СРПСКА КРАЉЕВСКА АКАДЕМИЈА ГЛАС CLXXVIII

први разред

88

А. МАТЕМАТИЧКЕ НАУКЕ

11

н. салтиков

Инваријанте линеарних парцијалних једначина другог реда

> БЕОГРАД 1939 Цена 4 динара

СРПСКА КРАЉЕВСКА АКАДЕМИЈА ГЛАС СLXXVIII

први разред

88

А. МАТЕМАТИЧКЕ НАУКЕ

11

н. салтиков

Инваријанте линеарних парцијалних једначина другог реда

БЕОГРАД 1939

Цена 4 динара

Инваријанте линеарних парцијалних једначина другог реда

Од

Н. САЛТИКОВА

ИНВАРИЈАНТЕ ЛИНЕАРНИХ ПАРЦИЈАЛНИХ ЈЕДНАЧИНА ДРУГОГ РЕДА

Од

Н. САЛТИКОВА

(Приказано на скупу Академије природних наука 27 маја 1935 г.)

УВОД.

1. О инваријантама. — Испитивања која сам приказао Академији 1934 године¹) о интеграљењу опште линеарне парцијалне једначине другог реда с једном непознатом функцијом, садрже низ услова интеграбилности посматраних једначина у коначвим обрасцима. Ти се услови састоје у томе, што квадратичне форме, које су придружене посматраним једначинама, морају бити растављиве у два линеарна чинитеља. За то је било потребно проучавати дискриминанте одговарајућих форма. А ове дискриминанте увек се изражавају помоћу коефицијената, који су били обележени са µ, µ₁,...µ_г...

Сваки од ових коефицијената има по две вредности, које се одређују као корени једне квадратне алгебарске једначине. Ови се корени потпуно поклапају са вредностима одговарајућих коефицијената, добијених код Имшенецког и код Гурса, помоћу две различите трансформације²). Најзад, посматрани коефицијенти играју за интеграљење опште лине-

3

¹⁾ Глас Сриске Краљевске Академије CLXI, стр. 1. Bulletin de l'Académie Royale Serbe, A. Sc. Math. et Physiques № 2. Belgrade 1935, p. 117.

²⁾ N. Saltykow — Note sur la méthode de Legendre pour intégrer les équations linéaires aux dérivées partielles du second ordre. Comptes rendus du Deuxième Congrès des Mathématiciens des Pays Slaves. Praha 1954, p. 166.

арне једначине исту улогу као и инваријанте. Лапласове хиперболичке једначине³).

Али испитивањем особина ових коефицијената, лако долазимо до закључка, да они не само играју улогу инваријаната за интеграљење једначина, него да су праве инваријанте према ма којим год било пунктуалним трансформацијама. Добијени резултат јесте од осетне важности за теорију посмаграних парцијалних једначина, јер доказује да би било узалуд тражити интеграбилне форме линеарних парцијалних једначина другог реда, помоћу пунктуалних трансформација ако су инваријанте различите од нуле.

За ово тврђење у овом чланку износимо потребан доказ. Он је сасвим сличан познатим доказима Г. Дарбуа⁴) за Лапласову хиперболичку линеарну једначину.

Требало би ипак подвући, да се у теорији линеарних парцијалних једначина другог реда, обично помињу, почев од 1895—1896 године, две инваријанте *H* и *K*, које су увели Бургети и Котон. Они су саставили ове инваријанте за канонички облик елиптичне линеарне једначине, али само за трансформацију непознате функције. У исто време Бургети је доказао да се посматрана елиптична једначина може претворити у Лапласову једначину, ако су вредности ових инваријаната једнаке нули.

Међутим овај став сад губи много од своје вредности, благодарећи општој теорији инваријаната, која се објављује у овом чланку. Заиста, из ове опште теорије следује, да се обе вредности инваријаната р, у случају елиптичне линеарне једначине каноничког облика, изражавају комплексним бројевима:

$$\mu = \frac{1}{2} \left(K \mp i H \right),$$

где су *H* и *K* обе инваријанте, које су израчунали Бургети и Котон, узевши своју партикуларну претноставку. Због тога за вредности *H* и *K*, које су идентички нуле, обе инваријанте µ такође су једнаке нули; а на основу сад створене

⁸) E. Goursat – Leçons sur l'Intégration des équations cux dérivées parlielles du second ordre. t. Il Paris 1893, p. 34, § 113.

⁴⁾ G. Darboux — Leçons sur la théorie ginérale des surfaces. t. II p. 25.

опште теорије инваријаната, посматрана елиптична линеарна једначина је интеграбилна у коначном облику.

Шта више, ако је инваријанта µ различита од нуле, тада се на прост начин добијају инваријанте вишег реда.

Чим се једна од њих буде уништила, онда се полазна једначина такође може интегралити.

Доказане особине инваријаната примењују се даље за интеграљење неколико линеарних једначина партикуларног облика.

Глава I

Испитивање инваријаната

2. Основни обрасци. — Узмимо једну лисеарну парцијалну једначину другог реда општег облика

$$Ar + 2Bs + Ct + 2Dp + 2Eq + Fz + G = 0 \tag{1}$$

где су

парцијални изводи првог, односно, другог реда непознатефункције z по независно променљивим количинама x и y,. наиме:

 $\frac{\partial z}{\partial x}, \quad \frac{\partial z}{\partial y}, \quad \frac{\partial^2 z}{\partial x^2}, \quad \frac{\partial^2 z}{\partial x \partial y}, \quad \frac{\partial^2 z}{\partial y^2},$

а коефицијенти једначине (1), *A*, *B*, *C*, *D*, *E*, *F* и *G* јесуфункције од *x* и од *y*.

Под претпоставком да је

$$A \gtrless 0, \qquad (2)$$

дата једначина (1), доводи се увек на систем двеју линеарних једначина првог реда:

$$Ap + Kq + Lz = z_1 , \qquad (3)$$

$$p_1 + Mq_1 + Nz_1 + G = \mu z$$
, (4)

где је z_1 ново-уведена помоћна функција, а p_1 и q_1 означавају њене парцијалне изводе првог реда $\frac{\partial z_1}{\partial x}$, односно $\frac{\partial z_1}{\partial y}$.

Коефицијенти једначина (3) и (4). као што је било дока--

зано⁵), одређују се условима:

$$K + AM = 2B, \qquad KM = C, \tag{5}$$

$$L + AN = 2D', \qquad ML + KN = 2E',$$
 (6)

$$\mu = LN - F', \tag{7}$$

$$2D' \equiv 2D - \psi(A)$$
, $2E' \equiv 2E - \psi(K)$,

$$F' \equiv F - \psi(L)$$
, $\psi(...) \equiv \frac{\partial(...)}{\partial x} + M \frac{\partial(...)}{\partial y}$.

Под претпоставком да је

$$R \equiv \sqrt{B^2 - AC} \ge 0 , \qquad (8)$$

били су изведени обрасци:

$$K = B \pm R, \qquad AM = B \pm R, \qquad (9)$$

$$L = \frac{D'K - AE'}{\pm R}, \qquad N = \frac{E' - D'M}{\pm R}, \qquad (10)$$

$$\mu = \frac{\Delta'}{R^2}, \qquad \Delta' \equiv \begin{vmatrix} A & B & D' \\ B & C & E' \\ D' & E' & F' \end{vmatrix}.$$
(11)

3. Трансформација непознате функције. — Уведимо, најпре, уместо z нову непознату функцију z', која се одређује помоћу обрасца:

$$z = \lambda z',$$

где је λ нека функција независно променљивих количина х и у.

На основу формуле претварања добијамо:

$$p = \lambda p' + \lambda_{x} z',$$

$$q = \lambda q' + \lambda_{y} z',$$

$$r = \lambda r' + 2\lambda_{x} p' + \lambda_{x}^{2} z',$$

⁵) Глас Сриске Краљевске Академије, CLXII, Први Разред 81. А. Машемашичке Науке. стр. 17—18.

Н. Салтиков

$$s = \lambda s' + \lambda \quad p' + \lambda_x q' + \lambda_{xy} z',$$

$$t = \lambda t' + 2\lambda_y q' + \lambda_{y^2} z',$$

где p', q', r', s' и t' означавају парцијалне изводе првог и другог реда по x, односно y, нове непознате функције z', а доњи индекси x, y, x^2 , xy, y^2 , код λ , означавају парцијално диференцијаљење по независно променљивим количинама xи y.

Према томе ће претворена једначина (1) постати

$$A_0r' + 2B_0s' + C_0t' + 2D_0p' + 2E_0q' + F_0z' + G = 0, \qquad (12)$$

где се коефицијенти добијене једначине изражавају помоћу пређашњих коефицијената једначине (1) овако:

$$A_{0} \equiv A\lambda , \qquad B_{0} \equiv B\lambda , \qquad C_{0} \equiv C\lambda ,$$

$$D_{0} \equiv A\lambda_{x} + B\lambda_{y} + D\lambda , \qquad E_{0} \equiv B\lambda_{x} + C\lambda_{y} + E\lambda ,$$

$$F_{0} \equiv A\lambda_{x}^{2} + 2B\lambda_{xy} + C\lambda_{y}^{2} + 2D\lambda_{x} + 2E\lambda_{y} + F\lambda .$$

$$(13)$$

Означимо ли знаком 0 а истим словом коефицијенте једначине (12) који одговарају сличним коефицијентима првобитне једначине (1), имађемо:

$$R_0 \equiv R\lambda$$
, $K_0 \equiv K\lambda$, $M_0 \equiv M$. (14)

Најзад, узимајући у обзир горе поменуте обрасце од (5) --(11) и од (13)--(14), добићемо формуле:

$$2D'_{y} \equiv 2(A\lambda_{x} + B\lambda_{y} + D\lambda) - \psi(A\lambda) \equiv$$
$$\equiv 2D\lambda - \psi(A)\lambda + A\lambda_{x} + (2B - AM)\lambda_{y} \equiv$$
$$\equiv 2D'\lambda + \varphi(\lambda),$$

где ознака ф(...) има значење:

$$\varphi(...) \equiv A \frac{\partial(...)}{\partial x} + K \frac{\partial(...)}{\partial y} ,$$

$$2E'_{0} \equiv 2(B\lambda_{x} + C\lambda_{y} + E\lambda) - \psi(K\lambda) \equiv$$

$$\equiv 2E\lambda - \psi(K)\lambda + (2B - K)\lambda_{x} + (2C - KM)\lambda_{y} \equiv$$

$$\equiv 2E'\lambda + M\varphi(\lambda) ,$$

$$\begin{split} L_{0} &\equiv \frac{D'_{0}K_{0} - A_{c}E'_{0}}{\pm R_{0}} = \frac{1}{\pm 2R} \left\{ 2D'\lambda + \varphi(\lambda) \right] K - A[2E'\lambda + M\varphi(\lambda]] \equiv \\ &\equiv \frac{1}{\pm 2R} \left[2(D'K - AE')\lambda + (K - AM)\varphi(\lambda) \right] \equiv \\ &\equiv L\lambda + \varphi(\lambda) , \\ N_{0} &\equiv \frac{E'_{0} - D'_{0}M_{0}}{\pm R_{0}} = \frac{1}{\pm 2R\lambda} \left\{ 2E\lambda + M\varphi(\lambda) - M[2D'\lambda + \varphi(\lambda)] \right\} \equiv \\ &= E'_{-} - D'M \end{split}$$

$$\equiv \frac{L - D M}{\pm R} \equiv N ,$$

$$F'_{0} \equiv F_{0} - \Psi(L_{0}) = A\lambda_{x}^{2} + 2B\lambda_{xy} + C\lambda_{y}^{2} + 2D\lambda_{x} + 2E\lambda_{y} + F\lambda - - \Psi(L(\lambda) - \Psi(\varphi(\lambda)) \equiv$$
$$\equiv F\lambda + A\lambda_{x}^{2} + 2B\lambda_{xy} + C\lambda_{y}^{2} + 2D\lambda_{x} + 2E\lambda_{y} - -L\Psi(\lambda) - \Psi(\varphi(\lambda)) .$$

Али пошто имамо, и то на основу образаца (5): $\psi(\varphi(\lambda)) \equiv \psi(A\lambda_x + K\lambda_y) \equiv A(\lambda_x^{-} + M\lambda_{xy}) + K(\lambda_{xy} + M\lambda_{y^2}) + K(\lambda_{xy} + M\lambda_{y^2})$

 $+\psi(A)\lambda_x+\psi(K)\lambda_y\equiv A\lambda_x+2B\lambda_{xy}+C\lambda_y+\psi(A)\lambda_x+\psi(\lambda),$ то ће последњи образац за F_0' добити облик:

 $F'_{0} \equiv F \lambda + 2D'\lambda_{x} + 2E \lambda_{y} - L \Psi(\lambda) .$

Услед састављених образаца, инваријанта µ₀ претворене једначине (12) постаје:

$$\mu_{3} \equiv L_{0}N_{0} - F_{0}' = [L\lambda + \varphi(\lambda)] N - F \lambda - 2D\lambda_{x} - 2E'\lambda_{y} + L\psi(\lambda) \equiv$$
$$\equiv (LN - F')\lambda + L\psi(\lambda) + N\varphi(\lambda) - 2D'\lambda_{x} - 2E\lambda_{y}.$$

Лако је израчунати, на основу образаца (10) и (9), да је:

$$L\psi(\lambda) + N\varphi(\lambda) = \frac{1}{\pm R} \left[(D'K - AE')\lambda_x + (D'K - AE')M\lambda_y + (E' - D'M)A\lambda_x + (E' - D'M)K\lambda_y \right] \equiv$$
$$\equiv 2D\lambda_x + 2E'\lambda_y.$$

Према томе пређашњи образац за ро добија облик:

па је и заиста инваријанта према извршеној трансформацији.

4. Трансформација независно променљивих количина. — Уведимо, у место х и у, нове независно променљиве количине х' и у', које се одређују обрасцима:

$$x = u(x'), \quad y = v(y').$$

Одавде следују обрасци трансформације:

$$p' = pu', \quad q' = qv', \quad s' = su'v',$$

 $r' = ru'^2 + pu'', \quad t' = tv'^2 + qv'',$

где ознаке p', q', r', s' и t' изражавају парцијалне изводе старе непознате функције z првог, односно, другог реда по новим независно променљивим количивама, а u', u'' и v', v''су први и други изводи функција u и v по својим независно променљивим количивама x' и y'.

Помоћу изведених образаца претворена дата парцијална једначина (1) добија облик:

$$A_0r' + 2B_0s' + C_0t' + 2D_0p' + 2E_0q' + F_0z + G_0 = 0, \quad (15)$$

где су коефицијенти једначине (15):

$$\begin{split} A_{0} &\equiv \frac{A}{u'^{2}}, \quad B_{0} &\equiv \frac{B}{u'v'}, \quad C_{0} &\equiv \frac{C}{v'^{2}}, \\ 2D_{0} &\equiv \frac{2D}{u'} - \frac{Au''}{u^{3}}, \quad 2E_{0} &\equiv \frac{2E}{v'} - \frac{Cv''}{v^{3}}. \end{split}$$

Према томе, на оснозу малочас наведених образаца, налазимо да је:

$$R_0 \equiv \frac{R}{u'\nu'}, \quad K_0 \equiv \frac{K}{u'\nu'}, \quad M_1 \equiv \frac{Mu'}{\nu'},$$
$$2D'_0 \equiv 2D_0 - \Psi'(A_0), \quad 2E'_0 - 2E_0 - \Psi'(K_0),$$

где ознаке ψ' обележавају пређашњу операцију ψ , која је само изведена у новим независно променљивим количинама, т. ј.

$$\psi'(\ldots) \equiv \frac{\partial(\ldots)}{\partial x'} + M_0 \frac{\partial(\ldots)}{\partial y'}$$

Према томе добијамо, на основу формула (5) и (9), следеће обрасце:

$$\begin{split} 2D_{0}' &= \frac{2D}{u'} - \frac{Au''}{u'^{3}} - \Psi'\left(\frac{A}{u'^{2}}\right) \equiv \frac{2D}{u'} - \frac{Au''}{u^{3}} - \\ &- \frac{1}{u'^{2}} \left(A_{x}u' + \frac{Mu'}{v'} A_{y}v'\right) + \frac{2Au''}{u'^{3}} \equiv \frac{2D'}{u'} + \frac{Au''}{u'^{3}} , \\ 2E_{0}' &= \frac{2E}{v'} - \frac{Cv''}{v'^{3}} - \Psi'\left(\frac{K}{u'v'}\right) \equiv \frac{2E}{v'} - \frac{Cv''}{v'^{3}} - \\ &- \frac{1}{u'v'} \left(K_{x}u' + \frac{Mu'}{v'} K_{y}v'\right) + \frac{Ku''}{u'^{2}v'} + \frac{KMu'v''}{u'v'^{3}} \equiv \\ &\equiv \frac{2E'}{v'} + \frac{Ku''}{u'^{2}v'} , \\ L_{0} &= \frac{D_{0}'K_{0} - A_{0}E_{0}'}{\pm R_{0}} \equiv \frac{u'v'}{\pm 2R} \left[\left(\frac{2D'}{u'} + \frac{Au'}{u'^{3}}\right) \frac{K}{u'v'} - \frac{A}{u'^{2}} \left(\frac{2E'}{v'} + \frac{Ku''}{u'^{2}v'}\right) \right] \equiv \\ &\equiv \frac{1}{\pm R} \left(\frac{D'K}{u'} - \frac{AE'}{u'}\right) \equiv L \frac{1}{u'} , \\ N_{0} &= \frac{E_{0}' - D_{0}'M_{0}}{\pm R} \equiv \frac{u'v'}{\pm 2R} \left[\frac{2E}{v'} + \frac{Ku''}{u'^{2}v'} - \frac{Mu'}{v'} \left(\frac{2D'}{u'} + \frac{Au''}{u'^{3}}\right) \right] \equiv \\ &\equiv \frac{u'}{\pm R} \left(E' - D'M\right) \pm \frac{1}{2R} \left(K - AM\right) \frac{u''}{u'} \equiv \\ &\equiv Nu' + \frac{u''}{u'} . \end{split}$$

Најзад добијамо образац:

$$\begin{split} \mu_{0} &= -L_{0}N_{0} - F_{0}' \equiv \frac{L}{u'} \left(Nu' + \frac{u''}{u'} \right) - F + \psi'(L_{0}) = \\ &\equiv LN - F + \frac{Lu''}{u'^{2}} + \psi'\left(\frac{L}{u'}\right) \equiv \\ &\equiv LN - F + \frac{Lu''}{u'^{2}} + \frac{1}{u'} \left(L_{x}u' + \frac{Mu'}{v'} L_{y}v' \right) - L \frac{u''}{u'^{2}} \equiv \\ &\equiv LN - F + \psi(L) \equiv LN - F' \equiv \mu , \end{split}$$

11

т. ј. µ је заиста инваријанта према извршеној трансформацији.

5. *Размена независно променљивих количина.* — Испитајмо, најзад, обрасце претварања:

$$x=y', \quad y=x'.$$

Они, онда, даље дају:

$$p'=q$$
, $q'=p$,
 $r'=t$, $s'=s$, $t'=r$.

Претворена једначина (1) постаје:

$$A_0r' + 2B_0s' + C_0t' + 2D_0p' + 2E_0q' + F_0z + G_0 = 0,$$

где је, према обрасцима (5):

$A_0 \equiv C$,	$B_0 \equiv B$,	$C_{o}\equiv A,$	
$D_0 \equiv E$,	$E_0 \equiv D$,	$F_0 \equiv F$,	$G_0 \equiv G$
$R_0 \equiv R$,	$K_0 \equiv \dot{A}M,$	$M_0 \equiv \frac{K}{C} =$	$\frac{1}{M}$,
$\psi_0(\ldots) \equiv \frac{1}{M}$	ψ() ,		
$2D_0' \equiv 2E$	$-\psi_0(A_0)\equiv$	$2E - \frac{1}{M} \psi(e)$	C),
$2E_0'\equiv 2D$	$\psi_0 - \psi_0(K_0) \equiv$	$2D - \frac{1}{M} \psi(A)$	4 <i>M</i>).

Сад добијамо, помоћу непосредне смене нађених вредности коефицијената у основним обрасцима, који се састављају слично обрасцима (10):

> $L_0 \equiv ML ,$ $N_0 \equiv \frac{N}{M} - \frac{1}{M^2} \Psi(M) .$

Најзад, одговарајући образац, на страни 213, даје:

$$F_0' \equiv F' - \frac{L}{M} \psi(M) \; .$$

Ако сад уврстимо нађене вредности L_0 , N_0 и F_0' у образац, који је сличан обрасцу (7), онда ћемо имати:

$$\mu_0 \equiv L - NF'$$
.

Према томе, услед обрасца (7), долазимо до траженог закључка, наиме да је:

$$\mu_0 \equiv \mu$$
,

т. ј. да µ претставља инваријанту и за ову последњу посматрану трансформацију.

6. Инваријанте првог реда. — Ако су обе вредности инваријанте μ , за полазну једначину (1), различите од нуле, то Лежандровом трансформацијом долазимо до испитивања инваријаната првог реда μ_1 , чије се вредности могу одредити обрасцем:

$$\mu_1 = \mu - I_1 \beta - \psi(\beta) + \psi(I_2) + I_1 I_2 + S , \qquad (16)$$

где су уведене ознаке:

$$\beta \equiv \varphi(\log \mu),$$

$$I_{J} \equiv \pm \frac{1}{2R} [M \psi(A) + \varphi(M) - \psi(K)],$$

$$I_{2} \equiv \pm \frac{1}{2R} [A \psi(K) - K \psi(A) - A \varphi(M)]$$

$$S \equiv I_{1}L + I_{2}N + \psi(L) - \varphi(N).$$
⁶)

Чим будемо одредили L и I, онда за израчунавање N и I₂ можемо лако искористити следеће зависности, које потичу из образаца за њихово одређивање:

$$N = \frac{2D' - L}{A} ,$$

⁶) Обде је испрабљена штампарска грешка у обрасцу за бредност μ_I , који се налази на крају стране 29 номенутог рада у ⁵), и где треба ставлти знак — уместо — пред $\psi(L)$. Сем тога ознаке A и B промењене су респективно са I_2 и I_1 .

$$I_2 \equiv -AI_1 - \psi(A) \; .$$

7. Инваријанше вишег реда. — Ако су инваријанте првог реда различите од нуле, може се неколико пута поновити Лежандрова трансформација. Према томе се раније изведени обрасци⁷) за инваријанте *r*-от реда лако могу дати у облику:

$$\mu_{r} = \mu_{r-1} - \sum_{j=0}^{r-1} [I_{1}\beta_{j} + \psi(\beta_{j})] + (2r-1) I_{1}I_{2} - (r-1) \varphi(I_{1}) + r\psi(I_{2}) + S, \qquad (17)$$

где су уведене ознаке:

$$\mu_0 \equiv \mu$$
, $\beta_0 \equiv \beta$, $\beta_j \equiv \varphi(\log \mu_j)$,

а I₁, I₂ и S' имају пређашње вредности, које не зависе од реда посматраних инваријаната.

⁷) Н. Салшиков — Глас Сриске Краљевске Академије CLXV, Први Разред 81. А. Математичке Науке, стр. 28. Види ⁴).

Глава II

Инваријанте елиптичних једначина

8. Инваријанше различишог реда. — Напишимо посматрану једначину у каноничком облику:

$$r+t+ap+bq+cz=0, \qquad (18)$$

где су a, b и c функције независно променљивих количина x и y. Према томе, обрасци (8), (9) и (10) дају за ову једначину (18):

$$R \equiv i, \qquad K \equiv \pm i, \qquad M \equiv \mp i,$$
$$L \equiv \frac{1}{2} (a \pm bi), \qquad N \equiv \frac{1}{2} (a \mp bi).$$

Одавде ћемо имати, на основу обрасца (7):

$$\mu \equiv \frac{1}{4} (a^2 + b^2) - c + \frac{1}{2} [\psi(a) \pm i \psi(b)] \equiv$$
$$\equiv \frac{1}{2} (a^2 + b^2) - c + \frac{1}{2} \left[\frac{\partial a}{\partial x} \pm i \frac{\partial a}{\partial y} \pm i \left(\frac{\partial b}{\partial x} \pm i \frac{\partial b}{\partial y} \right) \right].$$

Према томе се обе инваријанте изражавају помоћу једног обрасца:

$$\mu = \frac{1}{2} (K \pm iH) , \qquad (19)$$

где *H* и *K* претстављају познате инваријанте Бургетија и Котона, на име:

$$H \equiv \frac{\partial a}{\partial y} - \frac{\partial b}{\partial x},$$

$$K \equiv \frac{\partial a}{\partial x} + \frac{\partial b}{\partial y} + \frac{a^2 + b^2}{2} - 2c.$$
(20)

Ако су обе инваријанте (19) једнаке нули, т. ј. ако се изрази (20) за *H* и *K* униште, онда се једначина (18) интеграли на познати начин⁸).

Претпоставимо сад да су обе инваријанте (19) различите од нуле и израчунајмо вредности првих инваријаната μ_1 помоћу обрасца (16). Коефицијенти А, М и К за посматрану једначину (18) чине сталне количине. Према томе налазимо да је

$$I_{_{i}}\equiv I_{2}\equiv 0\;,$$

а образац (16), за једначину (1), постаје:

$$\mu_1 = \mu - \psi(\beta) + S', \qquad (21)$$

где S' има следеће значење:

 $S' \equiv \psi(L) - \varphi(N)$.

Ако су обе вредности µ₁ различите од нуле, онда образац (17) за посмаграну једначину (1) постаје:

$$\mu_{c} = \mu_{c-1} - \sum_{j=0}^{r-1} \Psi(\beta_{j}) + S'.$$
(22)

Ако бисмо сабрали све ове обрасце за вредности индекса *r* почев од нуле, онда ћемо добити нов образац

$$\mu_r = \mu - \sum_{j=0}^{r-1} (v - j) \, \psi(\beta_j) + v S'.$$

Овај се образац може написати још друкче овако:

$$\mu_r = \mu - \psi[\varphi(\log \mu^r \mu_1^{r-1}, \ldots, \mu_{r-1}] + rS'.$$

Посматрајмо, прво, једначину (18) под претпоставком да су коефицијенти *a*, *b* и *c* сталне количине. Тада добијамо:

$$H \equiv 0 , \qquad K \equiv \frac{a^2 + b^2}{2} - 2c ,$$
$$\mu \equiv \frac{a^2 + b^2}{4} - c .$$

⁸) Н. Салшиков — Глас Српске Краљевске Академије СLXV. Први Разред 81. А. Математичке Науке, стр. 18.

Према томе се једначина (18), *са сталним коефицијен*тима, интеграли за µ=0, т. ј. кад добије облик:

$$r + t + ap + bq + \frac{a^2 + b^2}{4} z = 0.$$

9. *Примери.* — За други пример узмимо следећу елиптичну једначину:

$$r+t+\frac{2mp}{x}=0, \qquad (23)$$

где је т стална количина.

За ову имамо једначину да је

$$H \equiv 0$$
, $K \equiv \frac{2(m-1)m}{x^2}$.

Због тога образац (19) добије облик:

$$\mu = \frac{(m-1)m}{x^2}.$$

Пошто се овај образац уништава за вредности:

$$m = 0$$
, или $m = 1$,

према томе се једначина (23) интеграли за сваку од обе наведене вредности коефицијента *m*. За друге вредности *m* имамо:

$$L \equiv N \equiv \frac{m}{x} ,$$

$$\Psi(L) \equiv -\frac{m}{x^2} , \quad \varphi(N) \equiv -\frac{m}{x^2} ,$$

$$S' \equiv 0 .$$

Према томе за посматрану једначину (23) обрасци (21) и (22) постају:

$$\mu_1 = \mu - \psi(\beta) , \qquad (24)$$

$$\mu_r = \mu_{r-1} - \sum_{j=0}^{r-1} \Psi(\beta_j) \,. \tag{25}$$

Пошто имамо:

Н. Салтиков

$$\beta = \varphi(\log \mu) = -\frac{2}{x}, \quad \psi(\beta) = \frac{2}{x^2},$$

онда се µ, изражава обрасцем:

$$\mu_1 = \frac{(m+1)(m-2)}{x^2} \, .$$

Према томе се једначина (13) такође интеграли и за вредности

$$m = -1$$
 или $m = 2$.

Лако је сад доказати да се инваријанта *r*-ог реда изражава овако:

$$\mu_r = \frac{(m+r)(m-r-1)}{x^2} \,. \tag{26}$$

Заиста, ова је формула тачна за r=1.

Ако сад претпоставимо да је формула (26) тачна за ма који цео број r од 1 до r, онда образац (22) даје:

$$\mu_{r+1} = \frac{(m+r)(m-r-1)}{x^2} - \sum_{j=0}^r \psi(\beta_j) \,.$$

Међутим имамо, због уведене претпоставке (26), да је:

$$\beta_{j} = \varphi[\log (m+j) (m-j-1)] - 2\varphi(\log x) = -\frac{2}{x},$$

$$\psi(\beta_{j}) = \frac{2}{x^{2}},$$

$$\sum_{j=0}^{r} \psi(\beta_{j}) = \frac{2(r+1)}{x^{2}},$$

$$\mu_{r+1} = \frac{(m+r) (m-r-1) - 2(r+1)}{x^{2}} = \frac{(m+r+1) (m-r-2)}{x^{2}}$$

Добијени резултат доказује да је образац (26), не само тачан за r првих бројева, него и за број r+1.

На овај се начин види да је образац (26) тачан за све целе бројеве *r*, и то почев од вредности 0 за *r* према горе наведеном обрасцу за µ.

Одавде излази закључак да се дата једначина (23) интеграли за све целе позитивне и негативне бројне вредности коефицијента m.

Глава III

Хиперболичке једначине општег облика

10. Примери. Посматрајмо, прво, Ајлерову једначину

$$r - t + \frac{2m}{x} p = 0$$
, (27)

која се знаком код *t* разликује од претходне једначине (23). Овом се једначином (27) много бавио и V. Scersawy⁹).

Сви коефицијенти за једначину (27) имају стварне вредности, наиме:

$$R \equiv 1, \qquad K \equiv \pm 1, \qquad M \equiv \pm 1,$$
$$L \equiv N \equiv \frac{m}{x}, \qquad \psi(L) \equiv -\frac{m}{x^2},$$
$$\mu \equiv \frac{m(m-1)}{x^2}.$$

Према томе су услови, за интеграљење посматране једначине (27), исти као и за једначину (23). Само ће се разликовати изрази интеграла обе једначине због разлика вредности коефицијената *R*, *K* и *M*.

За други пример узмимо познату Ајлерову једначину:

$$r - a^2 t - \frac{bz}{x^2} = 0$$
 (28)

Коефицијенти који одговарају датој једначини (28) изражавају се овако:

í5

⁹⁾ Denkschriften d. K. Akademie d. Wis. Math.-Naturw. Cl. Neunundvierzigster Band. Wien. 1885.

$$R \equiv a, \qquad K \equiv \pm a, \qquad M \equiv \mp a$$
$$L \equiv N \equiv 0, \qquad \psi(L) \equiv 0,$$
$$\mu_1 \equiv \frac{b}{x^2}.$$

Према томе добијамо обрасце:

$$\beta \equiv \varphi(\log \mu) \equiv -\frac{2}{x}, \quad \psi(\beta) \equiv \frac{2}{x^2},$$

 $h = 2$

 $\mu_1 \equiv \frac{2}{x^2}$. $\mu_1 \equiv \frac{2}{x^2}$. $\mu_2 \equiv \frac{2}{x^2}$. $\mu_3 \equiv \frac{2}{x^2}$. $\mu_4 \equiv \frac{2}{x^2}$. $\mu_4 \equiv \frac{2}{x^2}$. Лако се може даље доказати да је

$$\mu_r \equiv \frac{b-2r}{r^2}.$$

Одатле се види да се једначина (28) интеграли за све целе парне вредности коефицијента b.

Rell Kert