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The paper describes the main phenomena associated with fatigue in ferroelectric materials due
to defects and microstructural effects. An analysis the modelling on different length scales
is presented. Starting from a thermodynamic analysis of the macroscopic material behavior
other microscopic aspects are addressed. The introduction of an orientation distribution func-
tion allows for a computationally efficient extension of a single crystal model to realistic 3D
structures. Additionally, the thermodynamic treatment of defects and domain wall motion is
discussed to provide a better understanding of various micro-mechanisms. It is explained by
the concept of configurational/driving forces, how defects influence each other and how the
mobility of domain walls is reduced in the presence of defects.
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1 Introduction

Ferroelectric materials are widely used in sensor and actuator applications. Their atomistic
structure allows the materials to couple electric fields with mechanical fields. Another im-
portant field of application are non-volatile memories based on ferroelectrics (ferroelectric
random access memory, FeRAM). On the macroscopic level a rather complex material behav-
ior is observed. This complex behavior is due to microstructural changes. In polycrystalline
ferroelectrics each crystal consists of many domains (regions with almost constant sponta-
neous polarization). Due to external loads these domain structures change and modify the
overall material behavior. In addition to these structural changes defects are present in the
material and change their arrangement during loading by external fields and in the presence
of internal fields, arising from incompatible and charged microstructures.
The aim of this paper is to address the main features on the macro- and microscopic level
together with a discussion of some appropriate modelling approaches for these phenomena.
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2 Experimental observations

The interaction of ferroelectric domains or domain walls with any type of defect will alter the
electric response of the material to external electric or mechanical loads. In the case of isolated
point defects this interaction is small and has similarities to the interaction of dislocations
with point defects in metals. It essentially generates a friction effect on the domain wall. For
extended defects the interaction may become considerably stronger and reach values when it
is no longer surpassed by the thermal fluctuation of the domain wall. In this case the motion
of the wall becomes partly or entirely disruptive. Acoustic emissions or electrical Barkhausen
pulses become detectable reflecting the jump-like motion of domain walls [1–3].

a) b)

Fig. 1 (online colour at: www.gamm-mitteilungen.org) Features of a microstructure in a ferroelectric
ceramic: a) Scanning electron micrograph of a polished surface of barium titanate (BaTiO3). The to-
pographic features are grain boundaries and domain walls accentuated by a chemical etching step using
a HF/HCl mixture. The coloring stems from the birefringence of BaTiO3 under polarized light. Im-
age width is 700μm, b) transmission electron micrograph of a single barium titanate grain exposing
microdefects and their interaction with domain walls (image width 6μm, courtesy by H. Gorzawski).

The microstructure of a ferroelectric ceramic is generally complex, see Fig. 1a). At least
three scales can be identified amended by the external electrical and mechanical boundary
conditions. Point defects like missing atoms, interstitial atoms, ions, or localized electronic
states represent the smallest scale. Clusters of point defects beyond a certain size or electrical
strength can clamp the domain. If a defect has reached the typical scale (geometrical or in
electrical strength) of the domain system like in Fig. 1b) its influence on the domain system is
strongest. The grain size represents the third scale in the system. Feature sizes of the domain
structure scale with the grain size [4]. At the grain scale defects in or at the grain bound-
ary will influence the dynamics of the domain system. One possibility of interaction stems
from the formation of charged grain boundaries which is the typical case for highly non-linear
PTCR resistors (positive temperature coefficient resistor) [5]. A mechanism active at the grain
boundary is charge rearrangement potentially responsible for aging. Aging is the change of
material properties with time. In ferroelectrics the domain mobility decreases with time for
acceptor doped (”hard doped”) compositions. Several mechanisms have been claimed to be
responsible, one at the scale of point defects [6], another one at the scale of the grain bound-
ary. For the latter, the local charge-up of the grain boundary accounts for a compensation of
polarization. The alternately charged grain boundary interface then clamps the domain wall
motion electrostatically [7]. The largest scale is that of the sample or device. Beside the me-
chanical boundaries of the ceramic, the electrodes play a particular role in the system. From
a continuum point of view the electrode is a boundary of equal electrical potential. As such,
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it is easily represented in modelling as well. In the real world a multitude of electrochemi-
cal and quantum mechanical mechanisms influence the structure of the interface and thus the
electrical boundary conditions. Clustering of oxygen vacancies [8], charge injection by tun-
neling [9], and modification of the interface energy by surface states are mechanisms under
discussion [11]. Each may alter the dynamics of ferroelectric domains.

The ferroelectric state is characterized by the collective displacement of identical ions in
the unit cells of an ionic crystal. This displacement entails a macroscopic electric polarization
to which external electric fields can couple. A local dipole is formed. The sum of all local
dipoles adds up to the macroscopic polarization. Depending on the crystal structure, one, two,
four, or more orientations of polarization are permitted in the crystal. In the perovskite struc-
ture found in most technologically relevant materials, six orientations (also called variants)
are possible. Strain couples to the polarization via electrostriction and transforms the polar-
ization tensor of rank one to a strain tensor of rank two. As a direct consequence, external
mechanical forces can alter the polarization state only indirectly and complete depolarization
of an initially electrically poled polycrystalline sample is not possible by mechanical forces.
A domain in a ferroelectric crystal or grain is a region of equal orientation of the polariza-
tion vector. Their average on the grain level cancels to zero for a statistical occupancy of the
different variants in a crystal. An external poling process is needed to generate an effective
macroscopic polarized state and a macroscopic electromechanical coupling.
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Fig. 2 Electrical and mechanical hysteresis of a commercial ferroelectric ceramic lead zirconate ti-
tanate: (a) Electrical hysteresis, (b) resulting longitudinal strain response under electrical drive, (c)
macroscopically effective electrostrictive coupling strain vs. polarization, and (d) stress-strain response
of a polarized lead lanthanum zirconate titanate (data in (d) C. S. Lynch [14]).

Fig. 2 displays the macroscopic hystereses of a commercial lead zirconate titanate solid solu-
tion ceramic material (PIC 151). These types of hysteresis are the result of the rearrangement
of the domain structure during poling and subsequent electric polarization reversal. For a
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Fig. 3 Effects of bipolar material fatigue: (a) Reduced switching dynamics of the domain system [16],
(b) reduced polarization amplitude of the electrical hysteresis.

macroscopic sample electrostriction, which is the quadratic relation between strain and po-
larization, is not strictly valid due to features of the microstructure: Fig. 2c). Mechanical
compressive stress along the poling direction yields the stress strain hysteresis: Fig. 2d). Fur-
ther details and many references are found in Refs. [12, 13].
Fatigue induces a strong alteration of the electrical and mechanical defect arrangement within
the microstructure. These in turn alter many facets of domain dynamics. The most relevant
one is the time delay in domain response (Fig. 3a)) changing by many orders of magnitude.
This delay entails the reduction of the electrical and mechanical hysteresis (Fig. 3b)) which
is measured at a certain rate and thus reflects a certain range of material time constants. If
measured very slowly, also fatigued samples show very little modifications of their hysteresis.
On top of the time delay, asymmetries in the macroscopic response reflect a certain anisotropic
rearrangement of charged defects the very nature of which still has not been determined [15].

Modelling material response in ferroelectrics is thus a multi-scale problem of many facets.
A first step is tackled by modelling the influence of extended microscopic defects on domain
walls.

3 Thermodynamic preliminaries

Let B ⊂ IR3 be the macroscopic body of interest which is parameterized in x. Furthermore,
let u be the macroscopic displacement field. The basic kinematic variable is the macroscopic
strain tensor ε, which is defined by the symmetric part of the macroscopic displacement gra-
dient. As the basic electric field variable we choose the macroscopic electric field vector E,
given by the negative gradient of the macroscopic scalar potential ϕ. Thus the basic macro-
scopic quantities are

ε(x) := sym[∇u(x)] and E(x) := −∇ϕ(x) , (1)

where ∇ denotes the gradient operator with respect to x. The governing field equations from
the macroscopic point of view are the balance of momentum and Gauß’ law representing the
mechanical equilibrium equation and one of the Maxwell equations for the quasi static case

divσ + f = 0 and divD = q . (2)
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Here σ represents the macroscopic symmetric Cauchy stress tensor, f the given body force,
D the vector of macroscopic electric displacements and q is the given density of free charge
carriers. In order to treat the electromechanical boundary value problem, the surface of the
considered body is divided into mechanical and electrical parts ∂B = ∂Bu ∪ ∂Bσ and ∂B =
∂Bϕ ∪ ∂BD, respectively, with ∂Bu ∩ ∂Bσ = ∅ and ∂Bϕ ∩ ∂BD = ∅. The essential boundary
conditions on ∂Bu and ∂Bϕ as well as the natural boundary conditions on ∂Bσ and ∂BD are
u = ub on ∂Bu, ϕ = ϕb on ∂Bϕ, t = σ n on ∂Bt and Q = −D · n on ∂BD.
In the proposed two-scale homogenization approach we do not specify any explicit constitu-
tive relations for the dependent macroscopic quantities σ, D in terms of the basic field vari-
ables ε and E. In fact, the dependent macroscopic quantities have to be defined as expedient
expectation values of the mesoscopic counterparts σ and D. Here we assume the existence of
a representative volume element (RVE) associated to each macroscopic material point x, see
Fig. 4. The RVE ⊂ IR3 is parameterized in the mesoscopic coordinates x. For ferroelectric
materials we observe on the meso-scale areas of equal polarization, the individual domains,
separated by the domain walls.

∂RVE

RVE

x ∈ RVE

∂RVE

RVE

x ∈ RVE

x x

ε, σ

ε, σ E, D

E, D

Fig. 4 (online colour at: www.gamm-mitteilungen.org) Mesoscopic mechanical and electrical variables
on a representative volume element (RVE ).

On the meso-scale the basic variables are the displacement field u and the electric potential
ϕ. Similar to the approach on the macro-scale we define the mesoscopic strain tensor and the
mesoscopic electric field vector by

ε := sym[∇u(x)] and E := −∇ϕ(x) , (3)

respectively. The balance laws of interest are the balance of momentum and Gauß’ law

divσ = 0 and divD = 0 , (4)

respectively, neglecting body forces and free charge carriers. Furthermore, the macroscopic
quantities are defined through surface integrals over the boundary of the representative volume
element ∂RVE :

ε :=
1

V

∫
∂RVE

sym[u ⊗ n] dA , σ :=
1

V

∫
∂RVE

sym[t ⊗ x] dA ,

E :=
1

V

∫
∂RVE

−ϕ n dA , D := −
1

V

∫
∂RVE

Q x dA .
(5)
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4 Approximation of Microstructures via discrete ODF

In the last section we have defined the relation between the macroscopic and microscopic
variables. In order to derive different constraint/boundary conditions for the considered body
on the meso-scale, the representative volume element, we postulate a generalized macro-
homogeneity condition which equates the mesoscopic and macroscopic electromechanical
power, in this context see the well known Hill condition [19]. In the following we assume
a decoupling of the mechanical and electrical contributions and focus on continuous bodies
without holes. The two decoupled macro-homogeneity conditions are defined as

P1 :=
1

V

∫
RVE

σ : ε̇ dV − σ : ε̇ and P2 :=
1

V

∫
RVE

D · Ė dV − D · Ė . (6)

Simple conditions, here denoted as constraints on the meso-structure, satisfying Eq. (6) are

σ = σ or ε̇ = ε̇ and D = D or Ė = Ė . (7)

In this contribution the microstructure is approximated by an orientation distribution function
(ODF) of the anisotropy axis of the considered transversely isotropic material. A feasible
access for the construction of uniformly distributed preferred directions is the partitioning
of the sphere surface into parts of equal areas. An innovative treatment of the problem was
given by RICHARD BUCKMINSTER FULLER who separated the surface of the sphere into
equilateral congruent triangles. The resulting constructions of a dome are denoted by the
expressions geodesic spheres or geodesic domes. They were presented to a wider audience
during the world exhibition 1967 in Montreal where the American pavillon was constructed
in the mentioned manner.

Fig. 5 (online colour at: www.gamm-mitteilungen.org) Geodesic spheres and their distribution of ori-
entations for 42 orientations.

We use this consistent segmentation of the unit sphere and assign one preferred direction to
each node of the triangles. Fig. 5 shows two geodesic spheres for the frequency and the
corresponding distribution of preferred directions. The geodesic sphere is constructed by 42
nodal points and consequently we get 42 preferred directions. Further details are discussed
in [30] and [27].

For the explicit formulation of coordinate-invariant transversely isotropic constitutive equa-
tions the representation theory of isotropic tensor functions is used. The governing equations
represent automatically the material symmetries of the body of interest, i.e. the enthalpy func-
tion has to be invariant under all transformations Q ∈ Gti, see [23] and [34], page 250-251:

Ĥ(ε, E, ξ) = Ĥ(QεQT , QE, Q∗ξ) ∀ Q ∈ Gti = {Q ∈ O(3), Qa = a} , (8)
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here ξ denotes the set of internal vector- and tensor-valued internal variables and (Q ∗ ξ) is
an abbreviation of the transformations of the elements of the set. Let ξ = T , v, then the
transformations are defined through Q ∗ T = QTQT and Q ∗ v = Qv for a second-order
tensor T and a vector v.

The main idea of a coordinate-invariant representation is the extension of the Gti-invariant
functions (8) to functions which are invariant under a larger group of transformations, parti-
cularly under all elements of the orthogonal group O(3). For the invariant formulation of the
thermodynamic potential we introduce an additional tensor, the preferred direction a, which
can be interpreted as a first-order structural tensor. With the principle of isotropy of space, see
e.g. [18], we arrive at the representation for the thermodynamic potential:

Ĥ(ε, E, ξ, a) = Ĥ(QεQT , QE, Q ∗ ξ, Qa) ∀ Q ∈ O(3) . (9)

Eq. (9) is the definition of an isotropic tensor function, i.e. this relationship represents a set of
isotropic functions with respect to the whole set of arguments {ε, E, ξ, a}. On the other hand
Eq. (9) can be interpreted as an anisotropic function with respect to the arguments {ε, E, ξ},
i.e. Ĥ(ε, E, ξ, a) = Ĥ(QεQT , QE, Q ∗ ξ, a) where this condition holds only and only
if Q ∈ Gti. Due to this observation we conclude that the invariance group of the structural
tensor, here the preferred direction a, characterizes the type of anisotropy.

4.1 Constitutive Framework

One of the basic assumptions in the proposed model is the often used additive decomposition
of the strain tensor ε and the vector of electric displacements D into their reversible {εe, De}
and remanent parts {εr, P r}:

ε = εe + εr and D = De + P r . (10)

Consequently, we choose for the set of internal variables in (9) the remanent quantities, i.e.

ξ := {εr, P r} → Q ∗ ξ = {QεrQT , QP r} . (11)

The observable variables are the total strains ε and the electric field E, whereas the remanent
quantities describe the internal state of the material and a reflects the internal orientation of
the polarized material. Neglecting thermal effects the second law of thermodynamics yields

D = σ : ε̇ − D · Ė − Ḣ ≥ 0 . (12)

The evaluation of the dissipation inequality leads to the expression

D = (σ − ∂εH) : ε̇ − (D + ∂EH) · Ė − ∂εrH : ε̇r − ∂P rH · Ṗ
r
≥ 0 . (13)

This inequality has to be fulfilled for all possible thermodynamic processes, thus we obtain
the following constitutive equations for the stresses and electric displacements

σ = ∂εH and D = −∂EH , (14)

respectively. For the thermodynamic forces associated to the remanent quantities we introduce
the abbreviations

σ̃ := −∂εrH and Ẽ := −∂P rH , (15)
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which lead to the reduced dissipation inequality

D = σ̃ : ε̇r + Ẽ · Ṗ
r
≥ 0 . (16)

Hilbert’s Theorem postulates that for a finite set of vectors and tensors an integrity basis
consisting of a finite number of invariants exists, see [18] and the references therein. In order
to formulate the electric enthalpy function we need this finite set of invariants, which builds
the polynomial basis. For detailed representations of scalar- and tensor-valued functions we
refer to [32–37], in the context of electromechanically coupled systems see [31]. The finite
set of vectors and tensors is given by the symmetric tensors ε, εr, the vectors E, P r and the
preferred direction a with ||a|| = 1. With the normalization condition for a, which induces
trace[(a⊗a)n] = 1 for n = 1, 2, 3, the basic and mixed invariants of interest in the proposed
model are

I1 := trace[ε − εr], I2 := trace[(ε − εr)2], I4 := trace[(ε − εr)(a ⊗ a)],

I5 := trace[(ε − εr)2(a ⊗ a)], J1 := trace[(E ⊗ E)], J2 := trace[(E ⊗ a)],

K1 := trace[(ε − εr)(E ⊗ a)], N̄P := P r · a .

(17)

The enthalpy function H is formulated in terms of the elements of the polynomial basis

H = H(I1, I2, I4, I5, J1, J2, K1, N̄
P ) =: H(Li|i = 1, ...8) , (18)

which is invariant under all transformations Q ∈ O(3). Of course, polynomial functions
in elements of the polynomial basis are also invariant under these transformations. In the
above discussed framework we now construct a specific model problem. In this model the
underlying thermodynamic potential is divided into five parts and given by

H = H1(ε, εr) + H2(E) + H3(ε, εr, E, N̄P ) + H4(E, N̄P ) + H5(N̄
P ) . (19)

The mechanical, electrical and piezoelectric parts are

H1 =
1

2
λI2

1 + μI2 + α1I5 + α2I
2
4 + α3I1I4 ,

H2 = γ1J1 + γ2J
2
2 ,

H3 = [β1I1J2 + β2I4J2 + β3K1]
1

Ps

N̄P =: ω N̄P ,

(20)

respectively. All appearing material properties can be identified from the classical moduli
representations. The terms H4 and H5 with

H4 = −J2 N̄P and H5 = f(N̄P ) (21)

take into account the remanent polarization of the material, where the function f(N̄P ) governs
the form of the dielectric hysteresis curve, we choose

f(N̄P ) =
1

c
[N̄P Artanh(

N̄P

Ps

) +
1

2
Psln(1 − (

N̄P

Ps

)2)] . (22)
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The explicit form of the stresses and electric displacements appear with

σ = ∂εĤ =
8∑

i=1

∂Ĥ

∂Li

∂Li

∂ε
and D = −∂EĤ = −

8∑
i=1

∂Ĥ

∂Li

∂Li

∂E
(23)

for the specific model problem (15) as follows

σ = (λI1 + α3I4)1 + 2μ(ε − εr) + α1[a ⊗ (ε − εr)a + a(ε − εr) ⊗ a]

+ (2α2I4 + α3I1)a ⊗ a + [β1J21 + β2J2a ⊗ a

+
1

2
β3(E ⊗ a + a ⊗ E)]

1

Ps

N̄P ,

D = −2γ1E − 2γ2J2a − [(β1I1 + β2I4)a + β3a(ε − εr)]
1

Ps

N̄P + P r .

(24)

Here P r = −∂H4/∂E = N̄P a is the remanent polarization wrt. the polarization axis.

4.2 Switching Surface and Remanent Quantities

In order to describe the evolution of the remanent variables the existence of a dissipation
potential is assumed. This is expressed as a continuous, convex scalar-valued function of the
flux variables ε̇r and Ṗ

r
, in this context see e.g. [22], [21] and [25]. Applying a Legendre-

Fenchel transformation leads to a corresponding potential that can be formulated in terms of
the dual quantities. Let us now introduce a switching surface Φ in terms of the dual variables
σ̃ and Ẽ, with

Φ(σ̃, Ẽ) ≤ 0 . (25)

Applying the principle of maximum remanent dissipation, a generalization of the principle of
maximum dissipation, we construct the Lagrangian functional

L(σ̃, Ẽ, λ) = −D(σ̃, Ẽ) + λΦ(σ̃, Ẽ) , (26)

with the Lagrange multiplier λ. The optimization conditions, see e.g. [24],

∂σ̃L = 0 , ∂ ˜E
L = 0 , ∂λL = 0 , (27)

lead to the associated flow rules of the remanent variables

ε̇r = λ∂σ̃Φ(σ̃, Ẽ) and Ṗ
r

= λ∂ ˜E
Φ(σ̃, Ẽ) (28)

and the loading/unloading conditions λ ≥ 0, Φ(σ̃, Ẽ) ≤ 0 and λΦ(σ̃, Ẽ) = 0. Inserting the
time derivative of the thermodynamic potential (19) into the second law of thermodynamics
leads, for the specific model problem (19) with (24), to the reduced dissipation inequality

−(∂εrH1 + ∂εrH3)︸ ︷︷ ︸
σ̃

: ε̇r −(∂N̄P H3 + ∂N̄P H4 + ∂N̄P H5)︸ ︷︷ ︸
Ẽ

˙̄NP ≥ 0 . (29)
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We reformulate (29) according to (15) in σ̃ : ε̇r + Ẽ · ˙̄NP ≥ 0. Following [25] this expression
is reduced to Ẽ · ˙̄NP ≥ 0 by using the constitutive relation

εr =
εr

a

P 2
s

dev(P r ⊗ P r) , (30)

where εr
a characterizes the maximum achievable remanent strain due to polarization in direc-

tion of the polarization axis. This quadratic relationship between the remanent polarization
and strains is a commonly reasonable assumption, when the electric fields are strong and the
stresses are small, see e.g. [20]. As a simple choice for the switching criterion we specify

Φ = Ẽ2 − E2
c ≤ 0 , (31)

with the coercive field strength Ec. The quantity Ẽ is decomposed in Ẽ = E − EB , with
E := −∂N̄P H4 = J2 and the abbreviation

EB := ∂N̄P H3 + ∂N̄P H5 (32)

for the back electric field. Now the switching criterion appears in the explicit form

Φ = (E − EB)2 − E2
c = (J2 − EB)2 − E2

c ≤ 0 . (33)

For the numerical treatment we refer to [26, 28, 29]. As a numerical example we consider a
quadratic plate with a centered hole, see Fig. 6. Here the microstructure is approximated by
an ODF with 42 orientations per Gauß point. The applied electric voltage at the upper and
lower edge is cycled from λ = 0, 1, 0,−1 =: {λ0, λ1, λ2, λ3}.

����

l x
=

l y
=

1
0
m

m

φ = −λ φ̄

φ = λ φ̄

r = 3mm

Phi

1.7E+04
1.3E+04
9.0E+03
4.8E+03
6.9E+02

-3.4E+03
-7.6E+03
-1.2E+04
-1.6E+04
-2.0E+04

Fig. 6 (online colour at: www.gamm-mitteilungen.org) Left: Plate with a hole, discretized with 100
quadrilateral elements and 42 orientations per Gauß point. Right: Distribution of the electric potential
at λ1.

The material parameters are chosen close to BaTiO3 at Θ = 25◦C: elasticity parame-
ters λ = 76.6 · 109, μ = 44.7 · 109, α1 = −3.6 · 109, α2 = 0.7 · 109, α3 = 0.9 · 109,
in N/m2, piezoelectric parameters β1 = 4.4, β2 = 0.2, β3 = −23.2 in C/m2, dielec-
tric parameters γ1 = −0.56 · 10−8, γ2 = −0.07 · 10−8 in C/Vm, and εr

a = 2.45 · 10−4,
Ps = 26 · 10−2C/m2. Fig. 7 depicts the distribution of the macroscopic polarization compo-
nents P r

1 /Ps and P r
2 /Ps at three different loading stages.
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Fig. 7 (online colour at: www.gamm-mitteilungen.org) Distribution of the macroscopic remanent po-
larization. Left: P r

1 /Ps at a) λ1, c) λ2, e) λ3. Right: P r

2 /Ps at b) λ1, d) λ2, f) λ3.

5 Point defects

In a perfect crystal with an undisturbed lattice, all atoms are located at ideal lattice sites.
On the continuum level, this is modelled as a homogeneous medium. Vacancies or foreign
atoms lead to disturbance in the strain and charge state. On the continuum mechanics level,
these defects can be modelled as a localized strain and as a localized charge. Thus for the
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144 R. Müller, J. Schröder, and D.C. Lupascu: Modelling of ferroelectrics

mechanical part the following assumption for the inelastic strain is made:

ε0 = α δ(x − η) , (34)

where α is the intensity of the defect and δ is the Dirac-delta distribution positioned at point η.
For simplicity it is often assumed, that the eigenstrain ε0 is isotropic, i.e. α = α1, but
this assumption is very crude for complex crystals consisting of many different atom species.
Nevertheless, we will assume an isotropic eigenstrain in the following. The material parameter
α depends on the lattice structure and can be positive or negative. A positive sign represents
a defect too large for its lattice site, a negative sign describes is a defect too small for the
neighborhood or a vacancy.
Similarly, defect charges at a point η are modelled with a parameter β:

q = β δ(x − η) . (35)

The determination of the defect parameters is a non-trivial task. Recently, comparison meth-
ods between atomistic and continuum mechanical simulations were used to identify these
defect parameters. Details on a method based on the volumetric deformation induced by the
defect can be found in [43, 44]. Here, the sign of β determines the sign of the charge of the
defect.
Computing the gradient of the electric enthalpy H(ε− ε0, E, P 0) the balance law of config-
urational forces can easily be obtained by using the standard field equations. The result can
be put in the format

divΣ + g = 0 , (36)

where the Σ is the electro-mechanical Eshelby stress tensor, or configurational stress tensor
and g is the configurational volume force. They are defined as

Σ = H1− (∇u)Tσ −∇ϕ ⊗ D , (37)

g = −(∇u)Tf + ∇ϕq + σ : ∇ε0 + (∇P 0)TE −
∂H

∂x

∣∣∣∣
expl.

. (38)

In the case of a homogeneous material with constant polarization P 0 and in the absence of
volume forces f the theory of material forces can be used to derive the driving force on a
point defect:

G = − lim
r→0

∫
Vη(r)

g dV (39)

= − lim
r→0

∫
Vη(r)

[
σ : 1α∇δ(x − η) + ∇ϕβ δ(x − η)

]
dV (40)

= − [−α∇(trσ) + β∇ϕ]
∣∣
x=η

:= ∇Λ
∣∣
x=η

, (41)

see also [38, 39]. The field Λ is a force field on the defect in this electro-mechanical coupled
system. The driving force due to the mechanical fields is given be the hydrostatic stress
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state. Thus a center of expansion moves to regions where the lattice is already hydrostatically
expanded and avoids regions of enhanced pressure. The second term in (41) represents the
electrostatic force exerted on a point charge.
If defects are mobile and move with a velocity v in the lattice the dissipation due to defect
motion can be written as

DPD = G · v ≥ 0 . (42)

Thus it is in agreement with the dissipation inequality to assume a kinetic relation of the form

v = cPDG with cPD ≥ 0 . (43)

An example of an isolated defect and two interacting defects in barium titanate is shown in
Fig. 8. In order to compute the driving forces on a defect the field equations have to be
solved. Fig. 8 shows the results for a computation using Fast Fourier Transform methods,
see [38] for details on the numerical implementation. It is also possible to incorporate defects
directly into Finite Element simulations. Details on this are given in [40]. Once the fields
are solved the driving force field Λ can be obtained. The result for an arrangement with two
defects is depicted in Fig. 8c). In addition, the driving forces acting on the defects are shown
by two arrows. If defects are allowed to move according to the driving force by (43), they
will follow the path shown in Fig. 8d), i.e. circling each other and finally approaching each
other in the center of the simulation domain. The paths followed by defects are very complex
and due to the anisotropy depend on the starting position of the two defects. For the system
analysed here, almost all starting arrangements lead to a unification, only defects aligned with
the principal axis of the material have the tendency to separate. For the interaction of more
than two defects the reader is referred to [38].

6 Domain wall motion

To analyse the driving force on a single domain wall, the field equations of section 3 have to
be supplemented by jump conditions on the domain wall. Within each domain, it is assumed
that the spontaneous polarization P 0 and the spontaneous strain ε0 are constant, together with
the material constants. The domain wall is treated as a sharp interface S, which separates two
domains B+ and B−. The normal vector nS on the interface S is pointing into domain B+.
The balance laws on the interface reduce to the following jump relations

[[σ]]nS = 0 and [[D]] · nS = 0 (44)

on the domain wall S. Domain walls are perfectly bounded interfaces, thus the mechanical
displacements u and the electric potential ϕ have to be continuous across the domain wall S,
i.e.

[[u]] = 0 and [[ϕ]] = 0 . (45)

As a consequence of these assumptions the jump in rates can be written as

[[u̇]] = −vn[[∇u]]nS and [[ϕ̇]] = −vn[[∇ϕ]] · nS , (46)
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Fig. 8 (online colour at: www.gamm-mitteilungen.org) Point defects: a) isolated defect, electric dis-
placement D2, b) isolated defect, mechanical stress σ22, c) two interacting defects, driving force and
force field Λ at final position.

where vn is the normal velocity of the domain wall. These jump conditions together with the
equations in the bulk allow us to determine the driving force on a domain wall. Details on this
derivation are omitted here for the sake of brevity. Details can be found in [41]. In [40] also
a variational setting is discussed. In addition to the bulk energy, i.e. the electric enthalpy H ,
an isotropic and constant interface energy density γ is assumed for the domain wall. Thus the
total energy of the system is comprised of

E =

∫
B

H dV + γ

∫
S

dA . (47)

Again utilizing the theory of material or configurational forces, the driving force on a domain
wall can be computed. As a result the force τn per unit area of domain wall is given as

τn = nS · ([[Σ]]nS) + γκ (48)

where κ is twice the mean curvature. The Eshelby stress tensor takes the changes of the elec-
tric enthalpy and the work done by the fields into account as a domain wall moves through
the lattice. The curvature term is related to the creation or annihilation of interface area due
to domain wall motion. Thus except for simple cases the simulation of domain wall motion
requires the solution of the entire coupled field problem, taking spontaneous strain and polar-
ization into account. If the domain wall moves with a velocity vn in normal direction through
the lattice the dissipation due to this process is given by

DS = τnvn ≥ 0 . (49)
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Fig. 9 (online colour at: www.gamm-mitteilungen.org) Electric displacement and driving force on a
180

◦ domain wall in conjunction with defects: a) point defects, b) surface (electrode) defect.

Note, that the tangential velocity is no intrinsic quantity and thus cannot have an influence
on the dissipation. Again the dissipation inequality can be used to postulate a kinetic rela-
tion. Based on experimental observations for single crystal systems [42] the following kinetic
relation was proposed

vn = cS〈|τn| − τ0〉 signτn , (50)

which resembles a visco-plastic law of Perzyna type. For the domain wall to move, a threshold
value τ0 has to be overcome. Once this threshold value is exceed the domain wall moves with
a velocity vn proportional to the overload |τn| − τ0. The mobility coefficient of this motion is
cS > 0. The kinetic coefficients cS and τ0 were determined by experiment on single crystals
with planar domain walls, where the interface energy terms can be neglected. Details on this
procedure can be found in [41].
The presence of defects, which may be point or surface defects, perturb the local fields at the
domain wall and lead to an inhomogeneous distribution of the driving force on the domain
wall. Such situations are shown in Fig. 9 for different defects. It can be seen that compared
to the defect free state the overall driving force on a 180◦ domain wall is reduced, which
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demonstrates that the presence of defects diminish the motion of domain walls. Their presence
and arrangement in the material is therefore related to fatigue phenomena. Especially, if the
defects are mobile themselves their redistribution can reduce domain wall motion, resulting
in macroscopic fatigue, i.e. deformation of the electric hysteresis loops and butterfly loops.
The details of these complex interaction processes are still not fully understood. More results
can be found in [40].

7 Final remarks

The complexity of the ferroelectric material behavior has to be modelled at different length
scales. A macroscopic model has to not only be thermodynamic consistent but also has to take
the key properties of the microstructure into account. The presented model of an orientation
distribution function serves this purpose very well. In order to understand the effects associ-
ated with fatigue the details of domain wall motion and defect interaction have to considered.
The models for domain wall motion and defect migration are also thermodynamic consistent
and explain the formation of defect clusters and the pining of domain walls by such clus-
ters. Future work should consider the microscopic details of the fatigue mechanisms, which
are also experimentally observed, in order to develop a macroscopic model with appropriate
internal variables.
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