Consistency proof for Peano arithmetics

Slavisa B. Presié

Abstract. In this paper we sintactically prove that Peano arithmetic is
consistent. The proof uses so called sint algorithm.

1. Sint-algorithm in theory Num

1. Let L = {0,/,+,,=} be a first-order language, where 0, /, +,- are
operational symbols!) with [0] = 0 (i.e. 0 is a symbol of a constant)
I/l =1, |+ | =2, || =2; = is a binary relational symbol ”equality
symbol”. By Var is denoted the set of variables zy,zs,...,2,,... . Let A
be the alphabet consisting of the following "letters”:

), (0, /, +, - and the variables

By W(A) we denote the set of all words of the alphabet A, including the
empty word. The symbol = is used for the word equality relation. So,
w; = wq means that the word w, is equal to the word wj.

Now we define the notion of a numeral. We shall use the following rule
w

St —

(Step) o

which is an abbrevation of the following sentence: if w is a numeral, then

w/ is a numeral too.

By use of this rule we have the following definition for a numeral:

Definition 1. 1. First we adopt that the ward 0 is a numeral and second
we adopt the rule (Step).

Now we introduce the following basic sequence

(Sequence of numerals) 0, 0/, 0//,---

D'We point out that instead the symbol / we shall mainly use the symbol /

We point out that in this definition we use some intuition of infinite se-
quence.

Let n be any numeral of the form w/ with some numeral w, then w is the
predecessor of the numeral n, briefly written pred(n). For instance, 0// is
the predecessor of 0///.

Now we define induction proof of some formula (Vz)®(z):

(Induction proof) To prove (Vz)®(z) inductive means: first to prove
®(0) and, second to prove the following a sequent ®(W) - &(W/).

Now we have the following definition related to the quantifier 3

(Proof of (Jz)®(z)) means to prove ®(c), where ¢ is a member of
(Sequence of numerals)

Certain elements of the set W(.A) are called L-terms. They are introduced
by the following inductive definition.

Definition 1.2.
(1) Symbol 0 is an L-term.

(i) A variable is an L-term.
(ti1) If u,v are L-terms then the words u/, (u+v),(u-v) are L-terms.

A ground L-term is an L-term not containing variables.

In a usual way one can prove the following

Lemma 1.1. (Uniqueness of L-term construction) If A, B,C,D are any
L-terms and x, A\ are elements of the set {+,-} then we have the following
equivalences

A/=B/ if A=B
(AxB)=(CAD) iff x=A, A=C, B=D

We emphasize some crucial points about the meta-theory, we are going
to use. Namely, dealing with some terms, formulas we shall not use the
principle of mathematical induction on the length of a term, a formula, etc.
Related to this question, suppose that we have some sentence depending
on a numeral n, briefly denoted by ¢(n), and suppose that we want to

prove ¢(n) for every numeral n. Then, instead of using the induction on
the length of the word n, according to Definition 1.1, we can perform in
the following way

.1) First, to prove (0)

Second, to prove the sequent p(w) F o(w/), where w is a new constant
symbol representing numerals. In other words, supposing o(w) to prove
©(w/), where w is an inspecified numeral.

Such a proof we shall call a proof by induction on numeraln. In the sequent
w(w) - p(w/) the part p(w) will be called the induction hypothesis.

Remark 1.1 In general, if we have to prove some sentence o(t) where t
is a term, formula or theorem (in some theory) we can in a similar way
use a proof by induction on term, formula, teorem. For instance, in such
a way one can prove Lemma 1.1.

Let now Alg be any algorithm dealing with some words, for instance with
ground terms. Such an algorithin Alg dealing with any ground term ¢
reads (n is an auxiliary variable) :

(1.2) We putn: =0. Going over t, letter by letter from the left to the right,

whenever we ‘meet’ the letter + we put n : = n/ until we reach the end
of the word t.

For instance, if ¢ is term (0// + (0/ 4+ (0-0//)) then n(t) is 0//. We can
say that n(¢) ’sintactically counts’ the letters + occurring in ¢. This n(t)
1s an example of the so called numeral counter. In general, such a numeral
counter will be some determined numeral associated with a given ground
term ¢.

Let now Alg be the following algorithm dealing with a given numeral num
(n is an auxiliary variable)

(1.4) We put n : = num.

(i) If n = 0 the Alg stops, otherwise we put n : = pred(n) and go to
(i).
In order to see that this Alg will stop at some step we introduce the
following sentence y(num):

Algorithm Alg applied to num will stop at some step
Then using the criterion (1.1) one can easily prove that Alg applied to

arbitrary numeral num will stop at some step.

Suppose now that certain words are taken as stopping words, and that Alg
is @ genuine word-algorithm in the following sense:

Alg applied to any word w produces a new word, denoted by Alg < w >,
to which Alg should be further applied, and additionaly Alg stops when-
ever it reaches a stopping word.

2. Now we shall define an equational theory Num,

which will be restricted in the following sense: the variables in its
axioms are restricted to the ground L-terms. Theory Num is defined by
the following axioms
(1.5) (X+0)=X, (X+Y/))=(X+Y)/
(X-0)=0, (X-Y/)=((X-V)+X)
where X,Y may be any ground L-terms. The general equality axiom

X = X and the corresponding rules (symmetry, tranzitivity, ...) are
supposed.

Related to (1.5) we introduce the following word substitutions

(1.6) (1) (X40)—X (i) (X+Y/)) — (X+Y)/
(i) (X-0)—0, (iv) (X Y/))— (X -Y)+X)
(X,Y are any ground L-terms)

If A — B is any of such substitutions then B is called the successor
of A, briefly written suce(A). Now, we are going to define the substantial
notion of Num, the so called 2 sint. This sint is an algorithm by which
for any given ground L—term ¢ one can construct exactly one numeral
sint(t), such that the equality ¢t = sint(t) is a theorem of Num.

First, we define the notion of a simple term and the notion of the first
subterm of a given ground L-term t. A simple term is a ground L-term

2) An abbreviation of ”sintactical value”.

of the form (P * @), where % is + or - and P, () are some numerals. For
instance, (0// 4 0/), (0///-0//) are simple terms.

Let t be a ground L-term, not a numeral. The first subterm of ¢ is a simple
term (P * Q) with the following properties

19 (P % Q) is a subterm of ¢

2° In the word ¢, going from the beginning to the right, the word (P * Q)
is the first simple term being a subterm of) ¢.

“or instance, the term (0// 4+ 0///) is the first subterm of the following
term ((0+(0-(0// +0///))) +0/).

Let now t be a ground L-term for which A is the first subterm. Denote ¢
by t[A]. Then a substitution of the form

t|A] — t[succ(A)]
will be called a step of the sint-algorithm. Now we define the sint-algorithm,

for which numerals are stopping words. If it stops, the final word, i.e. some
numeral will be its result, briefly denoted by sint[t]:

7Y (7)) If t is a numeral, sint-algorithm stops and its result sint[t] is t.
(77) If t s not a numeral then we find the first subterm A of t and
perform the step

(o) t[A] — t[succ(A)]
Neat, we put t : = t[succ(A)] and go to (j)

Concerning the definition (1.7) the main problem is how to prove that
sint-algorithm must stop at some step. First we give an example. The
sint-algorithm applied to term (0// + 0///) has the following steps

(1) (0//+0///) — (0// +0//)] Applying (1.6)(ii)
— (0// +0/)// Applying (1.6)(ii)
— (0//+0)/// Applying (1.6)(i1)

3)That means that the symbol), the final letter of (P x @), is the first such symbol

ossuring in .

— 0////] Applying (1.6)(i)
Thus, the result is 0/////. Next, we point the following facts

(1.8) (i) Let (P+Q/) be the first subterm of the term t. Replacing (P +Q/)
by (P+Q)/ fromt we obtain a new term whose first subterm is (P+Q).

(v2) Let (P-Q/) be the first subterm of the term t. Replacing (P -Q/)
by (P- Q)+ P) from t we obtain a new term whose first subterm is

(P-Q).

Proof. (i) Term ¢ can be viewed in the following form

L(P+Q/)R
where L, R are some words. Replacing (P + Q/) by (P 4 @)/ we obtain
the following term

L(P+Q)/R

Let f be its first subterm. To prove (i) we shall prove that f is not
a subword of L. Indeed, in the opposite case this f would be the first
subterm of ¢, what contradicts with the assumption that (P 4 @/) is the
first subterm of ¢. The part (ii) can be proved in a similar way.

The next lemma concerning sint-algorithm is an immediate consequence

of fact (1.8):

Lemma 1.2. Let a ground term t, with the first subterm (P * @), has a
subterm T which also contain the subterm (P Q)% . Term t has the form

LTR

where L, R are some words. Replacing (P Q) by its successor from terms
T, t we obtain new terms T', t'. Term t' has the form

LT'R
The words L, R remain unchanged. If T' is not a numeral, then succ((P *
Q)) ts the first subterm both of t' and T".
Now in virtue of Lemma 1.2 we have the following

Lemma 1.3 Let a ground term t has a subterm T', so that t and T have the
same first subterm. Suppose that sint-algorithm applied to T stops at some

T may be equal to (P x Q)

step with the result m, where m is a certain numeral. Then sint-algorithm
applied to t[T| reduses to sint-algorithm applied to t[m].

Proof. Consider the following algorithm applied to the word ¢[T] (in the
algorithm z is an auxiliary variable)

Wesetz: =T
While (z 1s not m) do
Begin The first subterm of x replace by its successor. From x we
obtain say z'. Set x : =z’ End

According to Lemma 1.2 this algorithm is an initial part of the sint-
algorithm applied to term ¢[T]. The final result is ¢{[m]. The proof is
complete.

The above example (1) illustrates how sint-algorithm works on a simple
term of the form (P + @). In general, according to (1.8), part (i), sint-
algorithm applied to a given simple term (P + @) can be viewed as the
following algorithm, in which w, z are auxiliary variables

Wesetw:=(P+Q), z:=Q
While (z is not 0) do
Begin Find the first subterm of w and apply (1.6) (ii).
Set : w is the obtained word, x : = pred(z) End;
In word w replace subword (P +0) by P.

The result will be the final value of the variable w. In fact, this algorifhm
is a proof of following lemma:

Lemma 1.4. The sint-algorithm applied to a simple term of the form
(P + Q) will stop at some step.

Next, combining Lemma 1.3 and Lemma 1.4 we have the following

Lemma 1.5. Let t be any ground L-term whose the first subterm is
(P 4+ Q). Suppose that sint((P + Q))) = m, where m is a numeral. Then
sint-algorithm applied to t reduces to sint-algorithm applied to t[m].

Example 1.1. Find sint(((0// 4+ (0/// +0/)) 4+ (0/ +0////))).
Using Lemma 1.5 we have the following abridged steps

((0//+(0/// +0/))+(0/ +0///]))
— ((0//+0///])+(0/+0//]])) Since (0///40/) is the first sub-
term, and sint((0/// +0/)) is 0////
— (0///]]]+(0/+0//]])) Since (0//+0//]]) is the first subterm
and sint[(0//+0////)is 0///]]]
— (0//]/]]+0/]]]]) Since (0/+0////) is the first subterm and
sint((0/ +0////)) is 0///]]

— 0//]]]]]]]]] Since (0//]]]]+0/]]]]) is the first subterm and
sint((0////11+0/1111))is 01111111111/

A ground term ¢ is called a plus-term if it does not contain the symbol .

Lemma 1.6, The sint-algorithm applied to a plus-term t will stop at
some step. '

Proof. Let numc(t) be the numeral defined by the algorithm (1.2). The
proof is by induction on numc(t).

If nume(t) is 0, then t is a numeral and sint-algorithm stops.

If numc(t) is not 0, suppose that (P + Q) is the first subterm of ¢. Accord-
ing to Lemma 1.4 let a numeral m be sint[(P + @)]. Replacing (P + Q)
by m from ¢t we obtain a new term ¢'. In virtue Lemma 1.5 sint-algorithm
reduces to the sint-algorithm applied to t’, whose numec is the predecessor
of numc(t). The proof is complete.

The next problem is how to find sint[t] when term ¢ contains the symbol
-. First, we give an example.

Example 1.2. Find sint[t], where t is the term (0//-0///).

The main idea is the following one : by sint-algorithm from term ¢ to go
to a plus-term #', and further to use Lemma 1.6. We have the following
steps

(0//-0//]) Now we shall apply (1.6) (iv)

— ((0//-0//)+0//) Now the first subterm is (0//-0//).
Applying (1.6) (iv) we obtain

— (((0//-0/)+0//)+0//) Applying (1.6) (iv) to the first
subterm (0// - 0/) we obtain

— ((((0//-0)+0//)+0//)+0//) Applying (1.6) (iii) to the first
subterm (0// - 0) we obtain

— (((0+0//) +0//) +0//)

Thus, we have obtained a plus-term, such that we can do likewise as in

Example 1.1. The result is 0//////.

In fact, this example illustrates how sint-algorithm applied to a simple
term of the form (P - Q) produces a plus-term. For this goal we used only
substitutions (1.6) (iv) and (1.6) (iii). Next, we have the following

Lemma 1.7. The sint-algorithm applied to a simple term of the form
(P - Q) can be reduced to sint-algorithm applied to a plus-term.

Proof. We apply to the simple term (P - Q) the following algorithm, in
which w, z are auxiliary variables

Wesetw: =(P-Q), z:=Q
While (z is not 0) do
Begin Find the first subterm of w and apply (1.6) (wv).

Set : w s the obtained word, z : = pred(z) Fnd;
In the word w replace subword (P - a) by 0.

This algorithm 1s an initial part of the sint-algorithm applied to term
(P - Q). Its result is the final value of the variable w, which contain none
symbol -. In other words w 1s plus-term. So, sint-algorithm applied to the

simple term (P - Q) reduces to applying sint-algorithm to a determined
plus-term. The proof is complete.

Lemma 1.8, The sint-algorithm applied to a simple term of the form
(P - Q) will stop at some step.

Proof follows immediately by Lemma 1.7 and Lemma 1.6.

Next, combining Lemma 1.3 and Lemma 1.8 we have the following lemma

Lemma 1.9. Let t be any ground L-term whose the first subterm is
(P - Q). Suppose that sint((P - Q)) = m, where m is a numeral. Then
sint-algorithm applied to t reduces to sint-algorithm applied to t|m].

Now we can prove the following theorem

Theorem 1.1. Let t be any ground term. Then sint-algorithm applied to
t will stop at some step.

Proof. Let numc(t) be the numeral n defined by the following algorithm
(similar to (1.2)) :

We put n : = 0. Going over ¢, letter by letter from the left to the right,
whenever we 'meet’ one of the letters +, - we put n : = n/ until we
reach the end of the word ¢.

The proof is by induction on nume(t). If numec(t) is w, then ¢ is a numeral
and sint-algorithm stops. If numc(t) is not w, suppose that (P * Q) is the
first subterm of ¢, where * is + or -. According to Lemma 1.4 and Lemma
1.8 let a numeral m be sint[(P * Q)]. Replacing (P * Q) by m from ¢ we
obtain a new term t’. In virtue Lemma 1.5 and Lemma 1.9 sint-algorithm
reduces to the sint-algorithm applied to t', whose numc is the predecessor
of numc(t). The proof is complete.

Further, we shall establish some properties of the sint-algorithm. First,
according to its definition we have

(1.9) Num t t = sint(t) (t is any ground L-term)
Next, we have the following

Lemma 1.10. Let A and B be any ground L-terms. Then we have the
following equalities

(i) sint((Ax B)) = sint((sint(A) x sint(B))) (x is + or -)
(1) sint(A/) = sint(A)/
Proof. (i) We distinguish the following cases

(a) A is a numeral, B is a numeral

(b) A is a numeral, B is not a numeral

10

(c) A is not a numeral

In the case (a) the equality (i) reduces to the true equality sint[(A*B)] =
sint[(A * B)], since sint[A] = A, sint|B] = B.

In the case (b) the first subterm of (A % B) is the first subterm of B.
By Lemma 1.3 sint-algorithm applied to (A * B) reduces to sint-algorithm
applied to (Axsint[B]),1i.e. to (sint[A]*sint[B]) and the proof is complete.

In the case (c) the first subterm of (A * B) is the first subterm of A. By
Lemma 1.3 sint-algorithm applied to (A * B) reduces to sint-algorithm
applied to (sint[< A > *B]. Now we have the case (a) or (b). So, sint-
algorithm applied to ((sint[A] * B) reduces to sint-algorithm applied to
((sint[A] * sint[B]) and the proof is complete.

(ii) This equality is trivial.
Next, by Lemma 1.10 we shall prove the following

Lemma 1.11. Let P, Q) be any ground L-terms. Then the following equal-
ities hold

sint(P+0)) = sint[P], snt((P+Q/)) = sint((P+Q)/)
sint((P-0)) = 0, sint((P-Q/)) = sint(((P-Q)+ P))
Proof. For the first equality we have

sint[(P +0)] = sint[(sint[P] + sint[0])] (By Lemma 1.10)
= sint[(sint[P] + 0]]
= sint(P) Since by the sint-algorithm we have the equal-
ity
sint((m+0)) = m, where m is the numeral sint(P)

For the second equality we have the following derivations:

() sint((P+Q/)) = sint((sint(P)+snt(Q/))) (By Lemma 1.10)
= sint[(sint[P]+sint[Q]/)) (By Lemma 1.10)

(Gi) sint[(P+Q)/] = sint[P+Q]/ (By Lemma 1.10)

11

= sint|(sint[P] + sint[Q)]]/

Since sint[P] and sint[@Q] are numerals by definition of the sint-algoritm
we have the equality

(3i3) sint[[sint[P] + sint[Q]/)) = sint((sint(P) + sint(Q))/)

The second equality follows immediately from (3), (jj),(jjj). The third and
fourth equality can be proved in a similar way.

Now, in order to see easier the sint-algorithm in general, we introduce its
abridged version, the so called the abridged sint-algorithm. This algorithm®)
instead of substitutions of the form (o) in (1.7) uses the following substi-
tutions

(P +Q) — s, (P-Q) — s
where P, () are numerals and s;, s, are sint[(P + Q)], sint[(P - Q)]
respectively.

As a matter of fact, Example 1.1 illustrates the abridged sint-algorithm.
Here is another example

Example 1.8. Jsing the denotations : A is 0//, B is 0/, C is
0///, Dis 0 find sint[(((A+ A)+ B)+(A-(C+ D))).

Solution. We have the following abridged steps

(A+A)+B)+(A-(C+ D)) (A + A) is the first subterm and
sint[(A+ A)]is 0////
. — ((a/]]] +B)+(A-(C+D))) Replacing (A+ A) by 0////.
the first subterm is (0//// + B), whose sint is 0/////
— (0////] +(A-(C+ D)) Replacing (0//// + B) by 0////].

Now

the first subterm is (C' + D), whose sin[t] is 0///
— (a//]]] +(A-0//])) Replacing (C + D) by 0///. Now the

5) According to Lemma 1.5 and Lemma 1.9

12

first subterm is (A-0///), whose sin[t] is 0//////

— (0///1/+0/1]1]])
— 0/////]]11]] Since sint[(0////]/ +0//1///)]is O//]]1111]]]
The result is 0//////]]]]].- Next, we generalize Lemma 1.3 :

Lemma 1.12. Let a ground term t has a subterm T, not a numeral, and
let m be sint[T]. Then the equality sint[t < T >] = sint[t < m >] holds.

Proof. Term t can be viewed in this form
LTR (L, R are some words)

The abridged sint-algorithm at each step removes one simple subterm of
the (P * @); in other words, it eliminates one pair of symbols (and).
Consequently, at some step the initial term ¢ will reduce to a new term ¢’
such that:

T is a subterm of #, and the first subterm of 7" is also the first subterm
of ¢/

On the one hand, by Lemma 1.3 we have the equality
(x1) sint[t'[T]] = sint[t' < m >]

On the other hand, by applying the abridged sint-algorithm to ¢ at some
step we obtain term #’, consequently ¢’ can be obtained at some step by
applying the sint-algorithm to ¢. Therefore we have the equality

(%2) sintft <T >] = sint[t' < T >]

From (1), (¥2) it follows the equality sint[t < T >] = sint[t < m >|,
since sint[t’ < m >]
= sint[t < m >], and the proof is complete.

The following lemma is an immediate consequence of Lemma 1.12.

Lemma 1.13. Let t be a ground L-term and P its subterm. If Q is any
ground L-term such that sint[P] = sint[Q] then the following equality is
true

13

sint[tj[< P >] = sint[t < Q >|
Now we prove the following main theorem
Theorem 1.2. Let ty,t, be any L-terms. The following equivalence
Num Ft, =1, iff sint[t] = sint[t,]
holds.

Proof. Ifpart is expressed by (1.9). In order to prove only-if part suppose
that ¢t; = t; is a theorem of Num. Since Num is an equational theory
there is a proof of the following type:

From the ground term #; to the ground term ¢, there exists a finite
sequence of ground terms

(A) Wy, Wa, ..., Wk (wy Is t1, wg is ty)

in which any w;41 becomes from w; by replacing some subterm A of
w; by a new term B, under condition that the equality A = B or the
equality B = A is one of the (1.5) equalities.

Now replacing each w; by sint(w;) from (A) we obtain the following se-
quence

sint[w], sint[ws], ..., sint[wy]

Bearing in mind Lemma 1.11 and Lemma 1.13 we see that all members of
this sequence are the same word (i.e. the same numeral). Thus, we infer
the equality sint[t;] = sint[t;] and the proof is complete.

As the first corollary of this theorem we see that the equality 0/ = 0 can
not be a theorem of Num, since 0/ and 0 are different words. In general
we have:

(1.10) If m is any numeral then equality m/ = 0 is not a theorem of
Num.

In the theory Num we also have the following meta-implication
(1.11) Numb X/ =Y/ — NumkFX=Y
Indeed, if Num F X/ = Y/ then,by Theorem 1.2, the words sint[X/], sint[Y/]

14

are equal, hence we conclude that the words sint[X], sint[Y] are equal,
consequently Num bt X =Y

Notice that it turns out that Peano arithetics besided the axioms for equal-
ity has only the given definiton for numerals.

REFERENCES

[1] K. Godel, Uber formal unentsheidbare Sitze der Principia Mathe-
matica und verwander Systeme, 1 Monatsh. Math. Phys. 1931, 38, S.
173-198,

[2] E. Mendelson Introduction to Mathematical Logic, 1963
[8] J. R. Shoenfield Mathematical Logic, 1967

15

