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a b s t r a c t

In Part I, Fleischmann et al. (2013), we performed theoretical analyses of three cubic

packings of uniform spheres (simple, body-centered, and face-centered) assuming no particle

rotation, employed these results to derive the effective elastic moduli for a statistically

isotropic particulate material, and assessed these results by performing numerical discrete

element method (DEM) simulations with particle rotations prohibited. In this second part,

we explore the effect that particle rotation has on the overall elastic moduli of a statistically

isotropic particulate material. We do this both theoretically, by re-analyzing the

elementary cells of the three cubic packings with particle rotation allowed, which leads

to the introduction of an internal parameter to measure zero-energy rotations at the local

level, and numerically via DEM simulations in which particle rotation is unrestrained.

We find that the effects of particle rotation cannot be neglected. For unrestrained particle

rotation, we find that the self-consistent homogenization assumption applied to the

locally body-centered cubic packing incorporating particle rotation effects most accu-

rately predicts the measured values of the overall elastic moduli obtained from the DEM

simulations, in particular Poisson’s ratio. Our new self-consistent results and theoretical

modeling of particle rotation effects together lead to significantly better theoretical

predictions of Poisson’s ratio than all prior published results. Moreover, our results are

based on a direct micromechanics analysis of specific geometrical packings of uniform

spheres, in contrast to prior theoretical analyses based on hypotheses involving overall

inter-particle contact distributions. Thus, our results permit a direct assessment of the

reasons for the theory–experiment discrepancies noted in the literature with regard

to previous theoretical derivations of the macroscopic elastic moduli for particulate

materials, and our new theoretical results greatly narrow such discrepancies.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

In the first of this two-part series, Fleischmann et al. (2013), to which we refer simply as Part I in the sequel, we
performed theoretical analyses of three cubic packings of uniform spheres (simple, body-centered, and face-centered)
assuming no particle rotation. We used the resulting tensors of cubic elastic moduli C to obtain tensors of effective elastic
All rights reserved.

713

(J.A. Fleischmann).

www.elsevier.com/locate/jmps
www.elsevier.com/locate/jmps
http://dx.doi.org/10.1016/j.jmps.2013.01.009
http://dx.doi.org/10.1016/j.jmps.2013.01.009
http://dx.doi.org/10.1016/j.jmps.2013.01.009
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jmps.2013.01.009&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jmps.2013.01.009&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jmps.2013.01.009&domain=pdf
mailto:jonathan.fleischmann@uwc.edu
http://dx.doi.org/10.1016/j.jmps.2013.01.009


J.A. Fleischmann et al. / J. Mech. Phys. Solids 61 (2013) 1585–15991586
moduli C for a statistically isotropic particulate material with locally cubic packing structure, using the homogenization
methods of Voigt (1928) (kinematic hypothesis), Reuss (1929) (static hypothesis), and Hershey (1954) and Kröner (1958)
(self-consistent hypothesis). While the assumption of no particle rotation can be justified for certain regular cubic packings
as the number of elementary cells becomes large (as we confirm herein), it cannot be justified in general for statistically
isotropic assemblies that have only a locally cubic packing structure. In this second part of our two-part series, we re-
analyze the three cubic packings with the effect of particle rotation included. We prove by several simple theoretical
examples that particle rotation can produce zero-energy strains or mechanisms in a particulate material, and that they
significantly alter the predicted value of Poisson’s ratio for a particulate material in the elastic range. To account for the
effect of particle rotation, we introduce a micromechanics-motivated internal parameter that leads to new theoretical
predictions for the elastic moduli under all three homogenization assumptions.

After obtaining closed-form analytical expressions for the overall elastic moduli (bulk modulus and Poisson’s ratio) of the
particulate material in terms of the normal and tangential stiffnesses of the contacts between the particles in the material, we
perform numerical simulations using the discrete element method (DEM) to measure the overall elastic moduli for specimens
of randomly packed uniform spheres with constant normal and tangential contact stiffnesses (linear spring model), and we
compare these results with the theoretical results obtained under the three homogenization assumptions for each of the three
cubic packing geometries. In Part I, our DEM simulations were performed with particle rotation prohibited. In this second part,
our DEM simulations are performed under identical conditions as in Part I, but with particle rotation unrestrained. The overall
elastic moduli are again measured from the DEM simulations, and the results are compared both to those of the DEM
simulations performed in Part I and to the theoretical results obtained in this second part, which include the effects of particle
rotation. We show that our new theoretical results from the self-consistent hypothesis applied to the BCC packing including
particle rotation agree most closely with DEM simulations in which particle rotation is unrestrained, and that these are
significantly different from the results obtained in Part I when particle rotation was prohibited.

Our method of including the effects of mechanisms produced by particle rotation is in contrast to the work of other
researchers, such as Chang et al. (1995) and Chang and Gao (1995), who include particle rotation only within the context of
micro-polar or quasi-micro-polar continuum theory. The micro-polar or quasi-micro-polar continuum approach cannot
capture the zero-energy strains or mechanisms produced by particle rotations, and therefore cannot accurately predict
Poisson’s ratio for an isotropic particulate material. We find that, when compared to the measured values of the overall
elastic moduli obtained from DEM simulations on specimens of randomly packed uniform spheres, our analytical self-
consistent results from the body-centered cubic packing that include the effect of particle rotation predict values of the
elastic moduli, and in particular Poisson’s ratio, that are significantly more accurate than those currently in the literature.
2. Overall elastic moduli for regular arrays of uniform spheres incorporating the effect of particle rotation

In Section 2 of Part I, we derived the three independent cubic elastic moduli C1, C2, and C3 for three regular cubic
packings of uniform spheres: face-centered cubic (FCC), simple cubic (SC), and body-centered cubic (BCC), under the
assumption that no particle rotation occurred during deformation. These cubic elastic moduli were given in terms of the
radius of the spheres R and the normal and tangential inter-particle contact stiffnesses Kn and Kt. They are repeated here
for reference:

FCC, no particle rotation:

C1 ¼
1ffiffiffi
2
p

R
ðKnþKtÞ, C2 ¼

1

2
ffiffiffi
2
p

R
ðKn�KtÞ, C3 ¼

1

2
C1, ð1Þ

BCC, no particle rotation:

C1 ¼
1

2
ffiffiffi
3
p

R
ðKnþ2KtÞ, C2 ¼

1

2
ffiffiffi
3
p

R
ðKn�KtÞ, C3 ¼

1

2
ðC1þC2Þ, ð2Þ

SC, no particle rotation:

C1 ¼
1

2R
Kn, C2 ¼ 0, C3 ¼

1

4R
Kt , ð3Þ

The assumption that the particles (spheres) do not rotate turns out to be quite significant. Despite this fact, the
assumption of no particle rotation can be justified for certain regular cubic arrays in the limit as the number of elementary
cells becomes large, due to the symmetry of the inter-particle contacts; we provide explicit DEM verification of this later
in this section. However, if a statistically isotropic particulate material has only locally cubic packing structure, then
the assumption of no particle rotation can no longer be justified. What is even more problematic from the point of view
of continuum modeling is that some of these particle rotations may be mechanisms. In other words, some quasi-static
particle rotations may result in zero energy change in the system, but still cause plastic (irreversible) strain. This violates
Drucker’s postulate. Moreover, particle rotation at the local level may be involved in a global elastic strain of the
particulate material, while, as Goddard (2008) shows, these particle rotations do not contribute to the quasi-static stress
power. Mechanisms due to particle rotation can occur anywhere that there are local asymmetries in the distribution



Fig. 1. Elementary cells of face-centered cubic (left), body-centered cubic (center), and simple cubic (right) regular arrays of uniform spheres.

Fig. 2. Poisson’s ratio n as a function of a¼ Kt=Kn for a single elementary cell of an FCC array of uniform spheres. The data points represent values

obtained by numerical simulations performed using the discrete element method (DEM) in which the particles were either allowed or not allowed to

rotate. The theoretical curves are from Eqs. (4) and (4)n [which is Eq. (4) with a replaced by an ¼ xa] with x¼ 11=15� 0:733.
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of inter-particle contacts. In the following subsections, we consider the effect of particle rotation in each of the three
elementary cells shown in Fig. 1.

2.1. Face-centered cubic (FCC) array of uniform spheres

If we consider a single elementary cell of an FCC array of uniform spheres (Fig. 1, left), then for loading parallel to the
principal axes, if the spheres are not allowed to rotate, Poisson’s ratio is

nFCC ¼
C2

C1þC2
¼

1�a
3þa , ð4Þ

with C1 and C2 given by Eq. (1) and a¼ Kt=Kn. Fig. 2 plots Eq. (4), as well as measurements of Poisson’s ratio n as a function
of a for the single elementary cell obtained from numerical simulations using the discrete element method. For one set of
DEM simulations, the spheres were not allowed to rotate, while for the other set, rotation was unrestrained. In all of the
DEM simulations, the lateral surfaces of the cell were constrained while an axial strain was applied quasi-statically along
one of the principal axes (the z-axis), and Poisson’s ratio was computed from the principal stress increments dsx, dsy, and
dsz according to Eq. (44) of Part I. No friction was present on the boundary of the elementary cell during the deformation.
As Fig. 2 shows, when the spheres are not allowed to rotate, the DEM results for Poisson’s ratio are in perfect agreement
with the theoretical predictions of Eq. (4). When the spheres are allowed to rotate, however, the DEM results for Poisson’s
ratio no longer agree with the theoretical predictions of Eq. (4), but are consistently (and significantly) higher. Note that
we were able to verify that there was no inter-particle slip in all of the DEM simulations referred to in Fig. 2.

It is not difficult to theoretically determine the effect of particle rotation on the cubic elastic moduli of a single FCC
elementary cell with no friction between the spheres and the boundary of the cell. First, we note that Eq. (1) can be re-
derived for the case of no particle rotation by considering a single FCC elementary cell subjected to a state of pure uniaxial
strain E11 ¼�d11=ð

ffiffiffi
2
p

DÞ (with E22 ¼ E33 ¼ 0). It can be shown by an analysis of the inter-particle normal and tangential
contact forces within the FCC cell that the forces normal to the cell faces are F11 ¼�2ðKnþKtÞd11 and F22 ¼ F33 ¼

�ðKn�KtÞd11, where contributions from inter-particle contacts on the faces and interior of the cell have been included, and
where, since the ‘‘material’’ cube is measured only to the centers of the outer spheres, the normal and tangential stiffnesses
of the contacts on the faces contribute half of their full values. From these expressions for C1 and C2 in terms of Kn and
Kt given in Eq. (1) can be derived in a straightforward way, since s11 ¼ F11=ð2D2

Þ ¼ C1E11 and s22 ¼ s33 ¼ F22=ð2D2
Þ ¼

F33=ð2D2
Þ ¼ C2E11. Similarly, the expression for C3 in terms of Kn and Kt given in Eq. (1) can be derived by considering a

single FCC elementary cell subjected to a state of pure shear.



J.A. Fleischmann et al. / J. Mech. Phys. Solids 61 (2013) 1585–15991588
If a single FCC elementary cell in which particle rotation is unrestrained is subjected to a state of pure uniaxial strain
along one of its principal axes, then due to the symmetry of the loading, only the spheres at the eight corners of the
cell will experience rotation. Note that in the FCC packing, each corner sphere is in contact with three face-centered
spheres: two on faces parallel to the axis of deformation and one on a face normal to the axis of deformation. If each corner
sphere remains in contact with all three face-centered spheres throughout the deformation, then an analysis of the
stiffness matrix for the FCC elementary cell with rotational degrees of freedom leads to F11 ¼�2ðKnþxKtÞd11 and F22 ¼

F33 ¼�ðKn�xKtÞd11 with x¼ 11=15. This analysis is given in detail in Appendix A. It follows that the cubic elastic moduli
for the FCC elementary cell with unrestrained particle rotation are

C1 ¼
1ffiffiffi
2
p

R
ðKnþxKtÞ, C2 ¼

1

2
ffiffiffi
2
p

R
ðKn�xKtÞ, C3 ¼

1

2
C1, ð5Þ

with x¼ 11=15� 0:733.
If the deformation in the single FCC elementary cell we have just described is sufficiently large, then infinitesimal gaps

will form between the corner spheres and the face-centered spheres on faces normal to the axis of deformation. In this
case, if particle rotation is unrestrained and no tangential force is applied to the boundaries of the cell, it can be shown by a
similar analysis that the cubic elastic moduli for the FCC elementary cell are again given by Eq. (5), but now with x¼ 0:5. If
particle rotation is prohibited, then gaps on the faces normal to the deformation may still form, but they do not affect the
cubic elastic moduli (i.e., x¼ 1).

Our theoretical analysis is confirmed by the DEM simulations described at the beginning of this section. If we substitute
the expressions for C1 and C2 given by Eq. (5) into Eq. (4), and call the resulting expression Eq. (4)n where an ¼ xa replaces
a, then the nðaÞ curve predicted by Eq. (4)n with x¼ 0:733 agrees perfectly with the curve that was obtained numerically by
DEM simulations in which particle rotation was unrestrained, as shown in Fig. 2.

We commented earlier that the assumption of no particle rotation is valid for certain regular cubic arrays in the limit as the
number of elementary cells becomes large. This is in fact true for the regular FCC array even when the number of elementary
cells is only moderately large. We have confirmed this by DEM simulations on 2� 2� 2, 3� 3� 3, and 7� 7� 7 arrays of FCC
elementary cells, containing totals of 63, 172, and 1688 uniform spheres, respectively. The results are shown in Fig. 3. For a
7� 7� 7 FCC array, the data points obtained from DEM simulations in which particle rotation was unrestrained match those
obtained from a single FCC elementary cell in which particle rotation was prohibited, which is predicted by Eq. (4) or by Eq. (4)n

with x¼ 1, as shown in Fig. 3; this is the minimum array size for which this match occurs.

2.2. Body-centered cubic (BCC) array of uniform spheres

If we consider a single elementary cell of a BCC array of uniform spheres (Fig. 1, center), then for loading parallel to the
principal axes, if the spheres are not allowed to rotate, Poisson’s ratio is

nBCC ¼
C2

C1þC2
¼

1�a
2þa , ð6Þ

with C1 and C2 given by Eq. (2). It is quite easy to show theoretically that if particle rotation is allowed for a single BCC
elementary cell loaded parallel to the principal axes with no friction on the boundary of the cell, then nBCC ¼ 0:5 regardless
of a. This is confirmed by DEM simulations analogous to those performed on the single FCC elementary cell considered in
Section 2.1. Fig. 4 plots Eq. (6), as well as measurements of Poisson’s ratio n as a function of a for the single elementary cell
obtained from numerical simulations using the discrete element method. For one set of DEM simulations, the spheres were
not allowed to rotate, while for the other set, rotation was unrestrained. No friction was present on the boundary of the
Fig. 3. Poisson’s ratio n as a function of a¼ Kt=Kn for 2� 2� 2, 3� 3� 3, and 7� 7� 7 arrays of FCC elementary cells, containing totals of 63, 172, and

1688 uniform spheres, respectively. The data points represent values obtained by numerical simulations performed using the discrete element method

(DEM) in which particle rotation was unrestrained. The theoretical curves are from Eq. (4)n [which is Eq. (4) with a replaced by an ¼ xa] with x¼ 0:92,

x¼ 0:97, and x¼ 1. The 7� 7� 7 array is the minimum size for which x¼ 1.



Fig. 4. Poisson’s ratio n as a function of a¼ Kt=Kn for a single elementary cell of a BCC array of uniform spheres. The data points represent values obtained

by numerical simulations performed using the discrete element method (DEM) in which the particles were either allowed or not allowed to rotate. The

theoretical curves are from Eqs. (6) and (6)n [which is Eq. (6) with a replaced by an ¼ xa] with x¼ 0.

Fig. 5. Poisson’s ratio n as a function of a¼ Kt=Kn for 9� 9� 9, 18� 18� 18, and 27� 27� 27 arrays of BCC elementary cells, containing totals of 1729,

12 691, and 41 635 uniform spheres, respectively. The data points represent values obtained by numerical simulations performed using the discrete

element method (DEM) in which particle rotation was unrestrained. The theoretical curves are from Eq. (6)n [which is Eq. (6) with a replaced by an ¼ xa]

with x¼ 0:9, x¼ 0:98, and x¼ 1. The 27� 27� 27 array is the minimum size for which x� 1.
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elementary cell during the deformation. As Fig. 4 shows, when the spheres are not allowed to rotate, the DEM results for
Poisson’s ratio are in perfect agreement with the theoretical predictions of Eq. (6). When the spheres are allowed to rotate,
however, the DEM results for Poisson’s ratio no longer agree with the theoretical predictions of Eq. (6), but are consistently
(and significantly) higher. Note that we were able to verify that there was no inter-particle slip in either of the DEM
simulations referred to in Fig. 4.

Indeed, for any sort of deformation, if the spheres in a BCC elementary cell are free to rotate and there is no tangential
force applied to the boundaries, there will be no inter-particle tangential displacement regardless of Kt. This follows
immediately from moment equilibrium applied to the eight spheres on the boundaries of the cell. Thus, the effect of
particle rotation for a single BCC elementary cell with particle rotation unrestrained is equivalent to the inter-particle
tangential stiffness being zero. In analogy to the cases of the FCC and SC elementary cells, we can write the modified cubic
elastic moduli for a single BCC elementary cell incorporating particle rotation as

C1 ¼
1

2
ffiffiffi
3
p

R
ðKnþ2xKtÞ, C2 ¼

1

2
ffiffiffi
3
p

R
ðKn�xKtÞ, C3 ¼

1

2
ðC1þC2Þ, ð7Þ

with x¼ 0.
Our theoretical analysis is confirmed by the DEM simulations described at the beginning of this section. If we substitute

the expressions for C1 and C2 given by Eq. (7) into Eq. (6), and call the resulting expression Eq. (6)n where an ¼ xa replaces
a, then the nðaÞ curve predicted by Eq. (6)n with x¼ 0 agrees exactly with the curve that was obtained numerically by DEM
simulations in which particle rotation was unrestrained, as shown in Fig. 4. It is noteworthy that, due to geometric
nonlinearities, if the pre-compression on the single BCC elementary cell in the DEM simulations results in an initial overlap
of the spheres of 0:01D, where D is the sphere diameter, then the DEM results for Poisson’s ratio are actually n¼ 0:508.
However, if the pre-compression on the single BCC elementary cell is reduced so that the initial overlap of the spheres is
0:001D, then the DEM result for Poisson’s ratio becomes n¼ 0:5008, and this result can be brought arbitrarily close to the
theoretical result of n¼ 0:5 by further reducing the initial overlap of the spheres.

Unlike the case of the FCC elementary cells, however, it takes a significant number of BCC elementary cells to restrain
particle rotation. Fig. 5 shows the results of DEM simulations on 9� 9� 9, 18� 18� 18, and 27� 27� 27 arrays of BCC
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elementary cells, containing totals of 1729, 12 691, and 41 635 uniform spheres, respectively. For a 27� 27� 27 BCC array,
the data points obtained from DEM simulations in which particle rotation was unrestrained match approximately those
obtained from a single BCC elementary cell in which particle rotation was prohibited (the match is good for ar1:0, but it
diverges slightly for a41:0), which is predicted by Eq. (6) or by Eq. (6)n with x¼ 1, as shown in Fig. 5; this is the minimum
array size for which this approximate match occurs.

2.3. Simple cubic (SC) array of uniform spheres

A single elementary cell of a SC array of uniform spheres (Fig. 1, right) shows no Poisson effect when loaded parallel to
the principal axes (because C2 ¼ 0). However, particle rotation can affect the shear behavior of a single SC elementary cell
when asymmetries exist in the distribution of inter-particle contacts, which result in shearing mechanisms. To illustrate
this point with a simple example, consider an elementary cell of a simple cubic array of uniform spheres subjected to pure
shear for which particle rotation is allowed to occur, as shown in Fig. 6. If all of the inter-particle contacts in the SC
elementary cell shown in Fig. 6 are active, then a simple calculation shows that the shear strain is 2Exy ¼D=2R, and the
shear stress is sxy ¼ 4Ktdt=ð4RÞ2, where dt ¼D�2Ry and R is the radius of the spheres. Moment balance at the particle level
requires that Ktdt ¼ Kt2Ry, from which it follows that D¼ 2dt . Thus, it follows in this case that C3 ¼ sxy=ð2ExyÞ ¼ Kt=ð4RÞ,
which is the same as the value reported for the SC elementary cell in Eq. (3) obtained assuming no particle rotation. Note
that in this case the distribution of inter-particle contacts in Fig. 6 is symmetric.

Next consider the same SC elementary cell subjected to pure shear shown in Fig. 6, but this time with a single infinitesimal gap
introduced between the two visible spheres at the bottom of the cell, so that there is no resistance to relative rotation at what
would otherwise have been the contact point between those two spheres in the y–z plane. It follows that, while the shear strain is
the same as it was in the preceding paragraph when all of the inter-particle contacts were active, and moment balance at the
particle level still requires that Ktdt ¼ Kt2Ry (in the absence of moments at the inter-particle contacts), the shear stress now
becomes sxy ¼ 2Ktdt=ð4RÞ2, from which it follows that C3 ¼ 0:5Kt=ð4RÞ, which is half of the value reported for the SC elementary
cell in Eq. (3) assuming no particle rotation. Note that in this case the distribution of inter-particle contacts in Fig. 6 is no longer
symmetric.
Fig. 6. An elementary cell of an SC array of uniform spheres subjected to pure shear. If all inter-particle contacts are active, then C3 ¼ Kt=ð4RÞ, which is the

same as when no particle rotation is allowed, and corresponds to x¼ 1:0 in Eq. (8). However, if a single infinitesimal gap is introduced between the two visible

spheres at the bottom of the cell so that one inter-particle contact in the y–z plane is lost, then C3 ¼ 0:5Kt=ð4RÞ, which corresponds to x¼ 0:5 in Eq. (8).

Fig. 7. An elementary cell of an SC array of uniform spheres subjected to pure shear, with no inter-particle contacts in the y–z plane. For this arrangement

C3 ¼ 0, which corresponds to x¼ 0 in Eq. (8).
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Finally, consider the same SC elementary cell subjected to pure shear shown in Fig. 7, in which an infinitesimal gap
exists between all pairs of particles having their contact plane with unit normal in the x-direction. This arrangement
provides no resistance to shear stress, and so C3 ¼ 0.

These simple examples suggest that if we consider the possibility of zero-energy shearing mechanisms due to particle rotation
and asymmetry in the distribution of inter-particle contacts, the cubic elastic moduli for a single SC elementary cell become

C1 ¼
1

2R
Kn, C2 ¼ 0, C3 ¼

1

4R
xKt , ð8Þ

where 0rxr1 is an internal parameter measuring the presence of shearing mechanisms due to particle rotation and
asymmetries in the distribution of inter-particle contacts. In the preceding three examples, we found by direct analysis that
x¼ 1:0, x¼ 0:5, or x¼ 0, respectively, depending on the number of inter-particle contacts providing resistance to shear
deformation. Note that in all three of these examples the resistance of the elementary cell to normal stress (and hence the value of
C1) is the same.

3. Isotropic effective elastic moduli incorporating the effect of particle rotation

In Section 3 of Part I, we derived relations between the overall elastic moduli k and n of a statistically isotropic
particulate material on the macroscale, and the normal and tangential inter-particle contact stiffnesses Kn and Kt (and
a¼ Kt=Kn) and the average number of inter-particle contacts per unit volume b on the microscale, for all three local cubic
packings under the Voigt, Reuss, and self-consistent hypotheses. If Eqs. (5), (7) and (8) are used for the cubic elastic moduli
instead of Eqs. (1)–(3), then the only change in the relations obtained in Section 3 of Part I is that Kt is replaced by
an ‘‘effective’’ Kn

t ¼ xKt , and a is replaced by an ‘‘effective’’ an ¼ xa¼ Kn

t =Kn, where 0rxr1 is an internal parameter
measuring the presence of shearing mechanisms due to particle rotation and asymmetries in the distribution of inter-
particle contacts. Note that Kn remains unchanged. If x¼ 0 then all inter-particle contacts contain shearing mechanisms,
and Kt becomes zero. If x¼ 1 then there are no shearing mechanisms, and Kt is unaltered.

Thus, we obtain the following relations between the normal and tangential inter-particle contact stiffnesses Kn and Kt

(and a¼ Kt=Kn) and the parameter b on the microscale, and the overall elastic moduli k and n of the particulate material
on the macroscale, under the Voigt, Reuss, and self-consistent hypotheses for the locally FCC, BCC, and SC packings:

Voigt; Reuss; self�consistent : FCC; BCC; SC : k ¼ bD2

9
Kn, ð9Þ

Voigt : FCC; BCC; SC : n ¼ 1�an

4þan
, ð10Þ

Reuss : FCC : n ¼ 3þ2an�5an2

11þ24anþ5an2
, ð11Þ

Reuss : BCC : n ¼ 4þan�5an2

8þ32anþ5an2
, ð12Þ

Reuss : SC : n ¼ 1�an

2þ3an
, ð13Þ

self-consistent : FCC : an ¼
2þ5n�5n2

�8n3
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36�144nþ88n2

þ280n3
�291n4

�134n5
þ169n6

p
�4�3nþ6n2

þ5n3
, ð14Þ

self-consistent : BCC : an ¼
11þ30n�27n2

�46n3
�3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81�228nþ202n2

þ352n3
�735n4

�92n5
þ484n6

p
4ð�4�3nþ6n2

þ5n3
Þ

, ð15Þ

self-consistent : SC : an ¼
ð1�2nÞ2ð3�nÞ
ð1þnÞ2ð3�4nÞ

, ð16Þ

where an ¼ xa¼ xKt=Kn, and where an is written in terms of n in the self-consistent case only because the expressions are
far more concise than the corresponding expressions for n in terms of an.

In Section 2.1, for a single FCC cell with unrestrained particle rotation and no tangential force applied to the boundaries,
we found by direct analysis that x¼ 0:733 or x¼ 0:5, depending on whether or not certain infinitesimal inter-particle
gaps exist. We also found by DEM simulations on 2� 2� 2, 3� 3� 3, and 7� 7� 7 arrays of FCC cells with unrestrained
particle rotation that x¼ 0:92, x¼ 0:97, and x¼ 1, respectively, as shown in Fig. 3. In Section 2.2, for a single BCC cell with
unrestrained particle rotation and no tangential force applied to the boundaries, we found by direct analysis that x¼ 0. We
also found by DEM simulations on 9� 9� 9, 18� 18� 18, and 27� 27� 27 arrays of BCC cells with unrestrained particle
rotation that x¼ 0:9, x¼ 0:98, and x¼ 1, respectively, as shown in Fig. 5. For both the FCC and BCC arrays, the minimum

number of cells was found that effectively restrained particle rotation (i.e., resulted in x¼ 1), and this is the number that
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was reported. Note that significantly more cells were required to restrain particle rotation in the BCC array than were
required in the FCC array. In Section 2.3, for a single SC cell subjected to pure shear with unrestrained particle rotation, we
found by direct analysis that x¼ 1:0, x¼ 0:5, or x¼ 0, depending on the number of infinitesimal inter-particle gaps
introduced. Note that if x¼ 0 then Eqs. (12), (13) and (16) predict that n ¼ 0:5 for all values of a. This suggests that in the
presence of sufficiently many shearing mechanisms, the particulate material acts effectively as a fluid, with no resistance
to shear stress. The case of x¼ 0 is illustrated by the SC elementary cell considered in Fig. 7, and by the single BCC
elementary cell with unrestrained particle rotation. It should be noted, however, that these two illustrative cases are not
isotropic. For further discussion of the arrangement shown in Fig. 7, see Bardet and Vardoulakis (2001) and Kruyt (2003).

While it is clear that (infinitely) many rotational mechanisms exist in a single BCC elementary cell when no tangential
force is applied to the spheres in contact with the cell boundary, for such mechanisms to exist in a statistically isotropic

aggregate of BCC elementary cells, it would be necessary for some kind of local asymmetry to exist in the inter-particle
contact distribution. Such local asymmetry could be caused by a series of aligned BCC elementary cells. Note that a
diagonal alignment of BCC cells would result in what is called a ‘‘force-chain’’ in the geomechanics literature. The existence
of force-chains in particulate materials is well known, as noted by Mitchell and Soga (2005). Force-chains, sometimes
called strong force networks, refer to isolated paths of high inter-particle contact forces within a particulate material under
load. The areas outside of these force-chains, sometimes called weak clusters, experience much smaller inter-particle
contact forces. Many researchers, such as Cundall and Strack (1979) and Oda (1997), have observed that during plastic
shear, particles within force-chains do not slide, but rather the columns of particles within the force-chains buckle. In
an elastic context, the buckling of local force-chains in a particulate material (which implies the existence of local
mechanisms due to particle rotation) would result in an increase in Poisson’s ratio when compared to a particulate
material without such mechanisms, as predicted by Eqs. (10)–(16) when xo1.

It is intriguing to consider the relationship between the parameter x and other internal geometrical parameters of a
(statistically isotropic) particulate material, such as the average number of contacts per unit volume b, or the average
coordination number nc , which is related to b (see,e.g., Nemat-Nasser, 2004). Note, however, that in Eq. (9) the value of b is
unaffected by x. This is because the particle rotations and infinitesimal gaps considered in the preceding subsections did
not affect the normal component of the inter-particle contact forces, and so did not change the bulk modulus k. Hence, the
average number of contacts per unit volume b should still include the ‘‘missing’’ contacts that in some of these examples
gave rise to xo1. Thus, the internal parameter x cannot depend exclusively on either b or nc. Rather, we hypothesize that
the internal parameter x for an overall isotropic particulate material is related to local asymmetry in the inter-particle
contact force distribution. Finding a relationship between the internal parameter x and a quantifiable measure of
asymmetry in the inter-particle contact force distribution of a particulate material at the local level, which must involve
the fabric tensor of the particulate material (e.g., Durán et al., 2010), is a subject of continuing research.

Recent work in determining the effective isotropic elastic moduli for a particulate (or granular) material based on
micromechanics, with an attempt to include the effect of particle rotation, has been performed by Suiker and de
Borst (2005). They rederive the relations expressed by the Voigt equation (10) with x¼ 1 (but without the internal
parameter), along with additional relations for higher order elastic constants corresponding to several strain-gradient
micro-polar continuum models. Then they compare the predictions of these models with the wave propagation
characteristics of a two-dimensional discrete hexagonal lattice. Their analysis follows that of Chang and Liao (1990)
and Chang and Gao (1995) in assuming that discrete particle rotations can be approximated by a continuous particle
rotation field, similar to the strain field of classical continuum theory. This particle rotation field is then represented by a
Taylor expansion, which can be truncated at whatever order is desired for the strain-gradient continuum model. This
approach is problematic in that it cannot capture the zero-energy strains or mechanisms due to particle rotation at the
microscale. Both the simple example of this section and the DEM results of Section 4 demonstrate that mechanisms due to
particle rotation can and do exist in a random assembly of spherical particles, and these mechanisms affect the elastic
properties of the material (specifically Poisson’s ratio), despite the fact that they do not contribute to the quasi-static stress
power (Goddard, 2008). As will be shown in the following section, none of these prior theoretical models incorporating
particle rotation can come close to matching our DEM simulations for precisely these reasons, whereas the theoretical
models derived here can.
4. Validation by the discrete element method

To test the analytical results of Section 3, we performed numerical simulations using the discrete element method
(DEM) to measure the macroscopic elastic moduli for randomly packed aggregates of uniform spheres having constant
normal and tangential contact stiffnesses Kn and Kt, respectively. We report the results that we have obtained from six
DEM specimens. Specimens 1, 2, and 3 each contained 3430 randomly packed uniform spheres, and Specimens 4, 5, and 6
each contained 29 660 randomly packed uniform spheres. The specimens are shown in Fig. 7 of Part I.

We performed the DEM simulations using the open source code LAMMPS, described in Part I. The setup procedure and
initial geometries of the six DEM specimens used in this part of our two-part series are identical to those of the six DEM
specimens used in Part I. For a discussion of the initial packing geometries, including the average number of contacts per
unit volume and the radial distribution functions for the specimens, see Section 5 and Fig. 9 of Part I.
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To measure Poisson’s ratio n for each specimen, we followed the procedure described by the paragraph including
Eq. (44) in Part I. To explore the effect of particle rotation in the DEM simulations of this second part of our two-part series,
the spheres were allowed full three-dimensional translational and rotational freedom of motion. The results are shown in
Fig. 8. Data points for both of the measured values of Poisson’s ratio n1 and n2 given by Eq. (44) of Part I are included in all
of the figures as solid squares and solid diamonds. The difference between these data points provides a rough measure of
the anisotropy of the specimens, at least in the directions normal to the specimen boundaries. Note that in most of the
figures, these data points lie roughly on top of one another.

Fig. 8 also shows the Voigt (10), Reuss (13), and self-consistent (15), (16) curves, with x¼ f0:75,0:6,0:55,0:85,0:8,0:75g for
Specimens 1–6, respectively, where the values of the internal parameter x were chosen to fit the DEM data points. Also shown
in Fig. 8 by dotted lines are all of the same curves with x¼ 1, which correspond to the curves shown in Fig. 8 of Part I. Note that
when the rotation of the spheres is not restrained, the value of Poisson’s ratio in all six specimens is strictly and significantly
greater than zero when a¼ 1:0 (Kt¼Kn). This is in disagreement with the results of Section 3 in Part I, which do not account for
the effect of particle rotation, as well as the results of Chang et al. (1995) for both an isotropic and a general anisotropic
particulate material (not necessarily having a locally cubic packing structure) under both the kinematic and static hypotheses,
all of which predict n ¼ 0 when a¼ 1:0. This phenomenon is captured, however, by Eqs. (10), (13), (15) and (16), with xo1:0.
-
-

-
-

-
-

-
-
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-
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Fig. 8. Macroscopic Poisson’s ratio n versus a¼ Kt=Kn obtained from DEM simulations on six specimens of randomly packed uniform spheres with constant

normal and tangential contact stiffnesses Kn and Kt, in which the spheres were allowed to rotate. Also shown are the theoretical curves given by Eqs. (10) (Voigt:

FCC, BCC, SC), (13) (Reuss: SC), (15) and (16) (self-consistent: BCC and SC, respectively), with x¼ f0:75,0:6,0:55,0:85,0:8,0:75g for Specimens 1-6 respectively.

Observe that the analytical self-consistent homogenization result for the local BCC packing, Eq. (15), agrees most closely with the DEM simulations.



Fig. 9. Rotational mechanisms in DEM Specimens 2 and 6. The particles represented as spheres in each specimen experienced rotations in excess of two

times the rms-average particle rotation in the specimen. The magnified spheres next to Specimens 2 and 6 represent particles that experienced rotations

in excess of five and 10 times the rms-average particle rotation, respectively.
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In particular, the relationship between Poisson’s ratio n and a¼ Kt=Kn that is given by Eq. (15), the self-consistent result for the
local BCC packing, with x¼ f0:75,0:6,0:55,0:85,0:8,0:75g for Specimens 1–6, respectively, agrees with the values obtained from
the DEM simulations better than any of the other theoretical predictions we have considered thus far.

We also monitored friction work between the spheres throughout the DEM simulations, and we verified that there was

no inter-particle slip during the DEM simulations, regardless of whether or not particle rotation was allowed (i.e., friction
work was zero). Thus, inter-particle slip, and consequently plastic deformation, was not involved in the discrepancy
between the values of Poisson’s ratio predicted by the Voigt (10), Reuss (13), and self-consistent (15) and (16) equations,
with x¼ 1, which also correspond to the equations of Section 3 in Part I, and the values that were measured from the
DEM simulations when particle rotation was allowed. As noted above, this discrepancy increased as a increased, but
was remedied when the Voigt, Reuss, and self-consistent equations were used with x¼ f0:75,0:6,0:55,0:85,0:8,0:75g for
Specimens 1–6, respectively. Note that, because Chang et al. (1995) predict n ¼ 0 when a¼ 1:0 not only for a statistically
isotropic particulate material, but also for a general anisotropic particulate material, their theoretical predictions cannot be
reconciled with our DEM results when particle rotation is involved. We postulate that the internal parameter x measures
zero-energy rotations or mechanisms in the particulate material at the local level (as it was directly shown to do in the
explicit cases analyzed in Sections 2.1–2.2), which exist even when the particulate material is statistically isotropic and
when no inter-particle slip occurs, and which, as we discussed at the end of Section 3, are not accounted for in the quasi-
micro-polar and micro-polar theories of Chang et al. (1995), Chang and Gao (1995), Suiker and de Borst (2005), and others.

Our postulation of the existence of zero-energy rotations or mechanisms in a statistically isotropic particulate material
(which we have directly confirmed: see the last two paragraphs of this section) is similar to the postulation made by
Jenkins et al. (2005), who, following earlier work by Jenkins et al. (1989), have used DEM simulations to show that local

deviations in strain from the average (macroscopic) strain in a particulate material can lead to large discrepancies between
the theoretically predicted values of the macroscopic shear modulus (or Poisson’s ratio) for the particulate material and
the numerically measured values. They argue that this local deviation is due to strain ‘‘relaxation’’ between particle pairs,
which is similar to our argument for local strain ‘‘mechanisms’’ due to particle rotation. Jenkins et al. (2005) show that this
local strain relaxation can decrease the theoretical prediction of the effective shear modulus obtained from Eq. (24) of Part
I, or Eqs. (9) and (10) with x¼ 1 (where the shear modulus is obtained in terms of the bulk modulus k and Poisson’s ratio
n), by up to 70%. In contrast, they found that the bulk modulus k is relatively insensitive to local strain variation. This is in
perfect agreement with our observations in Section 3 and in this section regarding Poisson’s ratio. The DEM specimens
used by Jenkins et al. (2005) consist of 10 000 randomly packed spheres of two different radii in equal numbers.

We have confirmed the existence of rotational mechanisms within our DEM specimens by monitoring the angular
velocities of individual particles throughout the DEM simulations described in this section. We found that particles in
some of the specimens experienced angular velocities in excess of 10 times the average angular velocity of the particles in
those specimens during a simulation. This can be quantified by the ratio /OSmax=/OSavg, where O is the magnitude of the
angular velocity of an individual particle in a specimen, the angled brackets / S denote root-mean-square time average
over the course of a simulation, and the subscripts ‘‘max’’ and ‘‘avg’’ denote maximum and rms-average values over all
particles in the specimen. We computed this ratio for each specimen during the simulation with a¼ 1:0, and the resulting
values were /OSmax=/OSavg ¼ f10:3,8:37,9:31,32:9,70:0,36:4g for Specimens 1–6, respectively.

Fig. 9 shows clusters of particles in Specimens 2 and 6 that experienced angular velocities in excess of two times the
rms-average particle angular velocity at a particular time during the DEM simulations with a¼ 1:0. The particles with
O42Oavg are shown as spheres in Fig. 9, while the other particles (i.e., with Or2Oavg) are shown as dots. The spheres are
shaded according to the magnitude of their angular velocities. Particles with O45Oavg and O410Oavg are magnified and
shown next to Specimens 2 and 6, respectively. Fig. 9, together with the measured values of /OSmax=/OSavg for all of



Fig. 10. Macroscopic Poisson’s ratio n for a¼ Kt=Kn bounded by 2=3rar4=3, which is the range of possible values for a assuming Hertz–Mindlin

contact between spheres composed of a stable elastic material. DEM data points are from Specimen 3 with unrestrained particle rotation. Also shown are

the theoretical curves given by Eqs. (10) (Voigt), (13) (Reuss: SC), (15) and (16) (self-consistent: BCC and SC, respectively), with x¼ 0:55 and x¼ 1. Also

shown is an experimental data point for glass beads, for which the value of a� 0:9 is uncertain because it assumes no inter-particle slip. A range of

experimentally measured values of Poisson’s ratio for quartz sand is also shown, for which the value of a� 0:8 is uncertain for the same reason.
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the specimens, shows that rotational mechanisms were present during the simulations. There appears, however, to be no
correlation between /OSmax=/OSavg and the internal parameter x for our DEM specimens.

5. Discussion

If we assume Hertz–Mindlin contact, then Eq. (8) of Part I implies that a¼ 2ð1�nÞ=ð2�nÞ, where a¼ Kt=Kn and n is
Poisson’s ratio for the material constituting the spheres (not for the particulate material as a whole). Thus, for a particulate
material composed of uniform spheres, if the spheres are composed of a stable elastic material then a is bounded by
2=3rar4=3, and if the spheres are composed of a stable elastic material with 0rnr1=2 then a is bounded by
2=3rar1. For materials with n� 0:3 (such as quartz), Hertz–Mindlin contact implies that a� 0:8. Thus, the accuracy of
theoretical models for values of a in the vicinity of 0.8, and more generally for values of a between 2/3 and 1, is of great
practical importance. Fig. 10 shows the nðaÞ curve for Specimen 3 in the region 2=3rar4=3 with unrestrained particle
rotation, along with the theoretical curves given by the Voigt (10), Reuss (13), and self-consistent (15) and (16) equations,
with x¼ 0:55 and x¼ 1.

Also shown in Fig. 10 for comparison is an experimental data point for spherical glass beads. For glass beads, n� 0:2,
and Hertz-Mindlin contact theory predicts a� 0:9. Thus, the Voigt (10), Reuss (13), and self-consistent (15), (16) equations
with x¼ 1, which also correspond to the equations of Section 3 in Part I derived assuming no particle rotation, all predict
that Poisson’s ratio for an isotropic packing of spherical glass beads should be n � 0:02. However, according to Bachrach
et al. (2000), the experimentally measured value of Poisson’s ratio for a random packing of spherical glass beads is n � 0:15,
over seven times larger than the theoretical predictions of Section 3 in Part I. Note from Fig. 10, however, that the values of
n predicted by the Voigt (10), Reuss (13), and self-consistent (15), (16) equations of Section 3 with x¼ 0:55 are much closer
to the experimentally measured value of n, ranging between n � 0:11 and n � 0:14 for a� 0:9. It should be noted that the
value of the internal parameter x¼ 0:55 was chosen to match the DEM data points obtained from Specimen 3, and by
adjusting the internal parameter x any of the modified curves could be made to pass through the single experimental data
point for glass beads. Specimen 3 was chosen in Fig. 10 for illustrative purposes, because it shows the largest effect of
particle rotation of the six DEM specimens tested, and because the values of Poisson’s ratio in the vicinity of a� 0:9 are the
closest to that measured experimentally for spherical glass beads.

Unfortunately, although it is illustrative, the experimental data point for glass beads provides limited information for
the purpose of testing our theory. This is because, as noted by Bachrach et al. (2000), we do not know whether or not there
was inter-particle slip between the glass beads during the experiment, and hence we do not know whether the value of
a� 0:9 predicted by Hertz–Mindlin contact theory (assuming no inter-particle slip) is correct for the glass beads. The same
is true of the experimentally measured values of Poisson’s ratio for quartz sand, which typically fall in the range
0:1ono0:2 (e.g., Mitchell and Soga, 2005). This is one reason that the discrete element method was essential to test the
validity of our theoretical results, since the value of a for any given physical particulate material (such as glass beads) is
not known exactly, and at best provides only one data point, while using DEM we could adjust a over a large range of
exactly known values by adjusting the inter-particle tangential contact stiffness Kt. Nevertheless, we note from Fig. 10 that
the range of experimentally measured values of Poisson’s ratio for quartz sand with a� 0:8 compares well with our DEM
simulation results obtained from Specimen 3.

Bachrach et al. (2000) noted the discrepancy between the experimentally measured value of n for a random packing of
glass beads and the theoretical prediction of Walton (1987), which is identical to Eq. (10) with x¼ 1. Bachrach et al. (2000)
suggested that the cause for this discrepancy may be due to slipping at the inter-particle contacts. A similar approach was
taken by Trentadue (2004), who replaced the Hertz–Mindlin contact law in Eq. (8) of Part I with a Hertz–Cattaneo–Mindlin
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contact law, which includes a parameter z to account for micro-slip at inter-particle contacts, and by Duffaut et al. (2010),
who also modified the results of Walton (1987) by introducing a parameter to account for micro-slip at inter-particle
contacts. While slipping at inter-particle contacts may be partially responsible for the very large discrepancy between the
experimentally measured value of n � 0:15 for a random packing of glass beads and the values predicted by the methods of
Section 3 in Part I (with no particle rotation), slipping at inter-particle contacts cannot explain the discrepancy between
the values of n that were measured from our DEM simulations and the values predicted by the methods of Section 3 in Part
I, since we can verify that no slipping occurred between any of the particles in our DEM simulations. Indeed, by using DEM
simulations to explore the effect of eliminating particle rotation, we believe that we have identified an important
contributing factor to the discrepancy between theoretical and experimentally measured values of Poisson’s ratio in
particulate materials, particularly in the vicinity of a� 1.

Another approach to the homogenization of particulate materials was taken by Cambou et al. (1995). Like Walton
(1987) and Chang et al. (1995), Cambou et al. (1995) did not analyze specific local particle arrangements, but instead
assumed a form for the distribution of inter-particle contact forces a priori. However, in addition to rederiving Eq. (24) of
Part I or Eq. (10) with x¼ 1 under the Voigt hypothesis, Cambou et al. (1995) introduced an internal parameter m in their
‘‘static localization method’’ (analogous to homogenization under the Reuss hypothesis) that measures the fraction of the
deviatoric stress in the particulate material supported by the normal components of the inter-particle contact forces, from
2/5 for m¼ 1 to 1 for m¼ 0. Specifically, they assumed the average distribution fi of the inter-particle contact forces at the
local level within a particulate material can be expressed as a function of the orientation direction ni and the far field (non-
local) stress sij as

f i ¼ msijnjþ
1�m

2
½5njsjknk�sjj�ni: ð17Þ

Eq. (17) was first proposed by Delyon et al. (1990), and it is based on the representation theorems (e.g., Spencer, 1987)
under the assumptions that fi is linear with respect to sij and isotropic with respect to ni. Static equilibrium then requires
that

sij ¼ bD

Z
O

f inj dO, ð18Þ

where dO¼ siny dj dy dc is the differential solid angle of the unit sphere O, sij is the far field stress in the particulate
material, b is the average number of contacts per unit volume, and D is the diameter of the spheres. Under the hypotheses
expressed in Eqs. (17) and (18), the relationship obtained by Cambou et al. (1995) between Poisson’s ratio n and a¼ Kt=Kn

by their static localization method is

n ¼ 2m2það5�10mþ3m2Þ

4m2það20�20mþ6m2Þ
: ð19Þ

Emeriault and Cambou (1996) derive more complicated expressions for an arbitrary anisotropic particulate material. If
m¼ 1, then Eq. (19) is identical to Eq. (13) with x¼ 1, which is the same as the relation obtained by Chang et al. (1995)
under their static hypothesis. Note that if m¼ 0, then none of the deviatoric stress in the particulate material is carried by
the tangential components of the inter-particle contact forces. Thus, the role of m in the analysis of Cambou et al. is similar
to the role of x in our analysis. For mo1, Eq. (19) does in fact predict a value of Poisson’s ratio that is strictly greater than
zero when a¼ 1:0, which is in general agreement with what we have observed in our DEM simulations. However, as Fig. 11
shows, for no value of m can the nðaÞ curve given by Eq. (19) be made to match the curve obtained from our DEM
simulations as closely as the curve given by Eq. (15).

While the internal parameter x cannot depend exclusively on the average number of contacts per unit volume b for
reasons discussed in Section 3, we note that for the six DEM specimens described in the preceding section, there is, in fact,
Fig. 11. The relationship between Poisson’s ratio n and a¼ Kt=Kn as obtained by Cambou et al. (1995) by their static localization method, given by

Eq. (19), for a range of values of their internal parameter m. Also shown are the DEM data points from Specimen 3 with unrestrained particle rotation, and

the curve given by the self-consistent equation (15) with x¼ 0:55.



Fig. 12. Correlation between the internal parameter x and the average number of contacts per unit volume b for the six DEM specimens tested in Section

4, where D is the diameter of the spheres.
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a strong correlation between x and b. Fig. 12 illustrates this correlation. It is noteworthy that the correlation between x and
b observed in the DEM specimens appears to be independent of the number of spheres in the specimens (i.e., 3430 or
29 660). This suggests that the particle rotation effects observed in the DEM simulations described in Section 4 are not
simply due to boundary effects, nor to the fact that the specimens are too small to represent a statistically isotropic
particulate material. The best-fit line to the data points in Fig. 12 is given by

x¼ 0:164bD3
�0:143, ð20Þ

with an R2 value of 0.905.

6. Conclusions

Building on the work of Part I, we have explored the effects of particle rotation on the elastic moduli of a statistically
isotropic particulate material with locally cubic packing structure. We found that particle rotation effects must be properly
accounted for to accurately predict the values of Poisson’s ratio that were measured by our DEM simulations on six randomly
packed specimens of uniform spheres, having constant normal and tangential contact stiffnesses Kn and Kt, respectively.

There were several advantages to using DEM to test our theoretical results, as opposed to, for example, using
experiments on physical particles such as glass beads. First, we were able to reproduce our theoretical assumption of
constant contact stiffness exactly, without having to make any assumptions regarding the actual contact behavior of the
physical particles, thus eliminating one source of uncertainty. We were also able to assign precise values to the normal and
tangential contact stiffnesses, and thus measure Poisson’s ratio for a large range of specific values of a¼ Kt=Kn. Finally, we
were able to adjust the DEM simulations to either allow or prohibit particle rotation, and in this way study the effect of
particle rotation on the values of Poisson’s ratio. Specifically, we were able to prove that particle rotation was responsible
for the values of Poisson’s ratio predicted by the DEM simulations in the vicinity of a¼ 1 being significantly higher than
the theoretical predictions of Walton (1987) and Chang et al. (1995), which do not account for the mechanisms (i.e., zero-
energy deformations) produced by particle rotation. In particular, the results of Chang et al. (1995) under the static
hypothesis do not provide an upper bound on Poisson’s ratio if particle rotation is allowed. This is despite the fact that
Chang et al. (1995) attempted to include the effects of particle rotation via a ‘‘quasi-micro-polar’’ continuum theory. The
inability of their approach to match the DEM simulation results appears to be due to the fact that the micro-polar or quasi-
micro-polar continuum approach cannot capture the zero-energy strains or mechanisms produced by particle rotations,
which we have shown can and do exist in random assemblies of uniform spheres where there are local asymmetries in the
distribution of inter-particle contacts.

We also showed that this discrepancy between the theoretical and DEM predictions of Poisson’s ratio could not
be caused by inter-particle slip, since no inter-particle slip took place in our DEM simulations. This is a significant
observation, since Bachrach et al. (2000) have hypothesized that inter-particle slip could be the cause for the (same)
discrepancy between the theoretical prediction of Poisson’s ratio by Walton and the experimentally measured value of
Poisson’s ratio for a random packing of uniform glass beads with a� 0:9. While inter-particle slip may have taken place
and contributed to the discrepancy, it cannot serve as the sole explanation, since the discrepancy still exists when no inter-
particle slip takes place. It might also be noted that the results of such a comparison with experiment are difficult to
interpret, since the theoretical value of Poisson’s ratio depends on a, and a depends on the contact model assumed, which
may itself be imperfect for the glass beads.

Based on a micromechanics analysis of the effect of particle rotation and the effect of the mechanisms caused by particle
rotation in each of the three cubic elementary cells (FCC, BCC, and SC), we showed how our theoretical results could be
modified by the introduction of an internal parameter x, which gave rise to an effective tangential stiffness Kn

t ¼ xKt , and hence
an effective an ¼ xa, where 0rxr1 is a measure of the presence of shearing mechanisms due to particle rotation induced by
local asymmetries in the distribution of inter-particle contacts. If x¼ 0 then all inter-particle contacts contain shearing
mechanisms, and an ¼ 0. If x¼ 1 then there are no shearing mechanisms, and an ¼ a. With this modification, our theoretical
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results obtained under the self-consistent homogenization assumption, particularly that based on the body-centered cubic
local packing geometry, are capable of providing remarkably good agreement with the results we obtained from our DEM
simulations, especially when compared to the best theoretical estimates currently in the published literature.

Appendix A. Stiffness analysis of an FCC elementary cell with unrestrained particle rotation

In this appendix, we consider the stiffness of a single FCC elementary cell with unrestrained particle rotation subjected
to a state of pure uniaxial compression along one of its principal axes: �d11, d22 ¼ d33 ¼ 0. In Section 2.1, we reported that
an analysis of the inter-particle normal and tangential contact forces within a single FCC cell with no particle rotation for
this state of deformation gives F11 ¼�2ðKnþKtÞd11 and F22 ¼ F33 ¼�ðKn�KtÞd11 for the forces normal to the cell faces, and
we noted that the normal and tangential stiffnesses of the contacts on the cell faces must contribute only half of their full
values if the FCC cell is considered to be a constitutive material element of a larger material array. We also note, however,
that if a single FCC cell is considered alone, then all of the contact forces must be included with their full values, and
the measured forces normal to the cell faces will actually be F11 ¼�3ðKnþKtÞd11 and F22 ¼ F33 ¼�ð3=2ÞðKn�KtÞd11. This is
verified by DEM simulations.

If a single FCC elementary cell in which particle rotation is unrestrained is subjected to the state of pure uniaxial
compression described in the last paragraph, then due to the symmetry of the loading only the spheres at the eight corners
of the cell will experience rotation, and we can simplify our analysis by considering only the four spheres in contact at one
corner of the FCC cell where only the corner sphere has rotational degrees of freedom. Fig. A1 shows the four spheres that
we will analyze. These four spheres are in the configuration of a tetrahedron. For the state of pure uniaxial compression
in the ê1 direction: �d11, d22 ¼ d33 ¼ 0, Spheres 1 and 4 in Fig. A1 experience a displacement of �d11=2 in the ê1 direction,
and Spheres 2 and 3 remain fixed. If we denote the force contribution in the êi direction from the contact between Spheres
a and b as ðf abÞii (no sum), then we have

ðf 12Þ11 ¼ ðf 13Þ11 ¼�ð1=4ÞðKnþKtÞd11, ðA:1Þ

ðf 12Þ22 ¼ ðf 13Þ33 ¼�ð1=4ÞðKn�KtÞd11, ðA:2Þ

ðf 12Þ33 ¼ ðf 13Þ22 ¼ 0: ðA:3Þ

Because Spheres 2 and 3 remain fixed, we have

ðf 23Þ11 ¼ ðf 23Þ22 ¼ ðf 23Þ33 ¼ 0: ðA:4Þ

If Sphere 4 has rotational degrees of freedom dy1, dy2, and dy3 about the principal axes ê1, ê2, and ê3, respectively, then for
small rotations we have

ðf 24Þ11 ¼�ð1=4ÞðKnþKtÞd11�Rdy2Kt=
ffiffiffi
2
p

, ðA:5Þ

ðf 24Þ22 ¼ 0, ðA:6Þ

ðf 24Þ33 ¼�ð1=4ÞðKn�KtÞd11þRdy2Kt=
ffiffiffi
2
p

, ðA:7Þ

ðf 34Þ11 ¼�ð1=4ÞðKnþKtÞd11þRdy3Kt=
ffiffiffi
2
p

, ðA:8Þ

ðf 34Þ22 ¼�ð1=4ÞðKn�KtÞd11�Rdy3Kt=
ffiffiffi
2
p

, ðA:9Þ

ðf 34Þ33 ¼ 0, ðA:10Þ

where R is the radius of the spheres. By symmetry, it is clear that dy1 ¼ 0. While the rotational degrees of freedom dy2

and dy3 do result in a relative tangential displacement at the point of contact between Spheres 1 and 4, this displacement
results in equal and opposite contributions to the total force in the ê1 direction, and so we have

ðf 14Þ11 ¼ ðf 14Þ22 ¼ ðf 14Þ33 ¼ 0: ðA:11Þ
Fig. A1. The four numbered spheres that we analyze, which are in the configuration of a tetrahedron, and the principal directions for a single FCC

elementary cell.
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Moment equilibrium for Sphere 4 requires that Rdy2 ¼�Rdy3 ¼�d11=ð5
ffiffiffi
2
p
Þ. Thus, it follows that

ðf 24Þ11 ¼ ðf 34Þ11 ¼�ð1=4ÞðKnþð3=5ÞKtÞd11, ðA:12Þ

ðf 24Þ33 ¼ ðf 34Þ22 ¼�ð1=4ÞðKn�ð3=5ÞKtÞd11: ðA:13Þ

Due to the symmetry of the FCC elementary cell, the total forces in the principal directions ê1, ê2, and ê3 normal to cell
faces are

F11 ¼ 2ðf 12Þ11þ2ðf 13Þ11þ4ðf 24Þ11þ4ðf 34Þ11, ðA:14Þ

F22 ¼ 2ðf 12Þ22þ2ðf 23Þ22þ4ðf 24Þ22þ4ðf 34Þ22, ðA:15Þ

F33 ¼ 2ðf 13Þ33þ2ðf 23Þ33þ4ðf 24Þ33þ4ðf 34Þ33: ðA:16Þ

From Eqs. (A.14)-(A.16), it follows that F11 ¼�3ðKnþxKtÞd11 and F22 ¼ F33 ¼�ð3=2ÞðKn�xKtÞd11, with x¼ 11=15� 0:733.
This is the value of x reported in Section 2.1.

Note that the value of x¼ 11=15� 0:733 is only valid when the FCC elementary cell is considered alone. If the FCC cell is
considered to be a constitutive material element of a larger material array, then the stiffnesses of the inter-particle
contacts on the faces of the cell should contribute only half of their full values, as described for the case of no particle
rotation at the beginning of this appendix. For the case of unrestrained particle rotation, this leads to F11 ¼�2ðKnþxKtÞd11

and F22 ¼ F33 ¼�ðKn�xKtÞd11, with x¼ 4=5¼ 0:8.
The DEM simulations described in Section 2.1 performed on a single FCC elementary cell were performed on a single

FCC cell in which the inter-particle contact stiffnesses at all contact points were the same. Thus, the value of x¼
11=15� 0:733 and not the value of x¼ 4=5¼ 0:8 was observed in the DEM measurement of Poisson’s ratio for a single FCC
elementary cell in Section 2.1, which is shown in Fig. 2. We also saw in Section 2.1 that when an FCC elementary cell
becomes a part of a larger FCC array, particle rotation becomes partially restrained, and this leads immediately to x40:8
(even for a 2� 2� 2 array). Thus, for consistency of presentation, we reported F11 ¼�2ðKnþxKtÞd11 and F22 ¼ F33 ¼

�ðKn�xKtÞd11, with x¼ 11=15� 0:733 in Section 2.1 for a single FCC elementary cell with unrestrained particle rotation
subjected to a state of pure uniaxial strain in the ê1 direction, in analogy to the case of no particle rotation where the FCC
elementary cell is considered to be a constitutive material element of a larger material array.
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