СРПСКА КРАЉЕВСКА АКАДЕМИЈА

ГЛАС СLXXXV

ПРВИ РАЗРЕД

92

А. МАТЕМАТИЧКЕ НАУКЕ

9

н. салтиков

Линеарне тангенцијалне трансформације

БЕОГРАД 1941

Цена 15 Динара

СРПСКА КРАЉЕВСКА АКАДЕМИЈА

ГЛАС CLXXXV

ПРВИ РАЗРЕД

92

А. МАТЕМАТИЧКЕ НАУКЕ

9

н. салтиков

Линеарне тангенцијалне трансформације

БЕОГРАД 1941 Цена 15 Динара

ЛИНЕАРНЕ ТАНГЕНЦИЈАЛНЕ ТРАНСФОРМАЦИЈЕ

^{од} Н. САЛТИКОВА

(Приказано на скупу Академије природних наука од 1-IV-1940).

Садржај

Образовање тангенцијалних трансформација које су линеарне по функционалној променљивој и њеним изводима првог реда по једној или ма коликом броју независно променљивих количина. Нормалне трансформације формиране помоћу основног обрасца трансформације.

Увод

Линеарним тангенцијалним трансформацијама назвао сам трансформације које изражавају нове независно променљиве количине и њихову функцију као линеарне обрасце по старој функционалној променљивој количини и по њеним изводима, а чији коефицијенти претстављају функције независно променљиве количине. Проучавао сам теорију ових трансформација на семинарским предавањима на Универзитету у Београду и на предавањима на белгиским Универзитетима.

Част ми је, овом приликом, поднети Академији резултате наведених испитивања. Успео сам у образовању општег облика дотичних трансформација, који садржи шест независних међу собом произвољних елемената, наиме: три произвољне функције старе независно променљиве количине и три произвољне константе, у случају једне независно променљиве количине.

- 3 -

Дајући згодне вредности овим произвољним количинама може се постићи циљ за успешно искоришћавање ових трансформација у разним применама (l) за испитивање услова интеграбилности диференцијалних једначина, помоћу чувених метода проф. В. П. Ермакова (II).

Добијени резултати се могу генералисати и на случај већег броја независно променљивих количина. Пошто се може образовати безброј посматраних линеарних трансформација, то смо увели један њихов облик који смо назвали нормалним. Он садржи три произвољне функције за случај једне независно променљиве количине. У случају n независно променљивих, нормална линеарна шангенцијална шрансформација зависи од n + 2 произвољних функција. Дајући различите партикуларне вредности посматраним произвољним елементима може се добити неограничени број различитих специјалних линеарних тангенцијалних трансформација.

Глава I.

Образовање линеарних шангенцијалних шрансформација.

Претпоставимо да се тражене трансформације изражавају обрасцима:

$$x_{1} = a y' + b y + c, y_{1} = d y' + g y + h, y_{1}' = \frac{d}{a},$$
 (1)

где су коефицијенти

$$a, b, c, d, g, h$$
 (2)

функције старе променљиве количине x, при чему је y стара функција, а y' претставља њен извод по x. Нове променљиве су x_1, y_1 и y_1' .

Уведени коефицијенти (2) морају задовољавати извесне услове, да би обрасци (1) одређивали тангенцијалну трансформацију (III).

- 4 -

.

Тога ради морају бити, у првом реду испуњене неједнакости:

$$ag - bd \ge 0, \quad \frac{\partial}{\partial x} \left(\frac{d}{a} \right) \ge 0$$
 (3)

Осим тога мора да се поништи заграда:

 $[x_1, y_1] = 0.$

Одавде излази, да мора бити идентички задовољена једнакост:

$$[a(d'+g) - d(a'+b)]y' + (ag'-db')y + ah - dc' = 0, \quad (4)$$

тде горњи индекси ' означавају изводе по х.

Према томе морају постојати три једнакости:

$$\begin{array}{l} a \left(d' + g \right) - d \left(a' + b \right) = 0, \\ a g' - d b' = 0, \\ a h' - d c' = 0. \end{array}$$
 (5)

Добијене једнакости везују шест променљивих количина (2).

Посматрајмо три прве од њих, т.ј. *а*, *b* и *с*, као дате функције, али потпуно произвољне. Тада једнакости (5) претстављају три линеарне диференцијалне једначине првог реда са три непознате функције

d, g, h.

Уведимо уместо *d* нову функцију *s*, која је одређена једнакошћу

$$d = as. \tag{6}$$

Једначине (5) тада постају:

$$\begin{cases} as' = bs - g, \\ g' = b's, \\ h' = c's \end{cases}$$

$$(7)$$

- 5 -

Елиминишући непознату функцију g из две прве једначине (7), добијамо једначину другог реда за одређивање функције s, и то:

(as')' = bs',

или

$$(as')' = \frac{b}{a}(as').$$

Према томе, тражена функција ѕ добија облик:

$$s = A \int \frac{e^{\int \frac{b}{a} \, dx}}{a} \, dx + B,$$

где су A и B две произвољне константе. Тада образац (6) одређује функцију d овако:

$$d = a \left(A \int \frac{e^{\int \frac{b}{a} dx}}{a} dx + B \right).$$
(8)

Прва једначина (7), по смени добијене вредности *s*, даје непосредно израз за тражени коефицијенат *g*, наиме:

$$g = A\left(b\int \frac{e^{\int \frac{b}{a} dx}}{a} dx - e^{\int \frac{b}{a} dx}\right) + Bb.$$
(9)

Најзад, последња једначина (7) одређује, помоћу квадратуре, образац:

$$h = A\left(c\int \frac{e^{\int \frac{b}{a} dx}}{a} dx - \int \frac{c e^{\int \frac{b}{a} dx}}{a} dx\right) + Bc + D, (10)$$

где је D нова произвољна константа.

Благодарећи добијеним обрасцима коефицијената *d* и *g*, први услов (3) се изражава овако:

$$ae^{\int \frac{b}{a} dx} \ge 0.$$

Међутим образац (8) даје

$$\frac{d}{a} = A \int \frac{e^{\int \frac{b}{a} dx}}{a} dx + B.$$

Према томе услов (3) постаје:

$$\frac{\partial}{\partial x}\left(\frac{d}{a}\right) = \frac{A}{a}e^{\int \frac{b}{a} dx} \gtrsim 0.$$

и своди се на претходан, који мора бити испуњен као неопходан и довољан услов за егзистенцију посматране трансформације, али под претпоставком:

$$A \gtrsim 0\,,$$

при чему а не може бити бескрајно велика количина.

Добијени обрасци (8), (9) и (10) могу се написати, краткоће ради другојачије и овако:

$$d = a (AS_{2} + B),$$

$$g = A (bS_{2} - S_{1}) + Bb,$$

$$h = A (cS_{2} - S_{3}) + Bc + D,$$

где су уведене ознаке:

$$S_1 \equiv e^{\int \frac{b}{a} dx},$$

7

143

$$S_2 \equiv \int \frac{S_1}{a} \, dx,$$
$$S_3 \equiv \int \frac{S_1 c}{a} \, dx.$$

Осим тога могу се добити и други изрази тангенцијалних трансформација, на основу образаца (5). Упоређујући их на различите начине, могу се узети три ма која коефицијента (2) као дате функције, а да се при томе три остала израчунавају из образаца (5). Тако например, услед њихове симетричности, могу се узети три последња коефицијента (2) као позната. Тада се три прва изражавају као њихове функције.

Глава II

Нормални облик линеарних шангенцијалних шрансформација.

Полазимо од основног обрасца тангенцијалне трансформације:

$$y = ux_1 + vy_1 + w,$$
 (11)

гд су u, v и w три произвољне функције независно променљиве количине x, $a x_1$ и y_1 означавају нову независну променљиву количину, односно њену нову функцију.

Образац (11) одређује два друга обрасца посматране тангенцијалне трансформације, наиме:

$$y' = u'x_1 + v'y_1 + w', (12)$$

$$u + v y_1' = 0 \tag{13}$$

где је y₁' нови извод.

Једначине (11) и (12) морају бити решљиве по x_1 и y_1 . Стога је неопходно да буде испуњен услов:

$$\Delta \equiv \left| \begin{array}{cc} u & v \\ u' & v' \end{array} \right| \geq 0$$

- 8 -

Осим тога једначина (13) треба да је решљива по х:

$$\frac{\partial}{\partial x}\left(\frac{u}{v}\right) \geq 0.$$

Међутим овај услов је последица претходног, јер имамо:

$$\frac{\partial}{\partial x}\left(\frac{u}{v}\right) \equiv \frac{u'v - uv'}{v^2} \equiv -\frac{\Delta}{v^2} \ge 0.$$

Решавајући једначине (11) и (12) по x₁ и y₁, напишимо добијени резултат овако:

$$x_1 = ay' + by + c,$$

$$y_1 = dy' + gy + h$$

$$(14)$$

где су уведене ознаке:

12.00

$$a = -\frac{v}{\Delta}, \qquad b = \frac{v'}{\Delta}, \qquad \}$$
(15)
$$c = \frac{vw' - v'w}{\Delta}, \qquad \Delta = uv' - vu'.$$

$$d = \frac{u}{\Delta}, \qquad g = -\frac{u'}{\Delta},$$

$$h = \frac{u'w - uw'}{\Delta}.$$
(16)

Обрасци трећи под (15), и трећи под (16) изражавају се другојачије помоћу прва два обрасца (15), односно (16) и функције *w* овако:

$$c = -aw' - bw,$$

$$h = dw + gw'.$$

$$(17)$$

9 ---

10

Није тешко увидети, да су и обрнуто једначине (14) решљиве по у' и у. Заиста, према обрасцима (15) и (16), имамо:

$$\begin{vmatrix} a & b \\ d & g \end{vmatrix} = \frac{1}{\Delta^2} \begin{vmatrix} -v & v' \\ u & -u' \end{vmatrix} = -\frac{\Delta}{\Delta^2} = -\frac{1}{\Delta} \gtrsim 0.$$

Обрасци (15) и (16) изражавају свих шест коефицијената (2) помоћу три произвољне функције. Вредности тражених коефицијената могу се написти на следећи начин:

$$a = \frac{\frac{1}{v}}{\left(\frac{u}{v}\right)'}, \qquad d = \frac{\frac{1}{u}}{\left(\frac{v}{u}\right)'},$$

$$b = \frac{\left(\frac{1}{v}\right)'}{\left(\frac{u}{v}\right)'}, \qquad g = \frac{\left(\frac{1}{u}\right)'}{\left(\frac{v}{u}\right)'},$$
(18)

а вредност коефицијената с и h израчунавају се помоћу образаца (17).

Обрасци (14), под претпоставкама (15) и (16) или (18), претстављају горе поменути нормални облик тангенцијалних трансформација. Лако је извести трансформацију уведену у првој глави, служећи се обрасцима (15) и (16).

Заиста, прве две једначине (15) одређују вредности v и Δ овако:

$$\frac{v'}{v} = -\frac{b}{a}, \qquad v = \frac{1}{A}e^{-\int \frac{b}{a} dx},$$
$$\Delta = -\frac{1}{Aa}e^{-\int \frac{b}{a} dx},$$

- 10 -

где је уведена за произвољну константу ознака - .

146

Смењујући добијене вредности v и Δ у четврти образац (15) добијамо једначину за одређивање функције u:

$$\left(\frac{u}{v}\right)' = -\frac{A}{a}e^{\int \frac{b}{a}dx},$$
$$u = -e^{-\int \frac{b}{a}dx} \left(\int \frac{e^{\int \frac{b}{a}dx}}{a}dx + \frac{B}{A}\right),$$

тде <u>В</u> означава нову произвољну константу.

XH

Најзад, трећи образац (15) даје једначину за одређивање функције *w*:

$$\left(\frac{w}{v}\right)' = -\frac{Ac}{a}e^{\int \frac{b}{a}dx},$$
$$\frac{w}{v} = -A\left(D + \int \frac{ce^{\int \frac{b}{a}dx}}{a}dx\right),$$

где ознака — *AD* претставља трећу произвољну константу. Према томе имамо:

$$w = -e^{-\int \frac{b}{a} dx} \left(D + \int \frac{c e^{\int \frac{b}{a} dx}}{a dx} \right).$$

Ако уврстимо добијене вредности *v*, *u* и *w* у обрасце (16), онда имамо за *d*, *g* и *h* пређашње изразе (8), (9) и (10):

$$d = a \left(A \int \frac{e^{\int \frac{b}{a} dx}}{a} dx + B \right),$$

- 11 -

10*

$$g = A\left(b\int \frac{e^{\int \frac{b}{a}dx}}{a}dx - e^{\int \frac{b}{a}dx}\right) + Bb,$$
$$h = A\left(c\int \frac{e^{\int \frac{b}{a}dx}}{a}dx - \int \frac{e^{\int \frac{b}{a}dx}}{a}dx\right) + Bc + D.$$

Мада је изложени рачун нешто компликованији од првог изведеног у глави I, ипак нормални облик тангенцијалних трансформација има предност за генерализацију уведених линеарних тангенцијалних трансформација у случају када је број независно променљивих количина већи од једне променљиве.

Глава III

Линеарне шангенцијалне шрансформације са шри независнопроменљиве количине

Узмимо за основни образац тангенцијалне трансформације следећу једнакост:

$$z = ux_1 + vy_1 + wz_1 + \theta,$$
(19)

где су x_1 , y_1 , нове независно променљиве количине, а z_1 нова функција, при чему u, v. w и θ означавају произвољне функције старих независно променљивих x и y, док z претставља њихову функцију.

Образац (19) одређује остала четири обрасца тангенцијалне трансформације

$$p = u'_{x}x_{1} + v'_{x}y_{1} + w'_{x}z_{1} + \theta'_{x}, q = u'_{y}x_{1} + v'_{y}y_{1} + w'_{y}z_{1} + \theta'_{y},$$
(20)

$$u + w p_1 = 0, \quad v + w q_1 = 0,$$
 (21)

где p и q означавају старе парцијалне изводе првог реда функције z по x односно по y, а p_1 и q_1 нове парцијалне изводе првог реда z_1 по x_1 и по y_1 .

Једначине (19) и (20) морају бити решљиве по променљивим количинама x_1 , y_1 и z_1 и тога ради неопходно је, да постоји услов:

$$\Delta \equiv \left| \begin{array}{ccc} u & v & w \\ u_{x'} & v_{x'} & w_{x'} \\ u_{y'} & v_{y'} & w_{y'} \end{array} \right| \geq 0.$$

Лако је увидети да су према овом услову једначине (21) решљиве по x и y. Заиста, имамо:

$$D\left(\frac{\frac{u}{w}, \frac{v}{w}}{x, y}\right) \equiv \begin{vmatrix} \frac{\partial}{\partial x} \left(\frac{u}{w}\right) & \frac{\partial}{\partial x} \left(\frac{v}{w}\right) \\ \frac{\partial}{\partial y} \left(\frac{u}{w}\right) & \frac{\partial}{\partial y} \left(\frac{v}{w}\right) \end{vmatrix} = \\ = \frac{1}{w^{8}} \left(w \begin{vmatrix} u_{x}' & v_{x}' \\ u_{y}' & v_{y}' \end{vmatrix} + u \begin{vmatrix} v_{x}' & w_{x}' \\ v_{y}' & w_{y}' \end{vmatrix} - v \begin{vmatrix} u_{x}' & w_{x}' \\ u_{y}' & w_{y}' \end{vmatrix} \right) = \\ = \frac{\Delta}{w^{3}} \ge 0.$$

Решавајући по x_1 , y_1 и z_1 систем од три линеарне једначине (19) и (20) добијемо обрасце:

$$x_1 = \frac{\Delta_1}{\Delta}, \qquad y_1 = \frac{\Delta_2}{\Delta}, \qquad z_1 = \frac{\Delta_2}{\Delta}, \qquad (22)$$

A. 6. 4 A. 8.

 $\Delta_{ai} \equiv u_{i}^{\dagger} w_{i}^{\dagger} + u_{i}^{\dagger} w_{i}^{\dagger}$

где су уведене ознаке:

103

$$\Delta_1 \equiv egin{pmatrix} z- heta & v & w \ p- heta_x' & v_x' & w_x' \ q- heta_y' & v_y' & w_y' \end{bmatrix},$$

- 13 -

$$\Delta_2 \equiv \left| egin{array}{cccc} u & z - \theta & w \ u_x' & p - \theta_x' & w_x' \ u_y' & q - \theta_x' & w_y' \end{array}
ight|, \ \Delta_2 \equiv \left| egin{array}{cccc} u & v & z - \theta \ u_x' & v_x' & p - \theta_x' \ u_y' & v_y' & q - \theta_y' \end{array}
ight|.$$

Ако развијемо детерминанте Δ_1 , Λ_2 , Δ_3 , онда можемо написати обрасце (22) овако:

$$x_{1} = a p + b q + c z + d,$$

$$y_{1} = e p + f q + g z + h,$$

$$z_{1} = k p + l q + m z + n,$$

$$(23)$$

где су уведене ознаке:

$$a \equiv \frac{\Delta_{12}}{\Delta}, \qquad b \equiv \frac{\Delta_{13}}{\Delta}, \qquad c \equiv \frac{\Delta_{11}}{\Delta}, \qquad d \equiv -\frac{\Delta_{12}\theta_{x'} + \Delta_{13}\theta_{y'} + \Delta_{11}\theta}{\Delta} = \frac{\Delta_{12}\theta_{x'} + \Delta_{13}\theta_{y'} + \Delta_{11}\theta}{\Delta} = -a\theta_{x'} - b\theta_{y'} - c\theta, \qquad (24)$$

$$\Delta_{12} \equiv w v_{y}' - v w_{y}',$$

$$\Delta_{13} \equiv v w_{x}' - w v_{x}',$$

$$\Delta_{11} \equiv v_{x}' w_{y}' - v_{y}' w_{x}',$$

$$e \equiv \frac{\Delta_{22}}{\Delta}, \qquad f \equiv \frac{\Delta_{23}}{\Delta}, \qquad g \equiv \frac{\Delta_{21}}{\Delta},$$

$$h \equiv -\frac{\Delta_{22} \theta_{x}' + \Delta_{23} \theta_{y}' + \Delta_{21} \theta}{\Delta} =$$

$$= -e \theta_{x}' + f \theta_{y}' - g \theta,$$

$$\Delta_{22} \equiv u w_{y}' - w u_{y}',$$

$$\Delta_{23} \equiv w u_{x}' - u w_{x}',$$

$$\Delta_{21} \equiv u_{y}' w_{x}' - u_{x}' w_{y}',$$
(25)

- 14 --

при чему Δ_{ik} означава минор детерминанте Δ , који одговара њеном елементу *i*-те колоне и *k*-тог реда са одговарајућим знаком.

Добијени обрасци (24), (25) и (26) изражавају вредности коефицијената нормалне линеарне трансформације (23) помоћу четири произвољне функције

под наведеним условом:

$$\Delta \ge 0$$

Лако је увидети да су и обрнуто једначине (23) решљиве по старим променљивим *p*, *q* и *z*.

Заиста имамо:

$$\begin{vmatrix} a & b & c \\ e & f & g \\ k & l & m \end{vmatrix} \equiv \frac{1}{\Delta^3} \begin{vmatrix} \Delta_{12} & \Delta_{13} & \Delta_{11} \\ \Delta_{22} & \Delta_{23} & \Delta_{21} \\ \Delta_{32} & \Delta_{38} & \Delta_{31} \end{vmatrix} =$$
$$= \frac{1}{\Delta^3} \begin{vmatrix} \Delta_{11} & \Delta_{12} & \Delta_{13} \\ \Delta_{21} & \Delta_{22} & \Delta_{23} \\ \Delta_{31} & \Delta_{32} & \Delta_{33} \end{vmatrix} = \frac{1}{\Delta^3} \begin{vmatrix} \Delta_{11} & \Delta_{21} & \Delta_{31} \\ \Delta_{12} & \Delta_{22} & \Delta_{23} \\ \Delta_{13} & \Delta_{32} & \Delta_{33} \end{vmatrix} = \frac{1}{\Delta^3} \begin{vmatrix} \Delta_{11} & \Delta_{21} & \Delta_{31} \\ \Delta_{12} & \Delta_{22} & \Delta_{32} \\ \Delta_{13} & \Delta_{23} & \Delta_{33} \end{vmatrix} =$$

- 15 -

 $aw_s' + bw_s' + cw = 0.$

 $\frac{1}{\Delta}$.

н, салтиков

Као и у случају једне независно променљиве количине, тако и у посматраном случају могу се узети коефицијенти *a*, *b*, *c* и *d* првог обрасца (23) за произвољне функције и помоћу њих изразити сви други коефицијенти осталих образаца (23). Разлика се појављује у томе што је, за овај случај, потребно вршити интеграљење обичних диференцијалних једначина уместо квадратура претходног случаја, трансформације са једном независно променљивом количином. Заиста, из прва

два обрасца (24) добијамо парцијалну једначину по $\left(rac{v}{w}
ight)$:

$$a\left(\frac{v}{w}\right)'_{x} + b\left(\frac{v}{w}\right)'_{y} = 0$$

обична једначина која одговара овој парцијалној једначини гласи:

$$\frac{dy}{dx} = -\frac{b}{a}.$$
 (27)

Према томе имамо:

$$v = w \, \Phi(\varphi), \tag{28}$$

где је Φ произвољна функција, а φ претставља леву страну интеграла диференцијалне једначине (27)

$$\varphi = A \tag{29}$$

где је A произвољна константа, т.ј. функција φ задовољава идентички услов:

 $a\,\varphi_x' + b\,\varphi_y' = 0 \tag{30}$

Најзад, из другог и трећег обрасца (24) елиминишући v, према једнакости (28), добијамо, на основу идентичности (30), парцијалну једначину за одређивање функције w у облику:

 $aw_{x}'+bw_{y}'+cw=0.$

- 16 -

152

Одавде имамо:

$$w = e^{-\phi} \Psi(\varphi), \qquad (31)$$

где је У произвољна функција од горе нађеног интеграла ф, а

$$\psi \equiv \left[\int \left(\frac{c}{a}\right) dx \right],$$

при чему округле заграде (...) означавају резултат елиминације променљиве у, помоћу интеграла (29), а угласте заграде бележе резултат смене константе А са ф.

Сменом добијених вредности функција v и w, у први образац (24), према обрасцима (28) и (31), добијамо:

$$\Delta = \frac{1}{a} e^{-2 \oint} \varphi_{y'} \Phi'(\varphi) [\Psi(\varphi)]^2.$$
(32)

Најзад, вредности функција v и w, одређују се према последња два обрасца (24), као функције коефицијената а, b, с и d, помоћу парцијалних једначина:

$$a u_x' + b u_y' + c u = 0,$$

$$a \theta_x' + b \theta_y' + c \theta + d = 0.$$

Олавде имамо:

$$u = e^{-\psi} F(\varphi)$$
(33)

$$\theta = e^{-\Psi} \left\{ \omega + \Theta(\varphi) \right\},\,$$

янных количных х., х., ... х., ... х је њихола Функција

где F и O означавају две произвољне функције, а

$$\omega \equiv -\left[\int \left(\frac{d}{a}\right)e^{\Psi}dx\right],$$

при чему округле и угласте заграде имају пређашње значење.

1)

Н. САЛТИКОВ

Стављајући нађене вредности (28), (31), (32), и (33) функција v, w, u, θ и Δ у обрасце (25) и (26), налазимо вредности осталих осам коефицијената два последња обрасца (23).

Дајући произвољним коефицијентима и функцијама

а,	<i>b</i> ,	с,	d	
Φ,	Ψ,	F,	Θ	

извесне специјалне вредности, могу се саставити различите трансформације.

Глава IV

Линеарне шангенцијалне шрансформације са произвољним бројем независно променљивих количина.

Узмимо за основни образац тангенцијалне трансформације једнакост:

$$z = \sum_{i=1}^{n} u_i x_i' + w \, z' + \theta \tag{34}$$

где су x_1', x_2', \ldots, x_n' нове независно променљиве количине, а z' нова функција, при чему u_1, u_2, \ldots, u_n, w и θ означавају произвољне функције старих независно променљивих количина x_1, x_2, \ldots, x_n , а z је њихова функција

Помоћу основног обрасца (34) одређују се остале формуле тангенцијалне трансформације, наиме:

- 18 -

$$p_{k} = \sum_{i=1}^{n} \frac{\partial u_{i}}{\partial x_{k}} x_{i}' + \frac{\partial w}{\partial z_{k}} z' + \frac{\partial \theta}{\partial x_{k}}$$

$$(k = 1, 2, ..., n)$$

$$(35)$$

$$\begin{array}{c}
 u_i + w \, p_i' = 0, \\
 (i = 1, 2, \dots, n)
\end{array}$$
(36)

где p_k означавају старе парцијалне изводе:

$$p_k = \frac{\partial z}{\partial x_k} \qquad (k = 1, 2, \ldots, n),$$

а р'я претстављају ознаке нових парцијалних извода, и то:

$$p'_i = \frac{\partial z'}{\partial x'_i} \qquad (i = 2, 2, \ldots, n).$$

Према дефиницији тангенцијалних трансформација морају бити једначине (34) и (35) решљиве по новим променљивим количинама x' и z'.

Зато је неопходно да је испуњен услов:

	u ₁	u_2	1	•		u _n	w	L	
120	$\frac{\partial u_1}{\partial x_1}$	$\frac{\partial u_2}{\partial x_1}$	÷	9	4	$\frac{\partial u_n}{\partial x_1}$	$\frac{\partial w}{\partial x_1}$	36	
Δ=	$\frac{\partial u_1}{\partial x_2}$	$\frac{\partial u_2}{\partial x_2}$			12	$\frac{\partial u_n}{\partial x_2}$	$\frac{\partial w}{\partial x_2}$	≤0	(37)
	Ne h	•	÷.	j.	÷	-51			
	<u>.</u>	. •	٦.	·		1			
<u>0 x</u>	$\frac{\partial u_1}{\partial x_n}$	$\frac{\partial u_2}{\partial x_n}$	Ţ	4		$\frac{\partial u_n}{\partial x_n}$	$\frac{\partial w}{\partial x_n}$		

Лако је увидети да су, према услову (37), једначине (36) решљиве по старим променљивим x_i, јер имамо:

1 0 th 0 th 0 th

$$D\left(\frac{\frac{u_1}{w}, \frac{u_2}{w}, \ldots, \frac{u_n}{w}}{x_1, x_2, \ldots, x_n}\right) \equiv \frac{\Delta}{w^{2n-1}} \leq 0$$

Решавајући по новим променљивим количинама

$$x_1', x_2', \ldots, x_n, z'$$

систем n + 1 линеарних једначина (34) и (35), добијамо обрасце:

— 19 —

$$x_{i}' = \frac{\Delta_{i}}{\Delta}, \qquad z' = \frac{\Delta_{n+1}}{\Delta}, \qquad \{38\}$$
$$(i = 1, 2, \dots, n)$$

Што се тиче детерминаната Δ_i и Δ_{i+1} , то се њихове вредности добијају из детерминанте Δ , када јој сменимо вредности елемената *i*-те, односно n + 1-е, колоне са разликама :

$$z-\theta$$
, $p_1-\frac{\partial \theta}{\partial x_1}$, ..., $p_i-\frac{\partial \theta}{\partial x_i}$, ..., $p_n-\frac{\partial \theta}{\partial x_n}$.

Према томе имамо:

	u ₁	<i>u</i> ₂		u_{i-1}	z0	u_{i+1}	$\mathbf{v} \neq \mathbf{v}$	w
	$\frac{\partial u_1}{\partial x_1}$	$\frac{\partial u_2}{\partial x_1}$	•••	$\frac{\partial u_{i-1}}{\partial x_1}$	$p_1 - \frac{\partial \theta}{\partial x_1}$	$\frac{\partial u_{i+1}}{\partial x_1}$		$\frac{\partial w}{\partial x_1}$
$\Delta_i \equiv$	$\frac{\partial u_1}{\partial x_2}$	$\frac{\partial u_2}{\partial x_2}$	•••	$\frac{\partial u_{i-1}}{\partial x_2}$	$p_2 - \frac{\partial \theta}{\partial x_2}$	$\frac{\partial u_{i+1}}{\partial x_2}$. · ·	$\frac{\partial w}{\partial x_2}$
			• • •			•		• 4
		•	• • •	• .		•	• • •	1.
	$\frac{\partial u_1}{\partial x_n}$	$\frac{\partial u_2}{\partial x_n}$	•••••	$\frac{\partial u_{i-1}}{\partial x_n}$	$p_n - \frac{\partial \theta}{\partial x_n}$	$\frac{\partial u_{i+1}}{\partial x_n}$	• • •	$\frac{\partial w}{\partial x_n}$
(<i>i</i> =	= 1, 2,	,	n)					
£). 390 j	и.	u.	0. 140	u 1	u _i .	u.	spinieto,	$z - \theta$
Sec. 1								
					$\frac{\partial u_i}{\partial x_1} .$			
\=	$\frac{\partial u_1}{\partial x_1}$	$\frac{\partial u_2}{\partial x_1}$		$\frac{\partial u_{i-1}}{\partial x_1}$		$\cdots \frac{\partial u_n}{\partial x_1}$	<i>p</i> ₁ -	$\frac{\partial \theta}{\partial x_1}$
$\lambda_{n+1} \equiv$	$\frac{\partial u_1}{\partial x_1}$	$\frac{\partial u_2}{\partial x_1}$		$\frac{\partial u_{i-1}}{\partial x_1}$	$\frac{\partial u_i}{\partial x_1} \ .$	$\cdots \frac{\partial u_n}{\partial x_1}$	<i>p</i> ₁ -	$\frac{\partial \theta}{\partial x_1}$
$\Delta_{n+1} \equiv$	$\frac{\partial u_1}{\partial x_1}$	$\frac{\partial u_2}{\partial x_1}$		$\frac{\partial u_{i-1}}{\partial x_1}$	$\frac{\partial u_i}{\partial x_1} \ .$	$\cdots \frac{\partial u_n}{\partial x_1}$	<i>p</i> ₁ -	$\frac{\partial \theta}{\partial x_1}$
Δ _{n+1} ≡	$\frac{\partial u_1}{\partial x_1}$ $\frac{\partial u_1}{\partial x_2}$ \cdot	$\frac{\partial u_2}{\partial x_1}$		$\frac{\partial u_{i-1}}{\partial x_1}$ $\frac{\partial u_{i-1}}{\partial x_2}$ \cdot	$\frac{\partial u_i}{\partial x_1} \ .$	$\cdots \frac{\partial u_n}{\partial x_1}$ $\cdots \frac{\partial u_n}{\partial x_2}$	p ₁	$\frac{\partial \theta}{\partial x_1}$ $\frac{\partial \theta}{\partial x_2}$ \cdot

Ако развијамо детерминанте Δ_i по елементима *i*-те колоне, онда ћемо изразити вредности нових променљивих количина у облику:

$$x_{i}' = \sum_{k=1}^{n} a_{ik} p_{k} + c_{i} z + d_{i},$$

(*i* = 1, 2, ..., *n*)
$$z' = \sum_{k=1}^{n} b_{k} p_{k} + m z + n,$$

(39)

где су уведене ознаке:

AL1

$$a_{ik} \equiv \frac{\Delta_{i, k+1}}{\Delta}, \qquad c_i \equiv \frac{\Delta_{i1}}{\Delta},$$

$$d_i \equiv -\frac{\sum_{k=1}^n \Delta_{i, k+1} \frac{\partial \theta}{\partial x_k} + \Delta_{i1} \theta}{\Delta},$$

$$(k = 1, 2, \dots, n, \qquad i = 1, 2, \dots, n)$$

$$\Delta \equiv \sum_{k=1}^n \Delta_1, _{k+1} \frac{\partial u_1}{\partial x_k} + \Delta_{11} u_1$$

$$b_k \equiv -\frac{\Delta_{n+1, k+1}}{\Delta},$$

$$m \equiv -\frac{\Delta_{n+1, 1}}{\Delta},$$

$$n \equiv -\sum_{k=1}^n b_k \frac{\partial \theta}{\partial x_k} - m \theta.$$

$$(40)$$

Обрасци (40) изражавају вредности коефицијената нормалне линеарне тангенцијалне трансформације (39) помоћу n+2 произвољне функције:

 $u_1, u_2, \ldots, u_n, w, \theta$

под условом (37).

Лако је закључити из наведеног услова, да су једначине (39) решљиве по старим променљивим

$$p_1, p_2, \ldots, p_n, z.$$
 (41)

Заиста имамо:

$$\begin{vmatrix} a_{11} a_{12} \cdots a_{1n} c_1 \\ a_{21} a_{22} \cdots a_{2n} c_2 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} a_{n2} \cdots a_{nn} c_n \\ b_1 & b_2 & \cdots & b_{n1} m \end{vmatrix} = \frac{1}{\Delta^{n+1}} \begin{vmatrix} \Delta_{12} & \Delta_{13} & \cdots & \Delta_{1, n+1} & \Delta_{11} \\ \Delta_{22} & \Delta_{23} & \cdots & \Delta_{2, n+1} & \Delta_{21} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \Delta_{n2} & \Delta_{n3} & \cdots & \Delta_{n, n+1} & \Delta_{n1} \\ \Delta_{n+1, 2} & \Delta_{n+1, 8} & \cdots & \Delta_{n+1, n+1} & \Delta_{n+1, n+1} \end{vmatrix} = \\ = \frac{(-1)^n}{\Delta^{n+1}} \begin{vmatrix} \Delta_{11} & \Delta_{12} & \cdots & \Delta_{1n} & \Delta_{1, n+1} \\ \Delta_{21} & \Delta_{22} & \cdots & \Delta_{2n} & \Delta_{2, n+1} \\ \vdots & \vdots & \ddots & \vdots \\ \Delta_{n1} & \Delta_{n2} & \cdots & \Delta_{nn} & \Delta_{n, n+1} \\ \Delta_{n+1, 1} & \Delta_{n+1, 2} & \cdots & \Delta_{n+1, n} & \Delta_{n+1, n+1} \end{vmatrix} = \\ = \frac{(-1)^n}{\Delta^{n+1}} \begin{vmatrix} \Delta_{11} & \Delta_{21} & \cdots & \Delta_{n1} & \Delta_{n+1, n+1} \\ \Delta_{12} & \Delta_{22} & \cdots & \Delta_{n2} & \Delta_{n+1, n+1} \\ \Delta_{13} & \Delta_{22} & \cdots & \Delta_{n2} & \Delta_{n+1, n+1} \\ \vdots & \vdots & \ddots & \vdots \\ \Delta_{1n} & \Delta_{2n} & \cdots & \vdots \\ \Delta_{1n} & \Delta_{2n} & \cdots & \vdots \\ \Delta_{1n, n+1} & \Delta_{2n+1} & \cdots & \Delta_{n, n+1} & \Delta_{n+1, n+1} \end{vmatrix} = \\ = \frac{(-1)^n}{\Delta} \leq 0.$$

Према томе једначине (39) се решавају по старим променљивим (41).

- 22 -

БИБЛИОГРАФСКИ ПОДАЦИ

І. Н. Салтиков. — Примена тангенцијалних трансформација за интегралење парцијалних једначина. Српска Кр. Академија Глас CLXX Први разред 83 А. Мат. Науке ст. 112. Београд 1936.

N. Saltykow. — Etude sur l'application des transformations de contact à l'intégration d'équations différentielles. Publications Mathématiques de l'Université de Belgrade, T. V. Belgrade 1936. p 133.

II. В. П. Ермаковъ. — Теорія Иншегрированія обыкновенныхъ дифференціальныхъ уравненій. Кіевъ 1889.

В. П. Ермаковъ. — Универсишешскія Извіъсшія. Кіевъ 1887.

N. Saltykow. — L'Intermédiaire des Mathématiciens, Paris t. II. 1894 p. 80.

III. Н. Салтиков. — Теорија тангенцијалних трансформација. Српска Кр. Академија Глас CLXXV. Први разред 86. А. Мат. Науке. Београд 1937 стр. 267.

- 23 -