cf̂ + 8L̃C. Since ε and the realizations were arbitrary, (11.14) has
been proven.

We will now prove that the result (11.14) implies the uniform convergence in (11.15).
First, we will consider pointwise convergence. Consider arbitrary realizations of ϕ(t) and
e(t). With probability one these realizations are such that the second assumption in the
theorem is satisfied and that the convergence in (11.14) holds. Consider two arbitrary
realizations where these limits hold and assume that f̂N does not converge pointwise to
f0(ϕ) on Φ, i.e., that there exists a ϕ0 in Φ, a δ > 0 and an infinite strictly increasing
sequence of integers Kj , j ∈ Z+, such that

|f̂Kj
(ϕ0)− f0(ϕ0)| > δ

for all j. Consider a δ/4L̃-partitioning of Φ such that the two first assumptions are satis-
fied, i.e., a partitioning where

ϕ1, ϕ2 ∈ Φi ⇒ |ϕ1 − ϕ2| <
δ

4L̃

and where Ni/N → pi for all i = 1, 2, . . . , d. Consider the set Φl that contains ϕ0. For
every ϕ in Φl, it holds that

|f̂Kj (ϕ)− f0(ϕ)| ≥ |f̂Kj (ϕ0)− f0(ϕ0)| − |f̂Kj (ϕ)− f̂Kj (ϕ0)| − |f0(ϕ0)− f0(ϕ)|

≥ δ − L̃
δ

4L̃
− L̃

δ

4L̃
=
δ

2
. (11.19)
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Furthermore, from the second assumption in the theorem, it holds that Kj,l/Kj → pl
when j →∞, where Kj,l is the number of ϕ(t) in Φl when the total number of measure-
ments is Kj . The convergence

lim
N→∞

1
N

N∑
t=1

(f̂N (ϕ(t))− f0(ϕ(t)))2 = 0

implies that

lim
j→∞

1
Kj

Kj∑
t=1

(f̂Kj (ϕ(t))− f0(ϕ(t)))2 = 0.

However, using (11.19), it follows that

1
Kj

Kj∑
t=1

(f̂Kj (ϕ(t))− f0(ϕ(t)))2 ≥ 1
Kj

∑
t∈Tl

(f̂Kj (ϕ(t))− f0(ϕ(t)))2

≥ 1
Kj

∑
t∈Tl

δ2

4
=
δ2Kj,l

4Kj
.

Since
δ2Kj,l

4Kj
→ δ2pl

4
> 0, j →∞,

we have a contradiction. Thus, f̂ must converge pointwise to f0 on Φ.
It turns out that pointwise convergence gives uniform convergence in this case. Take

an arbitrary ε̃ > 0 and assume that f̂N (ϕ) converges pointwise to f0(ϕ) on Φ. Select a
finite number of points ϕ̃k, k = 1, 2, . . . , dε̃ in Φ such that for every point ϕ in Φ,

|ϕ− ϕ̃k| <
ε̃

3L̃

for some k. Choose an Nε̃ such that for all k it holds that

|f̂N (ϕ̃k)− f0(ϕ̃k))| <
ε̃

3
, ∀N > Nε̃.

Hence, for an arbitrary point ϕ in Φ, there is a k such that

|f̂N (ϕ)− f0(ϕ)| ≤ |f̂N (ϕ)− f̂N (ϕ̃k)|+ |f0(ϕ̃k)− f0(ϕ)|+ |f̂N (ϕ̃k)− f0(ϕ̃k)|

< L̃
ε̃

3L̃
+ L̃

ε̃

3L̃
+
ε̃

3
= ε̃, ∀N > Nε̃,

where we have used that both f0 and f̂N satisfy a Lipschitz condition with Lipschitz
constant L̃. Since ε̃ and ϕwere arbitrary it follows that f̂N converges uniformly to f0.

From the fourth and fifth assumption in Theorem 11.1, it can be seen that the constant
L in the QP problem must be an upper bound on the true Lipschitz constant for the non-
linear function r0 and that L̃ = L+Mθ must be an upper bound on the Lipschitz constant
of the true predictor function f0 for the consistency result to hold. These conditions are
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quite intuitive since the estimated function must be allowed to vary at least as much as
the true function. However, it is interesting to see that the choice θN = θ0 does not have
to be a feasible point to (11.4) since the linear part of the system (11.1) can be modeled
by the nonparametric function r̂N , provided L is large enough. However, although a too
hard bound on θN might not ruin the consistency, an unnecessarily large L will give a less
smooth function estimate with a finite number of measurements. One of the main benefits
of including also a linear parametric term in the model structure is that the smoothness of
the estimate of the nonlinear part in that case will not depend on how large the linear part
of the system is.

The fact that the linear part of the nonlinear system can be described by the nonpara-
metric nonlinear part of the model explains why Theorem 11.1 does not discuss consis-
tency for the individual linear and nonlinear estimators. In general, these estimators are
not consistent since the separation of the system into a linear and a nonlinear part is not
unique if a too large Lipschitz constant L is used. Some further properties of the proposed
mixed parametric and nonparametric method will be discussed in the examples in the next
section.

11.3 Examples

The previously presented method for combined parametric and nonparametric estimation
of NARX or NOE systems has been used in a couple of numerical examples.

11.3.1 NARX Models

The first example concerns identification of a static nonlinearity. Although this example
is very simple, it illustrates a number of general properties of the proposed method.

Example 11.1

Consider the system
y(t) = 0.4u(t) + r0(u(t)) + e(t), (11.20)

where both u(t) and e(t) are white noise processes and independent of each other. The
input u(t) has uniform distribution on the interval [−10, 10] while the noise e(t) is nor-
mally distributed such that its mean is zero and its variance is 25. The nonlinearity in this
system is

r0(u(t)) =
40

5 + |u(t)|

(
u(t)

1 + |u(t)|
− u(t)− 3

1 + |u(t)− 3|
− u(t) + 6

1 + |u(t) + 6|
+

3
28

)
.

This function is Lipschitz continuous with L0 = 7.4 and bounded since |r′0(x)| < 7.4
and |r0(x)| < 3.1, for all x ∈ R.

A small data set consisting of 40 measurements of the input and output in (11.20) has
been generated and is shown in Figure 11.1. Note that the shape of the nonlinear function
is not obvious in this figure. The method (11.5) with L = 7.4 has been used with this data
set and linear interpolation has been used to construct r̂N . The resulting predictor function
f̂N (ϕ) is shown in Figure 11.2. From this figure, it seems that the function estimate has
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Figure 11.1: The values of y(t) plotted against u(t) for the data set with 40 mea-
surements used in Example 11.1.

managed to pick up some key features of the true function, despite the small number of
measurements.

In this case, the L value used in the method is equal to L0. In a more realistic example,
the true Lipschitz constant would typically be unknown. An alternative would then be to
divide the data set into estimation data and validation data and try different values of L.
By evaluating the predictor (11.8) on the validation data for different choices of Lipschitz
constant, it would be possible to find a good choice of L.

If this approach would be used for the identification of the system (11.20), the result-
ing Lipschitz constant L would probably be smaller than L0. This results follows since
the variations in r̂N (ϕ) in regions where |r′0(ϕ)| is rather small can be reduced if a bias is
accepted in regions where |r′0(ϕ)| is close to L0.

A larger data set consisting of 500 measurements of the input and output in (11.20)
has also been generated and a couple of models have been estimated using an extended
version of (11.5) where bounds ±ρN (t) ≤ 4 have been added. One model was estimated
using L = 15 and the resulting predictor function is shown in Figure 11.3a. The choices
L = 7.4 and L = 4 gave the results shown in Figure 11.3b and 11.3c, respectively. From
these figures, it seems that the function estimates contain no significant systematic errors
and that a larger value of L gives more variations. Note that for L = 4, the true function
r0 is not a feasible solution to the identification problem. However, the obtained function
estimate gives a rather good approximation of r0 anyway.

In the case with L = 15, the obtained estimate of the linear regression parameter
θ0 = 0.4 was θ̂N = 0.31 while L = 7.4 gave θ̂N = 0.33 and L = 4 gave θ̂N = 0.39.
Using the same data set but with a completely linear model, the least-squares method gave
an estimate θ̂LS = 0.23. Hence, it seems that including a bounded nonlinear Lipschitz
continuous term in the model sometimes can improve the estimate of the linear part.

Although the estimated nonlinear predictor functions in the previous example are rela-



11.3 Examples 149

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

Figure 11.2: The predictor function estimated from 40 measurements (dashed) and
the true predictor function (solid) from Example 11.1.

tively good approximations of the true nonlinear function, they are not very smooth. The
fact that the function estimate r̂N will not be differentiable everywhere in its domain
might be a problem in some applications. However, the nonparametric estimate presented
here can still be useful as an initial estimate of the nonlinearities.

The method (11.5) combined with the interpolation (11.7) has also been used on a
NARX system where the regression vector consists of two past output components and
one input component. The results of this numerical experiment are described in Roll et al.
(2005a) and indicates that the proposed method gives useful estimates of the predictor
function also when ϕ(t) is a vector.

11.3.2 NOE Models

The iterative method described in Section 11.1 for finding a local minimum to the NOE
optimization problem (11.10) has been used on data from the nonlinear system in Exam-
ple 8.1. The results of this experiment are described in the following example.

Example 11.2
Consider again the nonlinear system

y(t) = yl(t) + αyn(t),
yl(t) = u(t),

yn(t) = u(t)3,

which was studied in Examples 8.1, 8.2 and 8.3. Just like in Example 8.1, assume that the
input signal is

u(t) = Lm(q, c)e(t),

where
Lm(q, c) =

(
1− cq−1

)2
= 1− 2cq−1 + c2q−2, 0 < c < 1,
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(c) L = 4

Figure 11.3: The predictor function estimated from 500 measurements for three
choices of L (dashed) and the true predictor function (solid) from Example 11.1.

e(t) is a white noise process with uniform distribution over the interval [−1, 1] and where
c = 0.99 and α = 0.01.

A realization of this input has been generated and a data set with 50 000 input and
output measurements has been collected. The iterative method described after (11.10)
in Section 11.1 for finding a local minimum to (11.10) has been used with this data set
with Lipschitz constant L = 0.48 and additional bounds |ρN (t)| ≤ 0.64. These values
correspond to the true bounds on the nonlinearity for inputs in the interval [−4, 4]. The
orders of the estimated OE models have been nb = 3, nf = 2 and nk = 0, i.e., equal to
the orders of the OE-LTI-SOE of this system (cf. Example 8.1).

In order to minimize the computation time, only 2 000 measurements have been used
to calculate each ρ̂N . However, different measurements have been used for each esti-
mation of the nonlinearity, i.e., the measurements for t = 1, 2, . . . , 2000 were used to
calculate the first ρ̂N , the measurements for t = 2001, 2002, . . . , 4000 were used to cal-
culate the next one, etc. Furthermore, the largest and the smallest input components and
the corresponding output components have been added to each of these small data sets, if
they were not already included.

Some of the resulting nonparametric function estimates are shown in Figure 11.4.
As can be seen from Figure 11.4a, the residuals from the first LTI model contain a lot
of information about the unmodeled nonlinearity. However, the difference between the
estimated LTI model and the linear part of the system implies that the residuals only can
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(b) First iteration (zoomed).
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(c) Second iteration (zoomed).
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(d) Ninth iteration (zoomed).

Figure 11.4: The residuals from the LTI models (grey) and the corresponding non-
parametric function estimates (black) from some of the iteration steps in Exam-
ple 11.2. In this case, the output from the true system contains no measurement
noise.

give a blurred picture of the nonlinearity. In Figures 11.4b to 11.4d, it can be seen that
the residual plots get sharper after each iteration. After nine iterations, there is a close fit
between the estimated and the true nonlinearity.

The frequency responses of some of the estimated LTI models are shown in Fig-
ure 11.5. After nine iterations, the estimated LTI model is essentially a constant. Hence,
it seems that the nonlinear term in the model is able to describe a significant part of the
true nonlinearity and thus to reduce its effect on the estimated LTI model.

The iterative method has also been tested on a data set with the same realization of the
input but where a realization of Gaussian measurement noise with zero mean and variance
0.0025 has been added to the output. In this case, the same orders of the OE model and
bounds on the ρ variables as for the noise-free case have been used. The residuals from the
LTI model and the estimated nonlinearity from the first iteration are shown in Figure 11.6.
The estimate of the nonlinearity seems to be able to describe the true nonlinearity rather
well also in this case. The frequency responses of some of the estimated LTI models are
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Figure 11.5: The estimated LTI models of the noise-free system in Example 11.2
from the first (solid), second (dashed) and ninth (dash-dotted) iteration.
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Figure 11.6: The residuals from the initial LTI model (grey) and the corresponding
nonparametric function estimate (black) for the system with measurement noise in
Example 11.2.

shown in Figure 11.7. Again, it seems that the sensitivity of the LTI models to the small
nonlinearity has been reduced significantly.
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Figure 11.7: The estimated LTI models of the system with measurement noise in
Example 11.2 from the first (solid), second (dashed) and ninth (dash-dotted) itera-
tion.

11.4 A General Perspective

As was mentioned previously in Section 11.1, it is easy to incorporate various kinds of
prior knowledge into the identification problem. In fact, we can regard the presented
approach as a special instance of the more general identification problem

minimize
θN ,ρN

1
N

∑N
t=1(y(t)− θTNϕ(t)− ρN (t))2

subject to A

(
ρN
θ

)
4 b,

(11.21)

where 4 denotes component-wise inequality. This is still a convex QP problem. An
interesting special case of (11.21) is

minimize
θN ,ρN

1
N

∑N
t=1(y(t)− θTNϕ(t)− ρN (t))2

subject to |ρN (t)| ≤M,
∀t ∈ {1, 2, . . . , N}.

(11.22)

It turns out that minimizing (11.22) gives exactly the same linear part as using an ε-
insensitive norm for identification of ARX models, i.e.,

minimize
θN

1
N

N∑
t=1

∣∣y(t)− θTNϕ(t)
∣∣k
ε
, (11.23)

with

|x|ε =

{
0, |x| ≤ ε,

|x| − ε, |x| > ε

and with k = 2 and ε = M . This norm (or the corresponding norm with k = 1) is often
used in support vector machines (Vapnik, 1998), and similar approaches are also used in
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robust adaptive control (Peterson and Narendra, 1982). To see the equivalence between
(11.22) and (11.23), define

r̄(t, θ) =


M, y(t)− θTϕ(t) > M,

y(t)− θTϕ(t), −M ≤ y(t)− θTϕ(t) ≤M,

−M, y(t)− θTϕ(t) < −M.

Then we can write (11.23) as

minimize
θN

1
N

N∑
t=1

∣∣y(t)− (θTNϕ(t) + r̄(t, θN ))
∣∣k .

On the other hand it is easy to see that, for a given θN , the minimum of (11.22) is obtained
precisely when ρN (t) = r̄(t, θN ). Since r̄(t, θN ) automatically has a magnitude not
greater than M , the desired equivalence follows.

The advantage with using the formulation (11.22) instead of (11.23) is that the explicit
representation of ρN again makes it possible to combine different types of requirements
on the nonlinearity.

11.5 Discussion

In this chapter, a method has been proposed for identification of NARX systems using
a model structure with a parametric linear part and a nonparametric nonlinear part. The
model estimate is computed by solving a convex optimization problem where the only
assumption on the nonlinearities in the system is that they are Lipschitz continuous. The-
orem 11.1 gives a direct proof of the consistency of this method and its usefulness has
also been illustrated in examples.

An iterative method for identification of a class of NOE systems has also been pre-
sented. The model structure that can be used with this method contains a linear OE part
and a nonparametric NFIR part. This NOE identification method can sometimes reduce
the sensitivity of OE models to small nonlinearities (see Example 11.2).

A nice property of both presented methods is that it is easy to include prior system
knowledge in them if this knowledge can be written as linear constraints. Furthermore,
since a nonparametric model of the nonlinearities is used, the methods might be partic-
ularly useful for computing initial estimates of unknown nonlinear systems where the
shapes of the nonlinearities are completely unknown.
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Conclusions

In this thesis, system identification using LTI models of nonlinear systems with random
inputs has been studied. The main focus has been on analysis of LTI models that are op-
timal approximations in the sense that they minimize a mean-square error criterion. This
is a very rich research field with many theoretically and practically interesting problems
to consider.

Here, properties of the optimal LTI approximations for different types of input signals
have been studied. For example, several useful properties of the LTI models have been
shown for classes of minimum phase filtered white noise inputs, Gaussian inputs and sep-
arable inputs. Furthermore, LTI approximations of nonlinear systems have been discussed
from a robust control point of view and a method for mixed parametric and nonparametric
identification has been proposed.

However, it must be admitted that this thesis mainly concerns theoretical approxima-
tion aspects and that no particular application has been considered. Hence, it would be
interesting to investigate LTI models for some real-life applications in order to see which
are the dominating effects of unmodeled nonlinearities. Hopefully, such a study would
show that at least some of the theoretical results in this thesis are nice illustrations of the
following classic saying, which has been attributed to many famous scientists.

There is nothing more practical than a good theory.

155
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A
Calculations for Example 4.3

Since E(e(t)3) = 0 and E(e(t)4) = 3, we get

Ru(0) = E(u(t)2) = E((e(t) + e(t− 1)2 − 1)2)

= E(e(t)2) + E(e(t− 1)4) + 1− 2E(e(t− 1)2) = 1 + 3 + 1− 2 = 3,
Ru(±1) = E(u(t)u(t− 1)) = 0,
Ru(τ) = 0, ∀τ ∈ Z \ {−1, 0, 1}.

Furthermore, since E(e(t)5) = E(e(t)7) = 0, E(e(t)6) = 15 and E(e(t)8) = 105, we
get

Ryu(0) = E(y(t)u(t))

= E(
(
e(t)2 + e(t− 1)4 + 2e(t)e(t− 1)2 − 2e(t)− 2e(t− 1)2 − 2

)
·
(
e(t) + e(t− 1)2 − 1

)
)

= 2E(e(t)2e(t− 1)2)− 2E(e(t)2) + E(e(t− 1)6)− E(e(t− 1)4)

− 2E(e(t− 1)4) + 2E(e(t− 1)2)
= 2− 2 + 15− 3− 2 · 3 + 2 = 8,

Ryu(1) = E(y(t)u(t− 1))

= E(
(
e(t)2 + e(t− 1)4 + 2e(t)e(t− 1)2 − 2e(t)− 2e(t− 1)2 − 2

)
·
(
e(t− 1) + e(t− 2)2 − 1

)
) = 0,

Ryu(−1) = E(y(t)u(t+ 1))

= E(
(
e(t)2 + e(t− 1)4 + 2e(t)e(t− 1)2 − 2e(t)− 2e(t− 1)2 − 2

)
·
(
e(t+ 1) + e(t)2 − 1

)
) = E(e(t)4)− E(e(t)2) = 3− 1 = 2,

Ryu(τ) = 0, ∀τ ∈ Z \ {−1, 0, 1}
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and

Ry(0) = E(y(t)2)

= E(
(
e(t)2 + e(t− 1)4 + 2e(t)e(t− 1)2 − 2e(t)− 2e(t− 1)2 − 2

)
·
(
e(t)2 + e(t− 1)4 + 2e(t)e(t− 1)2 − 2e(t)− 2e(t− 1)2 − 2

)
)

= E(e(t)4) + 2E(e(t)2e(t− 1)4)− 4E(e(t)2e(t− 1)2)− 4E(e(t)2)

+ E(e(t− 1)8)− 4E(e(t− 1)6)− 4E(e(t− 1)4) + 4E(e(t)2e(t− 1)4)

− 8E(e(t)2e(t− 1)2) + 4E(e(t)2) + 4E(e(t− 1)4) + 8E(e(t− 1)2) + 4
= 3 + 2 · 3− 4− 4 + 105− 4 · 15− 4 · 3 + 4 · 3− 8 + 4 + 4 · 3 + 8 + 4
= 66,

Ry(±1) = E(y(t)y(t− 1))

= E(
(
e(t)2 + e(t− 1)4 + 2e(t)e(t− 1)2 − 2e(t)− 2e(t− 1)2 − 2

)
·
(
e(t− 1)2 + e(t− 2)4 + 2e(t− 1)e(t− 2)2 − 2e(t− 1)

−2e(t− 2)2 − 2
)
)

= E(e(t)2e(t− 1)2) + E(e(t− 1)6)− 2E(e(t− 1)4)

− 2E(e(t− 1)2) + E(e(t)2e(t− 2)4) + E(e(t− 1)4e(t− 2)4)

− 2E(e(t− 1)2e(t− 2)4)− 2E(e(t− 2)4)− 2E(e(t)2e(t− 2)2)

− 2E(e(t− 1)4e(t− 2)2) + 4E(e(t− 1)2e(t− 2)2) + 4E(e(t− 2)2)

− 2E(e(t)2)− 2E(e(t− 1)4) + 4E(e(t− 1)2) + 4
= 1 + 15− 2 · 3− 2 + 3 + 9− 2 · 3− 2 · 3− 2− 2 · 3 + 4 + 4− 2
− 2 · 3 + 4 + 4 = 8,

Ry(τ) = 0, ∀τ ∈ Z \ {−1, 0, 1}.

The z-spectra are thus

Φu(z) = 3,
Φyu(z) = 2z + 8,

Φy(z) = 8z + 66 + 8z−1.

Inserted in (4.2b) this gives

Φζ(z) =
(

3 2 + 8z
2 + 8z−1 8z + 66 + 8z−1

)
.

In order to compute the canonical spectral factorization Φζ(z) = T (z)QζTT (z−1) we
first pre- and postmultiply Φζ(z) with matrices T1(z) and TT1 (z−1), respectively. If T1(z)
is chosen as

T1(z) =
(

1 0
− 2

3 −
8
3z
−1 1

)
,

the result is the following diagonal matrix

D(z) = T1(z)Φζ(z)TT1 (z−1) =
(

3 0
0 2

3

(
4z−1 + 65 + 4z

)) .
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The matrix element D22(z) = 2
3 ·
(
4z−1 + 65 + 4z

)
can be factorized as

D22(z) =
8
3

(z − z0)
(

1− 1
z0z

)
= − 8

3z0
(z − z0)

(
z−1 − z0

)
,

where z0 = (−65 +
√

4161)/8. Hence, the matrix D(z) can be factorized as D(z) =
T2(z)TT2 (z−1), where

T2(z) =
(√

3 0
0 κ (z − z0)

)
,

and where κ =
√
− 8

3z0
. The two matrices T1(z) and T2(z) defines a spectral factoriza-

tion, Φζ(z) = Tp(z)TTp (z−1) with

Tp(z) = T−1
1 (z)T2(z) =

( √
3 0

2+8z−1
√

3
κ (z − z0)

)
.

However, this is not the canonical spectral factorization as Tp(∞) 6= I . Let

T3(z) =
( 1√

3
0

− 2
3κz

1
κz

)
and let

T (z) = Tp(z)T3(z) =
(

1 0(
8+2z0

3

)
z−1 1− z0z

−1

)
=
(

1 0√
4161−33

12 z−1 1 + 65−
√

4161
8 z−1

)
,

Qζ = T−1
3 (z)T−T3 (z−1) =

(√
3 0

2√
3

κz

)(√
3 2√

3

0 κz−1

)
=
(

3 2
2 4

3 + κ2

)
=
(

3 2
2 23 +

√
4161
3

)
.

This gives Φζ(z) = T (z)QζTT (z−1) and both T (z) and T−1(z) are analytical on and
outside the unit circle, T (∞) = I and Qζ � 0. Hence we have found the canonical
spectral factorization of Φζ(z).
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B
MATLAB Code

B.1 Example 5.2

MATLAB commands for Example 5.2:

N=10000;
e=2*rand(N,1)-1;

% ----------------------
% Minimum phase case
% ----------------------

ump=filter([1 .5],1,e);
ymp=ump.^3;
zmp=iddata(ymp,ump,1);

G0mpspa=spa(zmp,30);
G0mp=tf([.85 .575],[1 .5],1)

figure(1)
clf
bode(G0mpspa,G0mp)

% ----------------------
% Nonminimum phase case
% ----------------------

unmp=filter([.5 1],1,e);
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ynmp=unmp.^3;
znmp=iddata(ynmp,unmp,1);

G0nmpspa=spa(znmp,30);
G0nmp=tf([.925 .425],[1 .5],1)

figure(2)
clf
bode(G0nmpspa,G0nmp)

B.2 Example 7.2

MATLAB commands for Example 7.2:

N=100001;

e=randn(N,1);
u=filter([1 -.8 .1],[1 -.2],e);
v=u(1:end-1).^2.*atan(u(2:end));
w=randn(N-1,1);
y=filter(1,[1 .6 .1],v)+w;

z=iddata(y,u(2:end),1);
G=oe(z,[2 2 0],’lim’,0,’cov’,’none’)

B.3 Example 7.3

MATLAB commands for Example 7.3:

N=100001;

e=randn(N,1);
u=filter([1 -.8 .1],[1 -.2],e);
n=filter(1,[1 .6 .1],u);
w=randn(N-1,1);
y=n(1:end-1).^2.*atan(n(2:end))+w;

z=iddata(y,u(2:end),1);
G=oe(z,[2 2 0],’lim’,0,’cov’,’none’)
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