Zbornik radova 12 (20)

LOGIC IN
COMPUTER SCIENCE

Matematicki institut SANU



Zbornik radova 12 (20)

LOGIC IN
COMPUTER SCIENCE

Editor:
Zoran Ognjanovi¢

Matematitki institut SANU



Hadasaw: Maremarinusn unctutyt CAHY, Beorpan, Kueza Muxauna 36
cepuja: 300pHUK pajopa, xwura 12 (20)

36 uzdasanwa: Boromys Crankosuh, rnasav ypessvk cepuje

Ypednuk caecxe: 3opar Ormanosull, ka0 rocT

Texnuvxy ypednux: Hparan Bnarojesuh

Hmamne: “ArageMcrka u3iama”, 3eMyH

IMTramname 3appmeno bebpyapa 2009.

CIP - Karanorusanmja y nyOmuxanmju
Hapepua Subnuorera Cpbuje, Beorpan

004 : 510.6(082)

LOGIC in Computer Science / editor Zoran
Ognjanovi¢. - Beograd : Matemati¢kl institut
SANU, 2009 (Zemun : Akademska izdanja). - 215
str. @ graf. prikazi; 24 cm. - (Zbornik

radova / Matematicki institut SANU ; knj.

12 (20))

TuraZ 350. - Str 3: Preface / Zoran
Ognjanovié. - Bibliografija uz svaki rad.

ISBN 97&-86-80593-40-1

1. Ognjanovi¢, Zoran, 1964- [ypemans]
[ayTop AoaaTHOT TekcTa)

a) Pauymapcrso - MaremaTnuxa doruka -
36opHuOu

COBISS.SR-ID 156220940



PREFACE

This special issue of Zbornik Radove intends to make several new topics accessible
to professional mathematicians and doctoral students. It alse points out and helps
readers to understand the corresponding research challenges and future research
directions in some applications of mathematical logic, which can be seen as the
calculus of computation, to foundations of theoretical computer science.

Since the sixties, when systematic work in mathematical logic started in Bel-
grade, our researchers have been working and publishing important papers in many
standard areas of logic: model theory, proof theory, set theory, recursion theory,
non-standard analysis, non-classical logics etc. That work attracted a significant
number of collaborators from all universities in Serbia, and former Yugoslavia. To-
day, it might be said that theoretical achievements of what we can informally call
“Belgrade school in mathematical logic” have been widely recognized.

On the other hand, during the last twenty years, as the usefulness of mathe-
matical logic in computer science and artificial intelligence became more and more
obvious, our logicians, organized in several scientific projects supported by Ser-
bian Ministry of Sclence, have been establishing intensive interactions with those
fields. Currently, along this line of research two five years projects “Representa-
tions of logical structures and their application in computer science” and “Mod-
els, Languages, Types, and Processes in Computing” are under realization (see
http://www.mi.sanu.ac.yu/projects/projects.htm for more informasion). This is-
sue collects four articles of members of those projects.

The paper by K. Dofen and Z. Petrié is a survey of results about coherence for
categories with finite products and coproducts. The investigated categories for-
malize equality of proofs in classical and intuitionistic conjunctive-disjunctive logic
without distribution of conjunction over disjunction. Z. Ognjanovié, M. Raskovié
and 7. Markovié present probabilistic logics as a formalism for representing and
reasoning with uncertain knowledge. The paper contains the axiomatizations of
a number of logics, proofs of the completeness theorems, and discusses their de-
cidability. The paper by M. Mosurovié, T. Stojanovi¢, and A. Kaplarevié-Maligié
gives an overview of basic description logics as well as some related original results
concerning temporal extensions of Description Logics. S. Ghilezan and S. Likavec
summarise their work in the field of computational interpretation of intuitionistic
and classical logic in lambda calculus and its extensions.

I, as a guest editor, am grateful to many people who helped me, in particutar
to the memhers of the editorial board, referees, and of course the authors of the
papers. However, I would especially like to mention professor Slavise B. Predié
(1933-2008) who is widely credited as one of the most important Serbian logician,
the founder of the Seminar for Mathematical Logic in Mathematical Institute of the
Serbian Academy of Sciences and Arts, superviser of many PhD and MSc theses, as
a pioneer of applications of theoretical results from mathematical logic in computer
science, etc. As a member of the gditorial board, he strongly influenced work on
writing this special issue, and I would like to thank him for that.

Zoran Ogujanovié



Contents
Kosta Do%en and Zoran Petrié:
BICARTESIAN COHERENCE REVISITED

Zoran Ognjanovi¢, Miodrag Radkovi, and Zoran Markovié:
PROBABILITY LOGICS

Milenko Mosurovié, Tatjana Stojanovié, and Ana Kaplarevic-Malizié:

REASONING IN BASIC DESCRIPTION LOGICS AND
DESCRIPTION LOGICS - WITH MODAL OPERATORS

Silvia Ghilezan and Silvia Likavec:
COMPUTATIONAL INTERPRETATIONS OF LOGICS

35

113

159



Kosta Do3Sen and Zoran Petni¢

BICARTESIAN COHERENCE REVISITED

Abstract. A survey is given of results about coherence for categories
with finite products and coproducts. For these results, which were
published previously by the authors in several places, some formula-
tions and proofs are here corrected, and matters are updated. The
categories investigated in this paper formalize equality of proofs in
classical and intuitionistic conjunctive-disjunctive logic without dis-
tribution of conjunction over disjunction.

Mathematics Subject Classification (2000): 18A30, 18A15, 03G30,
03G10, 03F05, 03F07, 03B20

Keywords: bicartesian categories, categories with finite products
and coproducts, coherence, categorial proof theory, decidability of
equality of arrows, conjunction and disjunction, decidability of equal-
ity of deductions, Post completeness



CONTENTS

1. Coherence 6
2. Coherence and proof theory 9
3. Lattice categories 13
4. The functor G 15
5. Coherence for lattice categories 17
6. Coherence for sesquicartesian categories 20
7. Restricted coherence for dicartesian categories 23
8. Maximality 26
9. Maximality of lattice categories 28
10.  Relative maximality of dicartesian categories 30

References 33

1. Coherence

Categorists call coherence what logicians would probably call completeness. This
is, roughly speaking, the question whether we have assumed for a particular brand of
categories all the equations between arrows we should have assumed. Completeness
need not be understood here as completeness with respect to models. We may have
also a syntactical notion of completeness——something like the Post completeness
of the classical propositional calculus—but often some sort of model-theoretical
completeness is implicit in coherence questions. Matters are made more complicated
" by the fact that categorists do not like to talk about syntax, and do not perceive
the problem as being one of finding a match between syntax and semantics. They
do not talk of formal systems, axioms and models.

Moreover, questions that logicians would consider to be questions of decidability,
which is of course not the same as completeness, are invelved in what categorists
call coherence. A coherence problem often involves the question of deciding whether
two terms designate the same arrow, i.e. whether a diagram of arrows commutes.
Coherence is understood mostly as solving this problem, which we call the com-
muting problem, in [22] (see p. 117, which mentions [20] and [21] as the origin of
this understanding). The commuting problem seems to be involved also in the
understanding of coherence of [17, Section 10].

Completeness and decidability, though distinct, are not foreign to each other. A
completeness proof with respect to a manageable model may provide, more or less
immediately, tools to solve decision problems. For example, the completeness proof

6



BICARTESIAN COHERENCE REVISITED 7

for the classical propositional calculus with respect to the two-element Boolean
algebra provides immediately a decision procedure for theoremhood.

The simplest coherence questions are those where it is intended that all arrows of
the same type should be equal, i.e. where the category envisaged is a preorder. The
oldest coherence problem is of that kind. This problem has to do with monoidal
categories, and was solved by Mac Lane in {23]. The monoidal category [reely
generated by a set of objects is a preorder. So Mac Lane could claim that showing
coherence is showing that “all diagrams commute”.

In cases where coherence amounts to showing preorder, i.e. showing that frorn
a given set of equations, assumed as axioms, we can derive all equations (provided
the equated terms are of the same type), from a logical point of view we have to
do with aziomatizebility. We want to show that a decidable set of axioms (and
we wish this set to be as simple as possible, preferably given by a finite number
of axiom schemata) delivers all the intended equations. If preorder is intended,
then all equations are intended. Axiomatizability is in general connected with
logical questions of completeness, and a standard logical notion of completeness is
completeness of a get of axioms. Where all diagrams should commute, coherence
does not seem to be a question of model-theoretical completeness, but even in such
cases it may be conceived that the model involved is a discrete category.

Categorists are interested in axiomatizations that permit extensions. These ex-
tensions are in a new language, with new axioms, and such extensions of the axioms
of monoidal categories need not yield preorders any more. Categorists are also in-
terested, when they look for axiomatizations, in finding the combinatoriat building
blocks of the matter. The axioms are such building blocks, as in knot theory the
Reidemeister moves are the combinaterial building blocks of knot and link equiva-
lence (see [3, Chapter 1], or any other textbook in knot theory).

Tn Mac Lane’s second coherence result of [23], which has to do with symmetric
monoidal categories, it is not intended that all equations between arrcws of the
same type should hold. What Mac Lane does can be described in logical terms
in the following manner. On the one hand, he has an axiomatization, and, on
the other hand, he has a model category where arrows are permutations; then he
shows that his axiomatization is complete with respect to this model. It is no
wonder that his coherence problem reduces to the completeness problem for the
usual axiomatization of symmetric groups.

Algebraists do not speak of axiomatizations, but of presentations by generators
and relations. The axiomatizations we envisage are purely equational axiomatiza-
tions, as in algebraic varieties. Such were the axiomatizations of [23]. Categories
are algebras with partial operations, and we are interested in the equational theories
of these algebras.

In Mac Lane’s coherence results for monoidal and syrmametric monoidal categories
one has to deal only with natural isomorphisms. However, in the coherence result
for symmetric monoidal closed categories of [19] there are already natural and
dinatural transformations that are not isomorphisms.

A natural transformation is tied to a relation between the argument-places of
the functor in the source and the argument-places of the functor in the target. This



8 KOSTA DOSEN AND ZORAN PETRIC

relation corresponds to a relation between occurrences of letters in formulae, and
in composing natural transformations we compose these relations. With dinatural
transformations the matter is more complicated, and composition poses particular
problems (see [24]). In this paper we deal with natural transformations. Our general
notion of coherence does not, however, presuppose naturality and dinaturality.

Our notion of a coherence result is one that covers Mac Lane’s and Kelly’s
coherence results mentioned above, but it is more general. We call coherence a
result that tells us that there is a faithful functor G from a category & freely
generated in a certain class of categories to a “manageable” category M. This calls
for some explanation.

It is desirable, though perhaps not absolutely necessary, that the functor G
be structure-preserving, which means that it preserves structure at least up to
isomorphism. In all coherence results we will consider here, the functor G will
preserve structure strictly, i.e. “on the nose”. The categories & and M will be in
the same class of categories, and G will be obtained by extending in a unique way
a‘map from the generators of § into M.

The category M is manegeable when equations of arrows, i.e. commuting dia-
grams of arrows, are easier to consider in it than in &. The best is if the commuting
problem is obviously decidable in A, while it was not obvious that it is such in S.

With our approach to coherence we are oriented towards solving the commuting
problem. This should be stressed because other authors may give a more prominent
place to other problems. We have used on purpose the not very precise term
“manageable” for the category M to leave room for modifications of our notion
of coherence, which would be oriented towards solving another problem than the
comuuting problem.

In this paper, the manageable category M will be the category Rel with arrows
being relations between occurrences of letters in formulae. In [14] and elsewhere we
have taken Rel to be the category of relations between finite ordinals, which is not
essentially different from what we do in this paper. The previous category Rel is the
skeleton of the new one. We have mentioned above the connection between Rel and
natural transformations. The commuting problem in Rel is obviously decidable.

The freely generated category & will be the hicartesian category, i.e. category
with all finite products and coproducts, freely generated by a set of objects, or
a related category of that kind. The generating set of cbjects may be conceived
as a discrete category. In our understanding of coherence, replacing this discrete
generating category by an arbitrary category would prevent us to solve coherence—
simply because the commuting problem in the arbitrary generating category may
be undecidable. Far from having more general, stronger, results if the generating
category is arbitrary, we may end up by having no result at all.

The categories & in this paper are built ultimately out of syntacéic material, as
logical systems are buiit. Categorists are not inclined to formulate their coherence
results in the way we do—in particular, thev do not deal often with syntactically
built categories. If, however, more involved and more abstract formulations of
coherence that may be found in the literature {for early references on this matter



BICARTESIAN COHERENCE REVISITED 9

see [18]) have practical consequences for solving the commuting problem, our way
of formulating coherence has these consequences as well.

That there is a faithful structure-preserving functor &G from the syntactical cate-
gory & to the manageable category M means that for all arrows f and g of & with
the same source and the same farget we have

f=ginS iff &f =Ggin M.

The direction from left to right in this equivalence is contained in the functoriality
of G, while the direction from right to left is faithfulness proper.

If & is conceived as a syntactical system, while M is a model, the faithfulness
equivalence we have just stated is like a completeness result in logic. The left-to-
right direction, i.e. functoriality, is soundness, while the right-to-left direction, i.e.
faithfulness, is completeness proper.

If G happens to be one-one on chjects, then we obtain that § is isomorphic to a
subcategory of M—narnely, its image under G in M. We will have such a situation
in this paper, where & will be identity on objects.

In this paper we will separate coherence results involving terminal objects and
mitial objects from those not involving them. These objects cause difliculties, and
the statements and proofs of the coherence results gain by having these difficutties
kept apart.

2. Coherence and proof theory

If one envisages a deductive system as a graph whose nodes are formulae:

l

T CA(C — A)

ANA

O

and whose arrows are derivations from the sources understood as premises to the
targets understood as conclusions, then equality of derivations usually transforins
this deductive system into a category of a particular brand. This category has a
structure induced by the connectives of the deductive system. Although equality
of derivation is dictated by logical concerns, usually the categories we end up with
are of a kind that categorists have already introduced for their own reasons. The
prime example here is given by the deductive system for the conjunction-implication
fragment of intuitionistic propositional logic. After derivations in this deductive
system are equated according to ideas about normalization of derivations that stem
from Gentzen, one obtains the cartesian closed category K freely generated by a
set, of propositional letters (see [22] for the notion of cartesian closed category).




i0 KOSTA DOSEN AND ZORAN PETRIC

Equality of proofs in intuitionistic logic has not led up to now to a coherence
result—a coherence theorem is not forthcoming for cartesian closed categories. If
we take that the model category M is a category whose arrows are graphs like the
graphs of [19], then we do not have a faithful functor G from the free cartesian
closed category K to M. We will now explain why G is not even a functor.

If n, 4 is the canonical arrow from g to p — (pAg), where A — B and AA B
stand for B4 and A x B respectively, while 14 is the diagonal arrow from A to
AN A, then G('tflp__,(pf\q) ° T]p’q):

which is obtained from

po

Gip.q
Po>(PAY)

/%&\ Gps(prq)

(Pp=>(pnrg))A(pP=2({(PAg))

is different from G((9p,q A p,q) 0 Wyq):

N

(p% pAQ)}A(p%(pAq))

which is obtained from

q
/ \ . Gbg
a4 A g
G{Mp,q N p,g)
(p=2(pAg)y)A(P2(DPAG))
So, if w is a natural transformation, then & is not a functor. The naturality of
a1, and other arrows of that kind, tied to structural rules (i is tied to contraction,

and & below to thinning), is desirable because it corresponds to the permuting of
these rules in a cut-elimination or normalization procedure.



BICARTESIAN COHERENCE REVISITED 11

Dually, if £, , is the canonical arrow from p A (p — ¢) to g, and ’?9,14,3 is the first
projection from A A B to A, then G(.@:}“,q o1, Aepy)):

rA(PA{PT) )

./

which is obtained from

G(1r Aepg)
roAan g
\ Gkl,
"

N . » l .
18 different from Gkr}p/\(p_}q).

TA(PA(P—=q))

T

So, if k! is a natural transformation, then G is not a functor. The faithfulness of G
fails because of a counterexample in [27], involving a natural number object in Set
and the successor function. This does not exclude that with a more sophisticated
model category M we might still be able to obtain coherence for cartesian closed
categories (for an attempt along these lines see [25]).

Equality of proofs in classical logic may, however, lead to coherence with respect
to model categories that catch up to a point the idea of generality of proofs. Such
is in particular the category el mentioned in the preceding section, whose arrows
are relations between occurrences of propositional letters in the premises and con-
clusions. The idea that generality of proofs may serve as a criterion for identity of
proofs stems frem Lambek’s pioneering papers in categorial proof theory of the late
19605 (see [22] for references). This criterion says, roughly, that two derivations
represent the same proof when their generalizations with respect to diversification
of variables (without changing the rules of inference) produce derivations with the
same source and target, up to a renaming of variables.

Although coherence with respect to Rel is related to generality, it is not exactly
that. The questicn is should Gy be the relation in the left one or in the right one
of the following two diagrams:



12 KOSTA DOSEN AND ZORAN PETRIC

NA

The second option, induced by dealing with equivalence relations, or by connecting
all letters that must remain the same in generalizing proofs (see [12] and [13]), would
lead to abolishing the naturality of @. Tor example, in the following instance of
the naturality equation for @

for &, being the unique arrow from the initial object L to p, we do not have that
Gy o &yp) is equal to G({kp A RplowL):

L ‘ L
Giip Gy
p LAL
/F\ G, Glip A Fip)
P AD P AD

We obtain similarly that & cannot be natural. '

It is shown in [14] that coherence with respect to the model category Rel could
justify plausibly equality of derivations in various systems of propositional logic,
including classical propesitional legic. The goal of that book was to explore the
limits of coherence with respect to the model category Rel. This does not exclude
that other coherence results may involve other model categories, and, in particular,
with a model category different from Hel, classical propasitionat logic may induce a
different notion of Boolean category than the one introduced in Chapter 14 of [14].
That notion of Boolean category was not motivated e priors, but was dictated by
coherence with respect to Rel. The definition of that notion was however not given
via coherence, but via an equational axiomatization. We take such definitions as
being proper axiomatic definitions.

We could easily define nonaxiomatically a notion of Boolean category with re-
spect to graphs of the Kelly-Mac Lane kind {see [19]). Equality of graphs would
dictate what arrows are equal. In this notion, conjunction would net be a product,
because the diagonal arrows and the projections would not make natural transfor- .
mations (see above), and, analogously, disjunction would not be a coproduct (cf. [14,
Section 14.3]) The resulting notion of Boolean category would not be trivial—the
freely generated categories of that kind would not be preorders—, but its non-
axiomatic definition would be trivial. There might exist a nontrivial equational
axiomatic definition of this notion. Finding such a definition is an open problem.

We are looking for nontrivial axiomatic definitions because such definitions give
information about the combinatorial building blocks of our notions, as Reidemeister
moves give information about the combinatorial building blocks of knot equivalence.
Our axiomatic equational definition of Boolean category in [14] is of the nontrivial,
combinatorially informative, kind. Coherence of these Boolean categories with
respect to Rel is a theorem, whose proof in {14] requires considerable effort.



BICARTESIAN COHERENCE REVISITED 13

Another analogous example is provided by the notion of monoidal category,
which was introduced in a not entirely axiomatic way, via coherence, by Bénabou
in {2], and in the axiomatic way, such as we favour, by Mac Lane in [23]. For
Bénabou, coherence is built into the definition, and for Mac Lane it is a theorem.
One could analogously define the theorems of classical propositional logic as being
the tautologies (this is done, for example, in [4, Sections 1.2-3]), in which case
completeness would not be a theorem, but would be built into the definition.

In this paper we prove coherence for categories that formalize equality of proofs
in classical and intuitionistic conjunctive-disjunctive logic without distribution of
conjunction over disjunction. This fragment of logic alse covers the additive con-
nectives of linear and other substructural logics (where distribution anyway should
not be assumed). When to this fragment we add the true and absurd proposi-
tional constants matters become more complicated, and we do not how to prove
unrestricted coherence in all cases.

3. -Lattice categories

In the remaining sections of this paper we deal with coherence with respect
to Rel for categories with a double cartesian structure, i.e. with finite products
and finite coproducts. We take this as a categorification of the notion of lattice.
As before, we distinguish cases with and without special objects, which are here
the empty product and the empty coproduct, i.e. the terminal and initial objects.
Categories with all finite products and coproducts, including the empty ones, are
usually called bicartesian categories (see [22]). Categories with all nonempty finite
products and coproducts are called latiice categories in [14]. The results presented
here are adapted from [9], [11], the revised version of [10] and |14, Chapter 9.

We pay particular attention to questions of maximality, i.e. to the impossibility
of extending our axioms without collapse into preorder, and hence triviality. This
maximality is a kind of syntactical completeness. (The sections on maximality
improve upon results reported in [9], [11] and [10], and are taken over from [14,
Chapter 9].)

Qur techniques are partly based on a composition elimination for conjunctive
logic, related to normalization in natural deduction, and on a simple composition
elimination for conjunctive-disjunctive logic, implicit in Gentzen’s cut elimination.

We define now the category L built out of syntactic material. The objects of the
category L are the formulae of the propositional language £, generated out of a set
of infinitely many propositional letters, for which we use p, ¢, r, .. ., sometimes with
indices, with the binary connectives A and V, for which we use ¢. For formulae we
use A, B, C, ..., sometimes with indices.

To define the arrows of L, we define first inductively a set of expressions called
the arrow terms of L. Every arrow term will have a fype, which is an ordered pair
of formulae of £L,. We write f: A+ B when the arrow term f is of type {4, B).
Here A is the source, and B the target of f. For arrow terms we use f, g, h,...,
sometimes with indices. Intuitively, the arrow term f is the code of a derivation



14 ' KOSTA DOSEN AND ZORAN PETRIC

of the conclusion B from the premise A (which explains why we write F instead of

—}. :
‘For all formulae A, B and C of £ the following primitive arrow terms:
la: AF A4,
Wa: AF ANA, wa: AVAFEA,

o, i AL ANAs kA, Ky 4 Aik ALV Ay, forie {1,2),

are arrow terms. (Intuitively, these are the axioms of our logic with the codes of
their trivial derivations.)
Next we have the following inductive clauses:
if f: AF B and g: B+ C are arrow terms,
then (ﬁ"p AF C is an arrow term;
if f1:A; % B; and fo: Ao b B are arrow terms,
then (f1¢ fa): A1 ¢ Az - By € By is an arrow term.

{Intuitively, the operations on arrow terms < and ¢ are codes of the rules of inference
of our logic.) This defines the arrow terms of L. As we do usually with formulae,
we will omit the outermost parentheses of arrow terms.

We stipulate first that all the instances of f = f and of the following equaticns
are equations of L: .

categorial equations:
{cat 1) fela=1gof=f:AF B,
(cat 2)  ho(gof)=(heg)e/f,
bifunctorial equations:
(¢ 1) 1aélp =lacp
(¢2) (e fi)e{gaofo) = {1 £g2)e (fré fo),
~ naturelity equations: for f: AF B and f;: A; & By, where 1 € {1,2},
{W nat) (fAflowa = dpef,
(@ nat)  fewa = wpe(fVf),
(k' nat)  fiokly, 4, = kb, g0 (F A F2),
(k* nat)  (AV f)oky, 0, = kb, 5,0 i

triongular equations: for i € {1,2},

(1wk) fch,f; ety = g,
(wk) waekly 4 =14,
(DkE) (kY 5 AKY p)e®ans = lans,
(wkk) WaAvE © (l}}{:B v 'i“,%;,B} =1avae.

This concludes the list of axiomatic equations stipulated for L. To define all the
equations of L it remains only to say that the set of these equations is closed under



BICARTESIAN COHERENCE REVISITED 15

symmetry and transitivity of equality and under the rules

f=Ff 9=g h=1 fa=f
(e cong) — (¢ cong) PR
gef=g-°f Hiefa=fieh

On the arrow terms of L we impose the equations of L. This means that an
arrow of L is an equivalence class of arrow terms of L defined with respect to the
smallest equivalence relation such that the equations of L are satisfied (see [14,
Section 2.3], for details).

The kind of category for which L is the one freely generated out of the set of
propositional letters (which may be understood as a discrete category) we call lattice
category (see [14, Section 9.4], for a precise definition). Usually, such categories
would be called categories with finite nonempty products and coproducts. The
objects of a lattice category that is a partial order make a lattice.

4. The functor G

The objects of the category Rel are the objects of L, i.e. the formulae of £. An
arrow R: AF B of Rel is a set of ordered pairs {z,y) such that z is an occurrence
of a propositicnal letter in the formula A and y is an occurrence of a propositional
letter in the formula B; in other words, arrows are binary relations between the
sets of occurrences of propositional letters in formulae. We write either (z,y) € R
or Ry, as usual. In this category, 14: A F A is the identity relation, i.e. identity
function, that assigns to every occurrence of a propositional letter in A that same
occeurrence. In £ there are no formulae in which ne propositional letter occurs,
but where we have such formulae (as in the language £ ) considered later in this
paper), the empty set of ordered pairs corresponds to 14: A F A if no propositional
letter occurs in A. The empty relation is the identity relation on the empty set.

For Ry : AF B and Ry : B - C, the set of ordered pairs of the comnposition
RyaRi: AF Cis {(z,y) | 3z{xR1z and 2R3y)}. Let z;(A4) be the j-th occurrence
of a propositional letter in A counting from the left, and let | 4| be the number of
occurrences of propositional letters in A (so 1 £ 5 < |4]). For Ry: A; F By, with
i € {1,2}, the set of ordered pairs of Ry ¢ Ra: A1 § Ax + B1 ¢ Ba, for ¢ € {A,V}, is
the disjoint union of the following two sets:

{(z;(A) € Aa),zx (B £ By)} | (ws(A1),22(By)) € Ru},

{(2j 414, (A1 € A), 254 15,(B1 € B2)) | (25(Az2), 4(B2)) € Ra}.

With the operation on ¢hjects that corresponds to the binary connective ¢, this

operation ¢ on arrows gives a biendofunctor in Rel. N
In Rel we have the relations Gia: AF AAA, Gia: AVAE A GEy 4,

Ay ANAz B A and Gi“ih,Ag A Ap v Ay, for 4 € {1,2}, whosé sets of ordered
pairs are defined as follows:

(z;(A), 2 (A A A)) € Giba iff (m1{AV A),3;(A)) € Guia iff j = k (mod |A});
(z;(AL A As),zr (A1) € ch}w,‘z if (zx(A1),2;(A1 V A)) € GEY, 4, iff j = k;



16 KOSTA DOSEN AND ZORAN PETRIC

(mj(_Al A Ag),?)k(A2)) € G];‘-.il,Ag iff {wk(Az), JZj(Al v Ag)) & GEI%[’A2 iff
_ ' §=k+|A
It is not difficult to check that all these arrows of Rel give rise to natural trans-
formations. This is clear from the graphical representation of relations in Rel. Here
are a few examples of such graphical representations, with sources written at the

top and targets at the bottom
(Prgivrp

(e A VM Ng)Vp)

(r vOAlg AP AT p /\(q v P)
ka\/q,(qr’\p \\ (qw}/\p pA(gVP)
VY (qu)Ap)V@A q¢Vvp)

For R: A - B, the naturality equation
(R/‘\R) cGwy = Guge R,

which corresponds to the equation (w nat) of the preceding section, and which we
take as an example, is justified in the following manner via graphs:

A ) ) A 3
B B B B

We can now define a functor & from the category L to the category Rel On
objects we have that GA is A. We have defined G above on the primitive arrow
terms of L, and we have

G(feg)=GfeGy,
Glgef)=Gg-Gf.
To ascertain that this defines a functor from L to Rel, it remains to check that if
f=gin L, then Gf = Gg in Rel, which we do by induction on the length of the
derivation of f = g in L.
It is easy to check by induction that if for f: A+ B we have (z;(4), 24 (B)) € GFf,
then x;(A) and zx(B) are occurrences of the same propositional letter.



BICARTESIAN COHERENCE REVISITED . 37

Our first task in this paper is to show that the functor G from L to Rel is faithful.
We call this result Lattice Coherence, and we say that L is coherent. Since G is
identity on ohjects, this means that L is isomorphic to a subcategory of Rel

It is clear that if L is coherent in the sense just specified, then it is decidable
whether arrow terms of L are equal in L. In logical terms, one would say that the
coherence of L implies the decidability of the equational system used to define L.
This is because equality of arrows is clearly decidable in Rel. So coherence here
implies a solution to the commuting problem.

5. Coherence for lattice categories

We define by induction a set of terms for the arrows of L that we call Gentzen
terrns. The identity arrow terms 14 are Gentzen terms, and we assume that
Gentzen terms are closed under the following operations on arrow terms, besides
the operation o, where =4, is read “denotes”:

fIZC}"Al fQZC*‘AQ
(f1, fa) =an (fi A fa)oto: C'F Ay A Ay

g,,:Az}‘C
Kia_égi =dn 9502:31,1422141 /\Ag O

gl:A1|_C g2:A2|_C
o gl =an doe (g vV ge) AV A EC

f'i: O F‘ Ai
KY,_fi=an kY, a,°fir CH ALV Ay

It is easy to verify that the following equations hold for Gentzen terms (these
equations can serve for an alternative formulation of L):

(K1) goKif =Ki(ge ), (K1) Kigef=Kilgef),

(K2)  Kigel{fi,f)=g°fi (K2) [91:92]°Kj1.f=gi°f,
(K3)  Agi,g)of={mefoof), (K3)  gelfi,fol=[9°f1,9°f,
(K4)  lanp=(Kjla, K3ils), (K4)  1avs =[KL14, K215,
(f(5) D(fl,f2) = (KD.flz sz) (K ) Izjij[glag.?] = [K,T:DQI:KEQQ]:

(KK) Kgﬁfj,gh = KLKiLh,
with appropriate types assigned to f, g, fi and g;.
It is very easy to show that for every arrow term of L there is a Gentzen term
denoting the same arrow. We can prove the following theorem for L. ‘

Composition Elimination. For every arrow term h there is a composition-free
(lentzen term h' such that h = h'.



18 KOSTA DOSEN AND ZORAN PETRIC

Proof. We find first a Gentzen term denoting the same arrow as h. Take a subterm
ge f of this Gentzen term such that both f and g are composition-free. We call
such a subterm a fopmost cut. We show that ge f is equal either to a composition-
free Gentzen term or to a Gentzen term all of whose compositions occur in topmost
cuts of strictly smaller length than the length of ge f. The possibility of eliminating
composition in topmost cuts, and hence every composition, follows by induction on
the length of topmost cuts.

The cases where f or g are 14 are taken care of by (cat 1); the cases where f is
I:fif’ are taken care of by (R’l); and the case where g is {41, 42} is taken care of
by (K3).

We have next cases dual to the last two, where g is K i g', which is taken care of
by (K1), and where f is [f1, f2], which is taken care of by (K3). In the remaining
cases, if fis {f1, f2}, then g is cither of a form already covered by cases above, or
gis K¢ 4g', and we apply (KQ) Finally, if f is K% f’, then g is either of a form
already covered by cases above, or g is g1, g2], and we apply {K2). .

Note that we use only the equations (K1)-(K'3) and (K1)-(K3) in this proof

{which is taken over from [11], Section 3). We can then prove the following lemma
for L.
Invertibility Lemma for A. Let f: Ay A Ay b B be a Gentzen term. If for every
(z,y) € Gf we have that z is in Ay, then f is equal to a Gentzen term of the form
f(}%f’, and if for every (z,y) € Gf we have that x is in Ay, then f is equol to o
Gentzen term of the form Kil .

Proof. By Composition Elimination for L, we can assume that f is composition-
free, and then we proceed by induction on the length of the target B (or on the
length of f). If B is a letter, then f must be equal in L to an arrow term of the

form K 4s_.f" The condition on G f dictates whether ¢ here is 1 or 2.

If Bis By A By and f is not of the form f(jlsqf’, then f must be of the form
{f1, f2} (the condition on Gf precludes that f be an identity arrow term). We
apply the inducﬂtion hypothesis to f1: A1 A Az - By and fa: A1 A A + By, and use
the equation {K'5).

If Bis By V By and f is not of the form Kig_‘,f’, then f must be of the form
f{gaﬂ_g, for j € {1,2}. We apply the induction hypothesis to g: A1 A A2 - By, and
use the following instance of the equation (K K):

}:‘{%S—J’Kis—fgl = Kﬁis—ikgsﬁgl' 5

We have a dual Invertibility Lemma for v. We can then prove the following
result of [11, Section 4}.

Lattice Coherence. The functor & from L to Rel is faithful.

Proof. Suppose f,g: A F B are arrow terms of L and Gf = Gg. We proceed by
induction on the sum of the lengths of 4 and B to show that f = ¢gin L. If A
and B are both letters, then we conclude by Composition Elimination for L that



BICARTESIAN CCHERENCE REVISITED 19

an arrow term of L of the type A + B exists iff A and B are the same letter p, and
we must have f =~ g = 1, in L. Note that we do not need here the assumption
Gf =0y X

If B is By A By, then for 1 € {1,2} we have that fc}gth o f and kg og are of
type A F B;. We also have

Glks, g, ) = Gk, p,°Gf = Gk, p,° Gy = G(ks, g, 9),

whence, by the induction hypothesis, we have '%581,82 of = fciBhB2 egin L. Then
we infer

(’AC}E;[,BQ o f, ’51291,32 o f) = (’%,191,32 ° 9:75231,32 °g),

from which f = ¢ follows with the help of the equations (K3) and (K4). We
proceed analogously if A is Ay vV As.

Suppose now that A is 4; A As or a letter, and B is By vV Bz or a letter, but 4
and B are not both letters. Then by Composition Elimination for L we have that
f is equal in L to an arrow term of L that is either of the form f'o fcf_.ih A, or of
the form .Z:thBz o f'. Suppose f = flo'%zl"q,AQ‘ Then for every {(z,y) € Gf we have
e GAl

By the Invertibility Lemma for A, it follows that ¢ is equal in L to an arrow
term of the form g }%}-‘11,442' From G f = Gg we can infer easily that Gf' = Gy¢',
and so by the induction hypothesis f' = ¢’, and hence f = g.

We reason analogously when f — f's fcihm. ¥f= fcfél!B:, o f', then again we
reason analogously, applying the Invertibility Lemma for v. -

This proof of Lattice Coherence is ssmpler than a proof given in (11}, In the course
of that previous proof one has also coherence results for two auxiliary categories
related to L. We will need these categories later, but we do not need these coherence’
results. For the sake of completeness, however, we record them here too.

Let Ly be the category defined as L with the difference that the primitive arrow
terms % and & are excluded, as well as the equations involving them. The Gentzen
formulation of i,v is obtained by taking the operation V on arrow terms instead of
the operations [, ] and K.

The category La is isomorphic to LY. In L, the A and V of Ly are inter-
changed.

One can easily prove Composition Elimination for Ly (and hence also for Lix)
by abbreviating the proof of Composition Elimination for L above. For Ly we do
not have the cases where f is [fy, fa] or f{ﬁf‘, but f can be fi V fa. Then, if g is
not of a form already covered by the proof above, it must be g; V g2, and we apply
the bifunctorial equation (Vv 2).

A composition-free arrow term of Ly may be reduced to a unique normal form,
which can then be used to demonstrate coherence for f_.v, i.e. the fact that the
fanctor G from Ly to Rel is faithful (see [11, Section 4]).



20 KOSTA DOSEN AND ZORAN PETRIC

6. Coherence for sesquicartesian categories

We define now the category Lt i, whose definition extends the definition of L
with the terminal object T and the initial object L, i.e. nullary product and coprod-
uct. The objects of this category are the formulae of the propositional language
L1, 1, generated out of a set of infinitely many propositional letters with the binary
connectives A and V, and the nullary connectives, i.e. propositional constants, T
and L.

The arrow terms of Lt are defined as the arrow terms of L save that for every
object A we have the additional primitive arrow terms

RatAFT, BarLFA,

and for all arrow terms f: AF T and g: L - A we have the additional axiomatic
equations

(k) ka= 1, ()  Ra=g,

(kL) kY, =k ., (kT) Fry =k

It is easy to see that with the help of the last two equations we obtain that the

pairs

By o= B2 cLAtFL and Ria o=@y :LiFLAL,

By = B2 THTVT and Aryr = @7:TVTET
are inverses of each other. This shows that every letterless formula of L1 1 is
isomorphic in Lt | either to T or to L.

The kind of category for which L, is the one freely generated out of the set
of propositional letters we call dicartesian category. The objects of a dicartesian
category that is a partial order make a lattice with top and bottom.

By omitting the equations (kL) and (ET)"in the definition of Ly, we would
obtain the bicartesian category freely generated by the set of propositional let-
ters (cf. [22, Section 1.8]). Dicartesian categories were considered under the name
coherent bicartesian categories in the printed version of [10).

We previously believed wrongly that we have proved coherence for dicartesian,
alias coherent bicartesian, categories. Lemma 5.1 of the printed version of [10)] is
however not correct. We prove here only a restricted coherence result for dicartesian
categories. A study of equality of arrows in bicartesian categories may be found in
(5]

Suppose that in the definition of Ly | we omit one of T and L from the lan-
guage, and we omit all the arrow terms and equations involving the omitted nullary
connective. When we omit T, we obtain the category L., and when we omit L,
we obtain the category L. It is clear that L is isomorphic to L"Tp. In the printed
version of [10] the categaories for which L is the one freely generated by the set of
propositional letters were called coherent sesquicartesian categories. We call them
now just sesquicariesian categories.

The category Set, whose objects are sets and whose arrows are functions, with
cartesian product x as A, disjoint union + as V, a singleton set {+} as T and the
empty set § as L, is a bicartesian category, but not a dicartesian category. It is,



BICARTESIAN COHERENCE REVISITED 21

however, a sesquicartesian category in the L sense, but not in the L+ sense. This
is because in Set we have that @ x @ is equal to @, but {*} + {*} is not isomorphic
to {x}.

To define the functor G from Lt o to Rel we assume that the objects of Rel are
the formulae of L+ 1. Everything else in the definition of Rel remains unchanged;
in particular, the arrows are sets of ordered pairs of occurrences of propositional
letters (no propositional constant is involved). In the definition of the functor &
we stipulate that for G&4 and (&4 we have the empiy set of ordered pairs. This
serves also for the definition of the functors G from L and L+ to Rel

We can establish unrestricied coherence for sesquicartesian categories, with a
proof taken over from the revised version of [10], which we will present below.
(This proof differs from the proof in the printed version of [10], which relied also
on Lemma 5.1, and is not correct.) It is obtaired by enlarging the proof of Lattice
Coherence.

The Gentzen formulation of Lt 3 is obtained like that of L save that we have
in addition the primitive Gentzen terms 4: AF T and £4: L 4. For Gentzen
terms we have as additional equations, besides (%) and (£), the following equations:

(K L) Kl1,=K%1,,
(KT) Ki1:= K21+,

which amount to (k1) and (ET).

We can prove Composition Elimination for Lt i by enlarging the proof for L.
We have as new cases first those where f is k4 or g is k4, which are taken care of
by the equations (%) and (&). The following case remains. If f is #4, then g is of a
form covered by cases already dealt with. Note that we do not need the equations
(K 1) and (KT) for this proof (so that we have also Composition Elimination for
the free bicartesian category).

Let the category ]A;\,QT, 1 be defined like the category f_.v save that it involves
also & and the equations (&) and (ch_) and let the category f..,\ 1,1 be defined
like the category L. save that it involves also £ and the equations (%) and (kT).
Composition Elimination is provable for L. .T,L and L,\ T, by abbreviating the
proof of Composition Elimination for L+ (, in the same way as we abbreviated the
proof of Composition Elimination for L in order to obtain Composition Elimination
for Lv

An arrow term of Ly 1 is in standard form when it is of the form go f for f
an arrow term LV T, and g an arrow term of L,\ T,0- We can then prove the
following.

Standard-Form Lemma. Every arrow term of Lt 1 is equal in Lt | to an arrow
term in stondard form.

Proof. By categorial and bifunctorial equations, we may assume that we deal with
a factorized arrow term f none of whose factors is a complex identity (i.e., f is a big
composition of composition-free arrow terms none of which is equal to an identity
arrow; see [14, Sections 2.6-7], for precise definitions of these notions) and every



22 KOSTA DOSEN AND ZORAN PETRIG

factor of f is either an arrow term of i;v’-m_, and then we call it a A-factor, or an
arrow term of L,\,T,_L, when we call it a V-factor.

Suppose f: B F €' is a A-factor and g: A + B is a V-factor. We show by
induction on the length of fog that in Ly ;

(#) feg=g'ef or feg=f o feg=yg
for f' a A-factor and g’ a V-factor.

We will consider various cases for f. In all such cases, if g is wg, then we use
(w nat). If f is wg, then we use (W nat). If fis fc}'),E and ¢ is g1 A g2, then we
use (fc1 nat). If fis fi A fy and g is g1 A g2, then we use bifunctorial and categorial
equations and the induction hypothesis.

If fis f1 V fa, then we have the following cases. If g is .’vchth, then we use
(k* nat). If g is g1 V g2, then we use bifunctorial and categorial equations and the
induction hypothesis.

Finally, cases where f is g or g is &g are taken care of by the equations (&) and
(£). This proves (), and it is clear that (%) is sullicient to prove the lemma. .

We can also prove Composition Elimination and an analogue of the Standard-
Form Lemma for L . Next we have the following lemmata for L+ | and L, .

Lemmma 1. If for f,9: AF B either A or B is isomorphic to T or L, then f = g.

Proof. If A is isomorphic to L or B is isomorphic to T, then the matter is trivial.
Suppose ¢: B+ L is an isomorphism. Then from

ki e(iofiiog)= kY oficficg)

weobtainie f = e g, which yields f = g. We proceed analogously if A is isomorphic
to T. 4

Lemma 2. If for f,g: A+ B we have Gf = Gg=10, then f = g.

Proof. This proof depends on the Standard-Form Lemma above. We write down
[ in the standard form fae f) for f;: A F C and ¢ in the standard form gso g
for g1 : A F D. Since k% and % do not occur in fi, for every occurrence z of a
propositional letter in € we have an occurrence z of that propositional letter in A
such that (x, z) € Gf1, and since k* and & do not occur in f2, for every occurrence
z of a propositional letter in C" we have an occurrence y of that propositional letter
in B such that {z,y) € Gfs. So if C were not letterless, then Gf would not be
empty. We conclude analogously that D, as well as £, is a letterless formula.

If both ¢ and 1) are isomorphic to T or L, then we have an isomorphism 1 :
CFD,and f= fyei~teio fi. By Lemma 1, we haveio fi = g; and faoi~! = go,
from which f = g follows. If4: ¢ F L and j7: T F D are isomorphisms, then by
Lemma 1 we have

facfi=gnejehieie fi = g2°0,
and so f = g. (Note that &£, = &v.) -



BICARTESIAN COHERENCE REVISITED 23

We can then prove the following.
Sesquicartesian Coherence. The funcior G from L) to Rel is faithful.

Proof. We have Lemma. 2 for the case when Gf = Gg=0. When Gf = Gg # §, we
proceed as in the proof of Lattice Coherence, appealing if need there is to Lemma 2,
until we reach the case when 4 is A; A A5 or a letter, and B is By V B, or a letter,
but 4 and B are not both letters. In that case, by Composition Elimination, the
arrow term f 1s equal in L either to an arrow term of the form f'o '%ffh,Aw or to

an arrow term of the form fzfgh g, °f'- Suppose f = f' °'?“,14,, 4,- Then for every
(z,y) € Gf we have that z is in A,. {We reason analogously when f = f'e kil’Az.)

By Composition Elimination too, g is equal in L either to an arrow term of
the form g'e kY 4, or to an arrow term of the form k% 5 g In the first case

we must have g = 9f°'%}41,A2= because Gg = G(ff°‘%i1,A2) # §, and then we apply
the induction hypothesis to derive f' = ¢’ from Gf' = Gg'. Hence f =gin L.

Suppose g = kp g, °g’. (We reason analogously when g = k% p °g') Let
7" A1 By v BY be the substitution instance of f': 4, F B) V By obtained by re-
placing every occurrence of propositional letter in By hy L. There is an isomorphism
i: BY F 1, and f" exists because in Gf, which is equal to G(k‘le,-,Bg o g"}, there is
no pair (z,y) with y in B;. So we have an arrow f': 4; b By, which we define as
[15,, %8B, (1, Vi)o f" It is easy to verify that G{kp, p, o f") = Gf’, and that
G(f”’o.%fq}}Az) = (7g’. By the induction hypothesis, we obtain égh&c’f”’ = f
and f" okl , =g', from which we derive f =g. We reason analogously when
f= kg p,of" -

From Sesquicartesian Coherence we infer coherence for Lv, which is isomorphic
to LY.

7. Restricted coherence for dicartesian categories

For dicartesian categories we can prove easily a simple restricted coherence result,
which was sufficient for the needs of [14]. A more general, but still restricted,
coherence result with respect to Rel, falling short of full coherence, may be found
in the revised version of [L0, Section 7]. We present first the simple restricted
coherence result, and will deal with the more general restricted coherence result
later on.

We define inductively formulae of £+ | in disjunctive normal form (dnf ): every
y-free formula is in dnf, and if A and B are both in dnf, then AV B is in dnf
We define dually formulae of £1 1 in conjunctive normal form (enf ). every A-free
formula is in ¢nf, and if A and B are both in enf, then A A B isin cnf.

Restricted Dicartesian Coherence. Lef f,g: A B be arrow terms of Lt 1
such that 4 isindnf end B incof. If Gf =Gy, then f =g in L~ L.

Proof. If Gf = Gg =0, then we apply Lemma 2. If Gf = Gg # I, then we proceed
as in the proof of Lattice Coherence, by induction on the sum of the lengths of A
and B, appealing if need there is to Lemma 2, until we reach the case when A is



24 KOSTA DOSEN AND ZORAN PETRIC

Ay A Ay or aletter, and B is By Vv B or a letter, but A and B are not both letters.
In that case there is no occurrence of V in A and no occurrence of A in B. We
then rely on the composition-free form of f and g in L7 | and on the equation

(RE) | :

To improve upon this result we need the following lemma for Lt ,, and the
definitions that follow. This lemma is analogous up to a point to the Invertibility
Lemma, for V.

Lemma 3. Let f: A+ BV By be a Gentzen term such that Gf # 0 and V does
not occur in A If for every (z,y) € Gf we have that y is in By, then there is a
Gentzen term g - A& By such that Gf = GKp g.

Proof. We proceed by induction on the length of A. Suppose f is a composition-
free Gentzen term. If A is a propositional letter, then by the assumption on G f we
have that f is of the form I'{}BZ FJ', and we can take that ¢ is f'.

If A is not a propositional letter and f is not of the form f(}g? f" {by the assump-
tion on G'f, the Gentzen term f cannot be of the form I'(?Bl f'), then, since V does

not occur in A, we have that f is of the form Ki,,f’ for f': A"+ By Vv Bs. Note
that Gf' # @ and v does not occur in A’. Since for every (z,y) in G f' we have that
y is in By, we may apply the induction hypothesis to f’ and obtain ¢': A" F By
such that Gf' = Gf(éz g'. By relying on the equation (K K), we can take that g is

Kiug'- 4

A formula C of L7} is called a confradiction when there is in Lt ;1 an arrow of
the type C + L. For every formula that is not a contradiction there is a substitution
instance isomorphic to T. Suppose C is not a contradiction, and let C7 be obtained
from C by substituting T for every propositional letter. If C'T were not isomorphic
to T, then since every letterless formula of £t ) is isomorphic in Lt | either to
T or to L, we would have an isomorphism i : 7 - L. Since there is obviously an
arrow 1 : C'+ €7 formed by using fkp, we would have iew : O'F L, and C would be
a contradiction. '

A formula C' of £+ | is called a teutology when there is in L+ | an arrow of
the type T F . For every formula that is not a tautology there is a substitution
instance isomorphic to L. (This is shown analogously to what we had in the
preceding paragraph.)

A formula of £ 1 is called L-normal when for every subformula DAC or CAD
of it with C a contradiction, there is no occurrence of V in I, A formula of L1 is
called T-normal when for every subformula Dv C or OV D of it with C a tautology,
there is no occurrence of A in D.

We can now formulate our second partial coherence result for dicartesian cate-
gories.

Restricted Dicartesian Coherence IL If f,g: A+ B are terms of Lt ) such
thet Gf = Gg and either A is L-normal or B is T-normal, then f = g in L1 .



BICARTESIAN COHERENCE REVISITED 25

Proof. Suppose A is L-normal. Lemma 2 covers the case when Gf = Gg = . So
we assume G f = Gg # 0, and proceed as in the proof of Sesquicartesian Coherence
by induction on the sum of the lengths of A and B. The basis of this induction and
the cases when A is of the form A4; vV As or B is of the form By A By are settled as
in the proof of Sesquicartesian Coherence.

Suppase A is A3 A 4, or a propositional letter and B is By V B2 or a proposi-
tional letter, but A and B are not both propositional letters. (The cases when A
or B is a constant object are excluded by the assumption that Gf = Gg # 0.) We
proceed then as in the proof of Sesquicartesian Coherence until we reach the case
when f = fok} . andg=1Fk} 5 og'"

Suppose Aj is not a contradiction. Then there is an instance 4] of A, and an
isomorphism i : T - A, . (To obtain 4] we substitute T for every letter in A4;.)
Let g" : A; A A] F By be the substitution instance of g’ : 4; A A, F By obtained
by replacing every occurrence of propositional letter in As by T. Such a term exists
because in (g, which is equal to G{f' o 15341'142), there is no pair (z,y) with z in As.

So we havevan arrow g = g e (14, A i)o(lAL,fcm) A b By Tt is easy to
verify that G(ky, gz,°9¢") = Gf' and that G(g"' o k), ,,) = Gg'. By the induction
hypothesis we obtain kg eg¢” = f' and g™ ok} , =g, from which we derive
f=g9

Suppose As is a contradiction. Then by the assumption that A is 1-normal we
have that V does not occur in A;. We may apply Lemma 3 to f': 4 F By V By
to obtain f'' : A; + B such that Gf' = G(leL,Bg o f"Y. It is easy to verify that

then Gg' = G{f" - fcihAz), and we may proceed as in the proof of Sesquicartesian
Coherence.

We proceed analogously when B is T-normal, relying on a lemma dual to
Lemma 3. 4

Consider the following definitions:
AS=Anl, AT'=(ATVTIAL,
Y=FAly, T =(fEVITIALL
A%=AVT, AMI=(AZAL)VT,
fE=fviy, frl=(faal1)viy.
Then for f™ being
(kar AL o kignrye o s AT F ATH
and g” being
E{IAVT}'JL_,T okl vyt ATT R AT
we have Gf™ = Gg", but we suppose that f™ = ¢™ does not hold in Lt ;. The
equation f = ¢% is
(Rl r ALV I okbynyyr = Blavmarre (Bl VIT) ALy
(AAL)VTIALF((AVTIAL)VT.



26 KOSTA DOSEN AND ZORAN PETRIC

Note that A% is not L-normal, and A% is not T-normal.

‘We don’t know whether it is sufficient to add to Lt ) the equations f* = g" for
every n 2 0 in order to obtain full coherence for the resulting category.

As a corollary of Restricted Dicartesian Coherence IT, we obtain that if f,g: AF B
are terms of L+, such that Gf = Gg, while A and B are isomorphic either to for-
mulae of £ (i.e. to formulae in which T and L do not occur) or to letterless formulae,
then f = ¢ in Lt . This corollary is analogous to the restricted coherence result
for symmetric monoidal closed categories of Kelly and Mac Lane in [19] (see [15,
Section 3.1]).

8. Maximality

A syntactically built category such as L and L, is called mazimal when adding
any new axiomatic equation between arrow terms of this category yields a category
that is a preorder. The new axiomatic equation is supposed to be closed under
substitution for propositional letters, as the equations of L and Ly ; were. (This
notion of maximality for syntactical categories is defined more precisely in [14,
Section 9.3].) Maximality is an interesting property when the initial category, like
L and Lty here, is not itself a preorder. We will deal in subsequent sections with
maximality for I and Ly 4.

The maximality property above is analogous to the property of usual formu-
lations of the classical propositicnal calculus called Peost completeness. That this
calculus is Post complete means that if we add to it any new axiom-schema in
the language of the calculus, then we can prove every formula. An analogue of
Bohm’s Theorem in the typed lambda calculus implies, similarly, that the typed
lambda calculus cannot be extended without falling into triviality, i.e. without ev-
ery equation (between terms of the same type} becoming derivable (see [26], [8]
and references therein; see [1, Section 10.4], for Béhm’s Theorem in the untyped
lambda calculus).

Let us now consider several examples of common algebraic structures with anal-
ogous maximality properties. First, we have that semilattices are maximal in the
following sense.

Let @ and b be terms made exclusively of variables and of a binary operation -,
which we interpret as meet or join. That the equation ¢ = & holds in a semilattice
S means that every instance of @ = b obtained by substituting names of elements
of S for variables holds in §. Suppose a = b does not hold in a free semilattice
Sr (s0 it is not the case that a = b holds in every semilattice). Hence there must
be an instance of o = b obtained by substituting names of elements of g for
variables such that this instance does not hold in Sp. Tt is easy to conclude that
in a = b there must be at least two variables, and that Sp must have at least two
free generators. Then every semilattice in which a = b holds is trivial—namely, it
has a single element. )

Here is a short proof of that. If a = b does not hold in Sg, then there must
be a variable z in one of a and b that is not in the other. Then from a = b, by
substituting y for every variable in a and b different from 2z, and by applying the



BICARTESIAN COHERENCE REVISITED 27

semilattice equations, we infer either z = y or z -y = y. If we have z = y, we are
done, and, if we have x -y =y, then we have also y - ¢ = z, and hence z = y.

Semilattices with unit, distributive lattices, distributive lattices with top and
bottom, and Boolean algebras are maximal in the same sense. The equations a = &
in guestion are equations between terms made exclusively of variables and the
operations of the kind of algebra we envisage: semilattices with unit, distributive
lattices, etc. That such an equation holds in a particular structure means, as above,
that every substitution instance of it holds. However, the number of variables in
a = b and the number of generators of the free structure mentioned need not always
be at least two.

If we deal with semilattices with unit 1, then a = b must have at least one
variable, and the free semilattice with unit must have at least one free generator.
We substitute 1 for every variable in ¢ and b different from z in order to obtain
z = 1, and hence triviality. So semilattices with unit are maximal in the same
sernse.

The same sort of maximality can be proven for distributive lattices, whose oper-
ations are A and Vv, which we call conjunction and disjunction, respectively. Then
every term made of A, v and variables is equal to a term in disjunctive normal
form (i.e. a multiple disjunction of multiple conjunctions of variables; see the pre-
ceding section for a precise definition), and to a term in conjunctive normal form
(i.e. a multiple conjunction of multiple disjunctions of variables; see the preceding
section). These normal forms are not unique. If @ = b, in which we must have at
least two variables, does not hold in a free distributive lattice D with at least two
free generators, then either a € b or b £ a does not hold in Dp. Suppose ¢ < b
does not hold in Dp. Let o' be a disjunctive normal form of a, and let & be a
conjunctive normal form of b. So a’ € ¥ does not hold in Dp. From that we infer
that for a disjunct a"” of &' and for a conjunct b of b' we do not have o £ 8" in
Dg. This means that there is no variable in common in a” and #”; otherwise, the
conjunction of variables o would be lesser than or equal in Dp to the disjunction
of variables b”. If in & distributive lattice @ = b holds, then a'" < " holds too, and
hence, by substitution, we obtain z € y. So z = y.

For distributive lattices with top T and bottom 1, we proceed analogously via
disjunctive and conjunctive normal form. Here ¢ = b may be even without variables,
and the free structure may have even an empty set of free generators. The additional
cases to consider are when in o € b we have that & is T and 6" s L. In any
case, we obtain T « 1, and hence our structure is trivial.

The same sort of maximality can be proven for Boolean algebras, i.e. comple-
mented distributive lattices. Boolean algebras must have top and bottom. In a
disjunctive normal form now the disjuncts are conjunctions of variables z or terms
Z, where "~ is complementation, or the disjunctive normal form is just T or L;
analogously for conjunctive normal forms. Then we proceed as for distributive lat-
tices with an equation a = b that may be even without variables, until we reach
that a” < ¥, which does not hold in a free Boolean algebra Br, whose set of free
generators may be even empty, holds in our Boolean algebra. If z is a conjunct of
a”, then in §"" we cannot have a disjunct z; but we may have a disjunct . The same



28 KOSTA DOSEN AND ZORAN PETRIC

holds for the conjuncts Z of a”. It is excluded that both z and Z are conjuncts
of &”, or disjuncts of b"; otherwise, o” < ¥ would hold in Br. Then for every
conjunct z in ¢" and every disjunct § in 8" we substitute T for £ and y, and for
every other variable we substitute L. In any case, we obtain T £ 1, and hence our
Boolean algebra is trivial. This is essentially the proof of Post completeness for the
classical propositional calculus, due to Bernays and Hilbert (see [28, Section 2.4],
and [16, Section L.13]), from which we can infer the ordinary completeness of this
calculus with respect to valuations in the two-element Boolean algebra—mnamely,
with respect to truth tabies—and also completeness with respect to any nontrivial
model.

As examples of common algebraic structures that are not maximal in the sense
above, we have semigroups, commutative semigroups, lattices, and many others.
‘What is maximal for semilattices and is not maximal for lattices is the equational
theory of the structures in question. The equational theory of semilattices cannot
be extended without falling into triviality, while the equational theory of lattices
can be extended with the distributive law, for example.

The notions of maximality envisaged in this section were extreme (or should
we say “maximal”), in the sense that we envisaged collapsing only into preorder.
For semilattices, distributive lattices, etc., this is also preorder for a one-object
category. We may, however, envisage relativizing cur notion of maximality by
replacing preorder with a weaker property, such that structures possessing it are
trivial, but not so trivial {cf. [7, Section 4.11]). We will encounter maximality in
such a relative sense in the last section.

As an example of relative maximality in a common algebraic structure we can
take symmetric groups. Consider the standard axioms for the symmetric group
&Sn, where n 2 2, with the generators s;, for ¢ € {1,...,n—1}, corresponding to
transpositions of immediate neighbours (see [6, Section 6.2]). If to &, forn 2 5
we add an equation ¢ = 1 where a is built exclusively of the generators s; of &,
with composition, and @ == 1 does not hold in &,, then we can derive s; = s;. This
does not mean that the resulting structure will be a one-element structure, i.e. the
“trivial one-element group. It will be such if a is an odd permutation, and if a is an
even permutation, then we will obtain a two-element structure, which is S&;. This
can be inferred from facts about the rormal subgroups of S,. Simple groups are
maximal in the nonrelative sense, envisaged above for semilattices.

9. Maximality of lattice categories

We will show in this section that L is maximal in the sense specified at the
beginning of the preceding section; namely, in the interesting way. {We take over
this result from [11, Section 5], and [14, Section 9.5].)

Suppose A and B are formulae of £ in which only p occurs as a letter. If for
some arrow terms fi, fa: AF B of L we have Gfi # Gfs, then for some 2 in A
and some y in B we have (z,y) € Gf1 and (z,y) ¢ Gfa, or vice versa. Suppose

(z,v) € Gf and (z,y) &€ G fa.



BICARTESIAN COHERENCE REVISITED 29

For every subformula C of 4 and every formula 1) let A% be the formula obtained
from A by replacing the particular occurrence of the formula C in A by D. It can be
shown that for every subformula A,V A5 of A we have an arrow term h: Af;;wj‘z FA
of L, built by using I;:f,_l A,» such that there is an 2’ in Aﬁ;v‘q"’ for which (z',z) € Gh.
Hence, for such an h, we have (z',y) € G(f1=h) and (z',y) ¢ G{f=°h).

We compose f; repeatedly with such arrow terms until we obtain the arrow terms -
flopn.. Apk B of L such that parentheses are somehow associated in pA.. Ap
and for some 2z in (pA ... Ap) we have (z,y) € Gf] and (z,y) € Gf}. The formula
pA...Apmay also be only p. We may further compose f] with other arrow terms
of L in order to obtain the arrow terms f{ of type pA A" F B or p - B such that
A" is of the form p A ... A p with parentheses somehow assoclated. Let us use 0 to
denote the first occurrence of a propositional letter in a formula, counting from the
left. So we have (0,y) € Gf} but (0,y) ¢ Gfs.

By working dually on B we obtain the arrow terms f!" of L of type pAA' - pv B,
for A’ of the form pA ... Apand B' of the form pVv ... Vp,orof type pA A" F p,
or of type p + pVv B’, such that (0,0) € Gf{" and (0,0) ¢ Gfi’. (We cannot obtain
that f{" and f3" are of type p F p, since, otherwise, by Composition Elimination
for L, fi" would not exist.)

There is an arrow term A™: p bk pA ... Apof L defined by using & such that for
every'z € G{pA...Ap) we have (0, ) € Gh". We define analogously with the help
of 1 an arrow term AV :pV ...V pt p of L such that for every z in pV ... Vp we
have (z,0) € GhY. The arrow terms A" and AY may be 1,: p+ p.

If £ is of type pAA' F pV B', let f1:pApt pVpbe defined by

f=g A vhY)s f7e (1, v A7)
By Composition Elimination for L, we have that G fif must be a singleton. Let us
use 1 to denote the second occurrence of a propositional letter in a formula, counting
from the left. If (1,0) or (1,1) belongs to Gfg, then for ff:pApt p defined as
u';pofj we have (0,0) € Gfy and {0,0) ¢ Gfs. If (0,1) or (1,1) belongs to Gfg,
then for ff:pk pVp defined as ff o1, we have (0,0) € Gf} and (0,0) ¢ Gf;.

It f/" is of type p A A"+ p, then for f: pApt p defined as fi" o (1, V h") we
have {0,0) € Gfy and (0,0) ¢ Gf5.

If /" is of type p - pV B', then for f7: pI- pVp defined as (1, VAY) o fi* we have
(0,0) € Gfy and (0,0) ¢ Gf;. In all that we have by Composition Elimination for
L that G'ff must be a singleton.

In cases where f is of type p A p - p, by Compositicn Elimination for L, by
the conditions on G f; and G f3, and by the functoriality of G, we cobtain in L the
equation f¥ = ]Ac;,p. (This follows from Lattice Coherence too.) So in L extended
with f1 = fs we can derive the equation

PR
(kk) kp,p - kp,p'
In cases where f} is of type p F pV p, we conclude analogously that we have in

L the equation f] = k;’ 5> and s0 in L extended with fi = f> we can derive



30 KOSTA DOSEN AND ZORAN PETRIC

(‘Ek) k;}?,p = l;‘-gm'
If either of (fcfc) and (kk) holds in a lattice category A, then A is a preorder.

It remains to remark that if for some arrow terms g; and g of L of the same
type we have that g1 = g» does not hold for L, then by Lattice Coherence we have
Gg1 # Gga. I we take the substitution instances g of g, and g4 of go obtained
by replacing every letter by a single letter p, then we obtain again Gg¢j # Gg,. If
g1 = ¢2 holds in a lattice category A, then ¢; = g4 holds too, and A4 is a preorder, as
we have shown above. This concludes the proof of maximality for L. (In the original

presentation of this proof in [11, Section 5], there are some slight inaccuracies in
the definition of f7.)

10. Relative maximality of dicartesian categories

The category Lr : is not maximal in the sense in which L is. This is shown by
the following counterexample.

Let Set, be the category whose objects are sets with a distinguished element *,
and whose arrows are *-preserving functions f between these sets; namely, f(*) = *.
This category is isomorphic to the category of sets with partial functions. The
following definitions serve to show that Set. is a category in which we can interpret
the objects and arrow terms of Lt | :

I={«}, a = {(z,x) |z €a-1T}, V= {(xy) |y € b1},

a®b =({(a-Ab-1I))UIT,
a®b =(a@b)Ua UB",
aBb =ad Ub' UL
Note that ¢ ® & is isomorphic in Set'to the cartesian product & X b; the element
% of a ® b corresponds to the element (*, %) of @ x .
The functions k ta1 Bas = a4, for ¢ € {1,2}, are defined by

Q1,62

ktiu,az(zl:%) = I, kfh;az(*) = ¥;

for f;: ¢ — a;, the function {fi, f2): ¢ = a1 B ay is defined by

(f1, f2)(2) = { (fl(_z),fz(z)) if f1(z) # *or fal2) #£ =

* if fi(z) = falz) = %
and the function &, : & — I is defined by &,{z) = *. Having in mind the isomor-
phism between a ® b and a x b mentioned above, the functions k;f“,az o Bay = a;

correspond to the projection functions, while (., _) corresponds to the usual pairing
operation on furctions. ] ,
The functions k;, ,. @ a; — a; B ay are defined by

Q1,02 a1,a2

EL () = {x,%), - kE  (2) = {xz), forz#x,
Koy 0 (F) = %



BICARTESIAN COEERENCE REVISITED 31

for ¢;: a; — ¢, the function {g1, ¢s]: a1 Baz — ¢ is defined by

g1, 9] (21, %2) = gu(z:), for z; # +,
[91, g2] (%) = *;
finally, the function &, : [ = a is defined by £.(*) = ».

If we take that A is K and V is B then it can be checked in a straightforward
manner that Set, and Set, without T are lattice categories, and if in Set, we take
further that both T and L are I, then Sef, is a dicartesian category.

Consider now the category Set?, which is obtained by adding to Set. the empty
set B as a new object, and the empty functions @, : @ — a as new arrows. The
identity arrow 1g is 0. For Setg, we enlarge the definitions above by

PHae =aRBO =10,
fHa =cBO=a,

ki gy =04, foray =0 oray =9,

(mal ) @az> = Q)al@ sy

Ry = 0,
‘I;-(ili,a.g = @alEE az? fOI' a; = @,
[fl:mc] =f13 [@c,fQ] =f2)

and define now the function &, : @ = a by &, = B,. Then it can be checked that
Set? where A is ® and V is B as before, while T is T and L is @, is a dicartesian
category too. A )

In LT o the equation k) | = K,ok> | does not hold, because Gkl | # @ and
G(Rpok, ) =0, but in Set? this equation holds, because both sides are equal to

Bg. Since Set? is not a preorder, we can conclude that Lt j is not maximal.

Although this maximality fails, the category L+ | may be shown maximal in a
relative sense. This relative maximality result, which we are going to demonstrate
now, says that every dicartesian category that satisfies an equation f = g between
arrow terms of Lt | such that Gf # Gy (which implies that f = g isnotin Ly ;)
satisfies also some particular equations. These equations do not give preorder in
general, but a kind of “contextual” preorder. Moreover, when L+ | is extended
with some of these equations we obtain a maximal category. '

If for some arrow terms f1, f2: A b B of Lt | we have Gf; # Gf2, then for
some z in A and some y in B we have (z,y) € Gf, and {z,y) & G fo, or vice versa.
Suppoese (z,y) € Gfy and (z,y) € Gfa. Suppose x is an occurrence of p, s0 that y
must be an occurrence of p too.

Let A" be the formula obtained from the formula A by replacing =z by p A L,
and every other occurrence of letter or T by L. Dually, let B’ be the formula
obtained from B by replacing y by p VvV T, and every other occurrence of letter or
1. by T. Let us use 0, as in the preceding section, to denote the first occurrence of
a propositional letter in a formula, counting from the left. Then it can be shown
that there is an arrow term k% : A' - A of L | such that Gh4 = {(0,2)}, and
an arrow term AP : B F B' of Lt | such that GA” = {(y,0)}. We build h* with



32 KOSTA DOSEN AND ZORAN PETRIC

kl 1 :pA Lt pandinstances of i @ L F C, with the help of the operations A and
V on arrow terms. Analogously, hZ is built with kll,) :pkpVv T and instances of

ko : C+ T. It can also be shown that there are arrow terms j4: pA L+ A" and
B. B} pv T of Lt 4 such that G54 = G3% = {(0,0)}. These arrow terms stand
for isomorphisms of L 5 .
Then it is clear that for f; being

BopBofioh®oj i pA Ll pV T,

with ¢ € {1,2}, we have Gf{ = {{(0,0)}, while Gf; = . Hence, by Composition
Elimination for L+ ; and by the functoriality of G, we obtain in Lt | the equations

— il il
f{ - kp, °k19,J_’
f3= RpyTe kﬁ,L = ki,“r ° Rpa L
(This follows from Restricted Dicartesian Coherence too.) If we write 0 7 for &,
which is equal to &+ in Ly 4, then in Lt 1 we have

fi= ];g,T °0p 1o f“g,L

So in Lt | extended with fi = f, we can derive
(kk) kprekyy = kjre0i7oky )
The equation

(k&) kL, = Rpok2,,
which holds in Setg, and which we have used above for showing the nonmaximality
of Lt 1, clearly yields (kk), which hence holds in Set?, and which hence we could
have also used for showing this nonmaximality.

If we refine the procedure above by building A" and B’ out of A and B more
carefully, then in some cases we could derive (k&) or its dual

(k) By = Eirok,

instead of (F%fc)., We do not replace =z by p A L in building A’, and we can proceed
more selectively with other occurrences of letters and T in 4, in order to obtain an
A! isomorphic to p if possible. We can proceed analogously when we build B’ out
of B to obtain a B isomorphic to p if possible.

Note that we have the following:

Ti)oky

’%p/\J-"]Af;, = (Ap,
(?1? , pJ_) with (kE),
N

In the other direction, it is clear that the equation derived yields (fck) So with
(k%) we have that C'A L and L are isomorphic, and, analogously, with (k&) we
have that C'V T and T are isomorphic. It can be shown that the natural logical
category defined as L+ ;. save that we assume in addition both (k%) and (k&) is
maximal. (This is achieved by eliminating letterless subformulae from € and D in



BICARTESIAN COHERENCE REVISITED 33

g1, 92 C F D such that Gg, # Gy, and falling upon the argument used for the
maximality of L in the preceding section.)

If f:at bis any arrow of a dicartesian category A and (kk) holds in A, then

we have in A . ) .
Bjrofoky = kyroky o(fAly)
= kf,'r o0 7o ki,_i.’
and hence for f,g: aF b we have in A
(k"vcfg) ff%T o fo i‘\:;L = ‘fcg,T °ege fcé.}.

So, although Lt , is not maximal, it is maximal in the relative sense that every
dicartesian category that satisfies an equation f = g between arrow terms of L+ |
such that Gf # (g satisfies also (kk) and (kk Jg). Some of these dicartesian

categories may satisfy more than just (kk) and (kk fg). They may satisfy (k&) or
(k#), which yields

fe ka_!_ —9"@; or ’vﬂé,T"f: fﬁé,T"Qa

and some may be preorders.

Acknowledgement. We are grateful to Slobodanka Jankovié for a helpful stylistic sug-
gestion. Work on this paper was supported by the Ministry of Science of Serbia (Grant
144013).

References

[1] H.P. Barendregt, The Lambda Calculus: Its Syniax and Semantics, North-Holland, Amster-
dam, 1981

(2] J. Bénabou, Catégories avec multiplication, C. R. Acad. Sci., Paris, Sér. I Math. 256 (1963),
1887-1890

[3] G. Burde and H. Zieschang, Knots, de Gruyter, Berlin, 1985

[4] C.C. Chang and H.I. Keisler, Model Theory, North-Holland, Amsterdam, 1§73

[5] J.R.B. Cockett and R. A.G. Seely, Finite sum-product logic, Theory Appl. Categ. 8 (2001},
6399

(6] H.S. M. Coxeter and W.O.J. Moser, Generators and Relations for Discrete Groups, Springer,
Berlin, 1957

[7] K. Dogen, Cut Elimination in Cetegories, Kluwer, Dordrecht, 1999

(8] K. DoSen and Z. Petri¢, The mazimality of the typed lambda colculus and of cortesian closed
categories, Publ. Inst. Maih., Nouv. Sér. 68(82) (2000}, 1-19 (available at: http://arXiv.org/
math.CT/9911073)

, The mazimality of corfesian categories, Math. Log. Q. 47 (2001), 137-144 (available

at: http://arXiv.org/math.CT/911059)

, Coherent bicertesian and sesquicartesian categories; in: Proof Theory in Computer

Seience (R. Kahle et al., editors), Lect. Notes Comput. Sci. 2183, Springer, Berlin, 2001, pp.

78-92 (revised version of 2008, with major corrections, available at: http://arXiv.org/math.-

CT/0006091)

, Bicartesian coherence, Stud. Log. 71 (2002), 331-353 (version with some corrections

in the proof of maximality available at: http://arXiv.org/math.CT/0006052)

, Generclity of proofs and its Brouerion representation, J. Symb. Log. 68 (2003),

740-750 (available at: http://arXiv.org/math.LO/0211090)

, A Brouverian represeniation of spiit preorders, Math. Log. Q. 49 (2003), 579-586

(available at: htip://arXiv.org/math.LO/0211277)

(1]

(12}

(13]




34

[24]
(18]

{16]

(17)
(18]
(19]
(20}

(21]

[22)
(23]
(24)
(23]

26]

f27]

(28]

KOSTA DOSEN AND ZORAN PETRIG

., Proof-Theoretical Coherence; KCL Publications (College Publications), London,
2004 (revised version available at: http://www.mi.sanu.ac.yu/~kosta/publications.htm)

. Proof-Net Categories, Polimetrica, Monza, 2007 {preprint available at: http://-
www.mi.sanu.ac.yu/~kosta/pn.pdf, 2005)

D. Hilbert and W. Ackermann, Grundzige der theoretischen Logik, Springer, Berlin, 1928
(English translation of the second edition from 1938, Principles of Mathematical Logic,
Chelsea, New York, 1950)

G. M. Kelly and M. L. Laplaza, Coherence for compact closed categories, J. Pure Appl. Al-
gebra 19 {1980}, 193-213

G. M. Kelly et al., editors, Coherence in Calegories, Lect. Notes Math. 281, Springer, Berlin,
1972

G. M. Kelly and S. Mac Lane, Coherence in closed categories, J. Pure Appl. Algebra 1 (1971),
97-140, 219

J. Lambek, Deductive systems and categories I: Syntactic colculus end residucted calegories,
Math.] Syst. Theory 2 {1968), 287-318

, Deductive systems and calegories II: Stendard consiructions and closed categories
in: Category Theory, Homology Theory and their Applications I, Lect. Notes Math. 86,
Springer, Berlin, 1969, pp. 76-122

J. Lambek and P.J. Scott, Introduction to Higher Order Categorical Logic, Cambridge Uni-
versity Press, Cambridge, 1986

5. Mac Lane, Natural associativity and commutativity, Rice Univ. Stud. Papers in Math. 49
(1963), 28-46

Z. Petri¢, G-Dinaturality, Ano. Pure Appl. Logic 122 (2003), 131-173 (available at: http://-
arXiv.org/math.CT/0012019)

A. Preller and P. Duroux, Normalisation of the thesry T of Cartesien closed categories and
conservaltvity of extensions T[x] of T, Theor. Inform. Appl. 33 (1999), 227-257

A K. Simpson, Categorical completeness results for the simply-typed lambda-celculus; in:
Typed Lambde Calculi and Applications (M. Dezani-Ciancaglini and G. Plotkin, editors),
Lect. Notes Comput. Sci. 902, Springer, Berlin, 1995, pp. 414427

M. E. Szabo, A counter-ezample to coherence in cartesian closed categories, Canad. Math.
Bull, 18 {1975), 111-114

R. Zach, Completeness before Post: Bernays, Hilbert, and the deuetopment of propositional
logic, Bull. Symb. Log. 5 (1999), 331-366




Zoran Ognjanovi¢, Miodrag Raskovié
and Zoran Markovic

PROBABILITY LOGICS

Abstract. The paper summarizes the results of the authors in for-
malization of uncertain reasoning. A number of prebability logics is
considered. Their axiomatizations, completeness, compactness and
decidability are addressed. Some possible applications of probability
logics are analyzed. A historical overview of related works is given.

Mathematics Subject Classification (2000): 68137, 03B60, 03B70,
68T15, 63T27, 68T30, 03B35, 03B44, 03B45, 03B42

Keywords: probability logic, conditional probability, approximate
probability, non-standard analysis, strong completeness, decidability,
default reasoning



CONTENTS

1. Introduction 36
2. History 39
3. Logic LPP, 45
3.1. Syntax 45
3.2, Semantics 45
3.3, Complete Axiomatization 47
3.4. Soundness and completeness 48
3.5. Decidability and Complexity 55
3.6. A heuristical approach to the LP P peas-satisfiability problem 56
4. Some variants of the logic LP P, 62
4.1. Logic LPPI™ 62
4.2. Logic LPP - F 64
4.3. Logic LPP; 67 -
5. Logic LF P, 68
6. Some extensions of the probabilistic language 71
6.1. Probability operators of the form Qg 72
6.2. Qualitative probahilities 20
7. First order probability logics 81
7.1. Syntax 81
7.2. Semantics 82
7.3. A sound and complete axiomatic system 84
7.4. Decidability 86
8. Probabilistic logics with the non-classical base 86
8.1.  An intuitionistic probability logic 86
8.2. A discrete linear-time probabilistic logic 92
9. Logics with conditional probability 97
8.1. A logic with approximate conditional probabilities 97
9.2. A logic with coherent conditional probabilities 104
10. Related work 105
References \ 107

1. introduction

The problem of reasoning with uncertain knowledge is an ancient problem dat-
ing, at least, from Leibnitz and Boole. However, in the last decades there is a
growing interest in the field connected with applications to computer science and
artificial intelligence. Researchers from those areas have studied uncertain reason-
ing using different tools. Some of the proposed formalisms for representing, and

26



PROBABILITY LOGICS 37

reasoning with, uncertain knowledge are based on probabilistic logics. That ap-
proach extends the classical (propositional or first order) calculus with expressions
that speak about probability, while formulas remain true or false. Thus, one is able
to make statements of the form (in our notation) Ps,a with the intended meaning
“the probability of « is at least s”.

The probability operators behave like modal operators and the corresponding se-
mantics consists in special types of Kripke models {possible worlds) with addition
of probability measures defined over the worlds. One of the main proof-theoretical
problems with that approach is providing an axiom system which would be strongly
complete (“every consistent set of formulas has a model”, in contrast to the weak
completeness “every consistent formula has a model”). This results from the in-
herent non-compactness of such systems. Namely, in such languages it is possible
to define an inconsistent infinite set of formulas, every finite subset of which is
consistent (e.g., {—FP=oa} U {Pc1jpcx & nis a positive integer}). As it was pointed
in [85, 125], there is an unpleasant consequence of finitary axiomatization in that
case: there exist unsatisfiable sets of formulas that are consistent with respect to
the assumed finite axiomatic system (since all finite subsets are consistent and de-
ductions are finite sequences). Another important theoretical problem is related to
the decidability issue.

In this paper we present a number of probabilistic logic. The main differences
between the logics are:

¢ some of the logics are infinitary!, while the others are finitary,

+ the corresponding languages contain different kinds of probabilistic opera-
tors, both for unconditional and conditional probability,

« some of the logics are propositional, while the others are based on the
first-order logic,

e for most of the logics we start from classical logic, but in some cases the
basic logic can be intuitionistic or temporal,

e in some of the logics iterations of probabilistic operators are not allowed,

s for some of the logics restrictions of the following kinds are used: only
probability measures with fixed finite range are allowed in models, only
one probability measure on sets of possible worlds is allowed in a model,
the measures are allowed to be finitely additive.

For all these logics we give the corresponding axiomatizations, prove completeness,
and discuss their decidability. More precisely, we consider the following logics (the
notation was taken from the corresponding papers):

o LPP, (L forlogic, the first P for propositional, and the second P for proba-
bility), probability logic which starts from classical propositional logic, with
iterations of the probability operators and real-valued probability functions
[83, 85],

MNn this paper the terms finitary and infinitary concern meta langnage only. Object langnages
are countable, formulas are finite (except where it is explicitly said), while only proofs are allowed
to be infinite.



38 ZORAN OGNJANOVIC, MIODRAG RASKOVIC AND ZORAN MARKOVIC

o LPPI™" and LPPS that are similar to LP Py, but with probability func-
tions restricted to have ranges {0,1/n,...,(n—1)/n, 1} and S, respectively
[81, 83, 85],

o LPPAVFR  probability logic similar to LPP} ™| but with probability
functions restricted to have arbitrary finite ranges {26],

o LPPLETL probability logic similar to LZPP;, but the basic logic is discrete
linear-time logic LT L [82, 83, 91],

o LPP,, LPPI"™ Lppf«iFin ang LPPS, probability logics similar to the
above logics, but without iterations of the probability operators [83, 85,
106), ‘ :

e LPP; po.o, probability logic which extends LPP; by having a new kind
of probabilistic operators of the form @, with the intended meaning “the
probability belongs to the set F” [84)],

e« LPP; and LPP, ", probability logics similar to LPP, and LPP™™,
but allowing reasoning about qualitative probabilities [93],

o LPP{, probability logics similar to LPP,, but the basic logic is proposi-
tional intuitionistic logic [74, 75, 76],

o LFOP,, LFOP/™™ LFop/* ¥ [FOPS and LFOP,, first-order coun-
terparts of the above logics [85, 110],

. LPCPQS * propositional Kolmogorov's style-conditicnal probability logic,
without iterations of the probability operators, with probability functions
restricted to have the range S and probability operators that can express
approximate probabilities [88, 92, 112, 113, 114], and

o LPC P propositional conditional probability logic, which corresponds
to de Finetti’s view on coherent conditional probabilities [50, 90].

The rest of the paper is organized in the following way. In section 2 we give a
short overview of studies relating logic and probability until the mid 1980’s; and
the work of I.J. Keisler and N. Nilsson [41, 42, 78, 116, 122). Syntax and se-
mantics, an infinitary axiomatization, the corresponding extended completeness,
decidability and complexity of LPP; are preseanted in Section 3.1. As a seman-
tics we introduce a class of models that combine properties of Kripke models and
probabilities defined on sets of possible worlds. We consider the class of so called
measurable models {which means that all sets of possible worlds definable by clas-
sical formulas are measurable) and some of its subclasses: in the first case all
subsets of worlds are measurable, then probabilities are required to be g-additive,
while models in the last subclass satisfy that only empty set has the zero prob-
ability. The proposed axicmatization is infinitary, i.e., there is an inference rule
with countably many premisses and one conciusion. That rule corresponds to the
following property of real numbers: if the probability is arbitrary close to s, it is
at least s. Thus, proofs with countably many formulas are allowed. The proof of
extended completeness follows Henkin procedure: starting from a consistent set we
construct its maximal consisient extension and the corresponding canonical model
which satisfies the considered set of formulas. Decidability of LP P, is proved by



PROBABILITY LOGICS k]

reducing the satisfiability problem to linear programming problem. Since the re-
lated linear systems can be of exponential sizes, in the same section we describe
some heuristical approaches (genetic algorithms and variable neighborhood search)
to the probabilistic satisfiability problem [51, 86, 87, 89). Some variants of LPP,

(LPPQFr(n), LPP*vFm and LPPS obtained by putting some restrictions on ranges
of probability functions) and the logic LPP, are considered in the sections 4 and
5, respectively. In Section 6 we consider some extensions of the basic prohability
language. The first extension, LPP; p o o, contains probability operators of the
form @ 7 with the intended meaning “the probability belongs to the set F”. It turns
cut that in a general case neither P -operators are definable from @ p-operators,
nor are (Qp-operators operators definable from P-operators. Then, we-discuss
two logics that allow expressing qualitative probabilities: LPP, 4 and LPPQF ’_S”).
It is proved elsewhere that the set of probability first-order valid formulas is ot
recursively enumerable and that no recursive complete axiomatization is possible.
In Section 7 we extend our approach for the propositional case and give a complete
infinitary first order axiomatization. That section also contains a discussion on the
(dis)similarities between probability and modal logics. Intuitionistic and termporal
probability logics are presented in Section 8. Two logics with conditional proba-
bilities (LPCP;"™ and LPCPEP™), and their applications are described in Section
9. One of the infinitary inference rules for LPCst * enables us to syntactically
define the range of probability functions. In the case of LPCPQS’E, that range is
the unit interval of a recursive non-archimedean field which makes it possibie to
express statements about approximate probabilities: € P, (a, 8) which means “the
conditicnal probability of & given 3 is approximately §”. Furthermore, formulas of
the form C'Pai (e, ) can be used to model defaults, i.e., expressions of the form
“if B, then generally o”. It relates LPCP;"™ with the well known system P which
forms a core of default reascning. It is proved that if we restrict attention only to
formuias of the form C' Py (¢, 3}, the resulting system coincides with P when we
work only with finite sets of assumptions. If we allow inferences from infinite sets of
such “defaults”, our system is somewhat stronger. The main advantage, however,
is ability to use LPCst "~ to combine uncertain knowledge and defaults. Finally,
Section 10 discusses some of the more recent related papers.

2. History

Gottiried Wilhelm Leibnitz (1646-1716) investigated universal basis for all sci-
ences and tried to establish logic as a generalized mathematical calculus. He con-
sidered probabilistic logic as a tool for the uncertainty estimation, and defined
probability as a measure of knowledge. In sore of his essays [67, 68, 69] Leibnitz
suggested that tools developed for analyzing games of chance should be applied in
developing a new kind of logic treating degrees of probability which, in turn, could
be used to make rational decisions on conflicting claims. He distinguished two
calcult. The first one, forward calculus, was concerned with estimating the proba-
hility of an event if the probabilities of its conditions are known. In the second one,
called reverse calculus, estimations of probabilities of causes, when the probability



40 ZORAN OGNJANOVIC, MIODRAG RASKOVIC AND ZORAN MARKOVIG

of their consequence is known, were considered. Leibnitz’s logical works were for
the most part published long after his death {by L. Couturat in the early 1900s).
However, Leibnitz had some successors, the most important of whom, when the
probabilistic logic is in question, were the brothers Jacobus (1654-1705) and Jo-
hann (1667-1748) Bernoulli, Thomas Bayes (1702-1761}, Johann Heinrich Lambert
(1728-1777), Pierre Simon de Laplace (1749-1827), Bernard Bolzano (17811848},
Augustus De Morgan (1806-1871), George Boole (1815-1864), John Venn (1834-
1923), Hugh MacColl (1837-1909), Charles S. Peirce {1839-1887), Platon Sereye-
vich Poretskiy (1846-1907), etc. We shall briefly mention some of their results.

Jacobus Bernculli in his unfinished work |7, Part IV, Chapter III], was the first
who made advance along the Leibnitz’s ideas. Using Huygen’s notion of expec-
tation, i.e., the value of a gamble in games of chance, he offered a procedure for
determining numerical degrees of certainty of conjectures produced by arguments.
The word argument was used to represent statements as well as the implication
relation between premises and conclusions. He divided arguments into categories
according to whether the premises, and the argumentation from premises to conclu-
sions are contingent or necessary. For example, if an argument exist contingently
(i.e., it is true in & > 0 cases, while it is not in ¢ > 0 cases) and implies a conclusion
necessarily, then such an argument establishes b_%c as the certainty of the conclu-
sion. Bernoulli also discussed the question of computing the degree of certainty
when there were more then one argument for the same conclusion.

J.H. Lamber in [65], analyzed syllogistic inference of the form “if three quarters
of the A’s are B’s, and C is A, then with probability 7, C' is B”. In [5], writ-
ten by T. Baves, there was the first occurrence of a result involving conditional
probability. In modern nctation, he considered the problem of finding the condi-
tioral probability P(A|B) where A is the proposition “P(E) € [a,b]”, while B is
the proposition “an event E happened p and failed g times in p + g independent
trials”. For B. Bolzano [11] logic was a theory of science, while probability was
a part of logic. Using contemporary language it can be said that he understood
validity of a proposition A(z) as a measure of the set {c : E A{c)}, 1.e., as the

ratio mmf:’;g; A“(z . Relative validity was a relation between propositions and
had the same properties as what we call conditional probability. Bolzano derived

a number of theorems regarding relative validity. A. De Morgan devoted a chapter
of {21], to probability inference offering a defense for the numerical probabilistic
approach as a part of logic. Instead of giving a systematic treatment of the field,
he rather described some problems and tried to apply logical concepts to them. It
15 interesting that De Morgan made some mistakes, mainly due to his ignoring of
(in)dependence of events. ‘

The calculus inaugurated by G. Boole in [12, 13] initiated rapid development of
mathematical logic. Boole sought to make his system the basis of a logical calcu-
lus as well as a more general method for the application in the probability theory.
He wrote “... Ewery system of interpretation which does not affect the truth of
the relations suppased is equally admissible, and it is thus that the same process
may under one scheme of interpretation represent the solution of a question on the



PROBABILITY LOGICS 41

properties of numbers, under another that of a geometrical problems, and under
the third that of a problem of dynamics or optics...” Since 1854 Boole concentrated
on unification of various elements of truth. He hoped to continue the advance-
ment toward probable indications concerning the nature and structure of human
thought. The most general problem {originally called “general problem in the the-
ory of probability”) Boole claimed that he could solve, concerned an arbitrary set

of logical functions {fy(z1,....Zm), -+ fe(Z1,---,Tm), Flz1,. .., 2m)} and the
corresponding probabilities py = P(fi{z, .., Zm))y -0 Px = P(felz, -, 20)),
and asked for P{F{z;,...,2m)) in terms of p1,...,px. He explained the relation

between the logic of classical connectives and the formal probability properties of
compound events using the following assumptions. He restricted disjunctions to the
exclusive ones, and believed that any compound proposition can be expressed in
terms of, maybe ideal, simple ard independent components. Thus, the probability
of an or-compound is equal to the sum of the components, while the probability
of an and-compound is equal to the product of the components. In such a way, it
was possible to convert logical functions of events into a system of algebraic func-
tions of the corresponding probabilities. Boole tried to solve such systems using
a procedure equivalent to Fourier—-Motzkin elimination. His procedure, although
not entirely successful, provided a basis for probabilistic inferences. In [40, 41] a
rationale and a correction for the Boole’s procedure were given using the linear
programming approach. It was noted that analytical expressions of the lower and
upper bounds of the probabilities could be obtained.

The successors of Boole tried to improve the form of Boole’s ideas. One of
themn was P.S. Poretskiy (96]). C.S. Pierce in [95] and H. MacColl in [71] clarified
the notion of conditional probability, as the chance that a statement is true on .
the assumption that another statement is true, and introduced the corresponding
symbol z, (P(z|a), in the contemporary formal language).

MeColl also developed, contemaporaneously with Frege, propositional logic as a
branch of logic independent of the class calculus or term logic of the traditional
syllogisms. He was the first author who made an attempt, in [72], to augment the
two-valued logical formalism with a third truth value. Tt was a system of proposi-
tional logic with certain, impossible, and variable propositions. The propositions of
the former two types are either necessary true or necessary false, while the propo-
sitions of the last type are sometimes true and sometimes false. MacColl’s idea of
proceeding along the probabilistic lines in the development of many-valued logic is
of particular interest because he applied the calculus of variable propositions to the
caleculus of probabilities. His truth-values, like probabilities, cannot be combined
in a truth-functional way. For example, if p is a variable proposition, so are p A p
and —p, while p A —p is impossible rather than variable. Later systems, for exampie
the ones of Lukasiewicz, were deficient in this respect.

In the 1870% J. Venn developed the idea of extending the frequency of occurrence
concept of probability to logic. Venn thought that probability logic is the logic of
sequence of statements. A single element sequence of this type attributes to the
given proposition one of two values 00 or I, while an infinite sequence attributes any
real number which lies in the interval [0,1]. Some of the traditional logicians were



432 ZORAN OGNJANOVIC, MIODRAG RASKOVIC AND ZORAN MARKQVIC

dissatisfied with the inclusion of the induction in the definition of the concept of
probability, but the others continued to work in that direction.

During the first half of XX century there were at least three directions in the
development of theory of probability. The researchers that belonged to the first one,
Richard von Miss (1883-1953) and Hans Reichenbach (1891-1953), for example,
regarded probability as a relative frequency and derived rules of the theory from
that interpretation. The second approach was characterized by the development
of formal calculus of probability. Some of the corresponding authors were Georg
Bohlmann (1869-1928) [10), Sergei Natanovich Bernstein (1880-1968) [8], andEmil
Barel (1871-1956) [14, 15]. These investigations culminated in A. N. Kolmogorov’s
(1903-1987) axiomatization of probability [60]. Finally, some of the researcher, like
John M. Keynes (1883-1946) [59], Hans Reichenbach [115, 116), and Rudolf Carnap
(1891-1970) [18, 19] continued Boole’s approach connecting probability and logic.

In work of J. Keynes probability was seen as an undefined primitive concept. He
presented an axiomatic analysis of a relation between propositions which behaved
like conditional probability. That axiomatic system is not acceptable, at least from
the point of the recent logical standards. For example, no specification of syntax
was given, there were no inference rules, etc.

R. Carnap’s work on logical foundations of probability was an attempt to develop
a pure logical concept of probability. Carnap connected the concepts of inductive
reasoning, probability and confirmation. He was among the first researchers who
clearly acknowledged that there are two distinct concepts of probability. The con-
cept of probability as the relative frequency {in the long run) which is used in
statistical investigations is empirical in nature and, therefore, unsuitable for the
development of inductive logic. For the development of inductive logic, which in
his view is the same as probability logic, he needed the logical concept of probabil-
ity as a degree of confirmation of some hypothesis on the basis of some evidence,
i.e., a logical relation between two propositions, denoted by ¢(h,e). Carnap fixed
an unary first order language to express A and e, and studied properties of ¢. Even
though Carnap’s work was not completely successful, it stimulated a line of research
on probabilistic first-order logics [33, 34, 120, 123]. In [33] there was a generaliza-
tion of the notion of a model for a first-order language in which probability values
replaced truth-values, and some kind of completeness theorem was proven. Sim-
ilarly, in [34] a first order language L of arithmetic and a set of its models were
considered. To every sentence the set of models in which it is true was associated,
and the probability was defined on such definabie sets. Then, they studied random
sequences and some other notions from the theory of probability defined over L. In
[120] the ideas from [33] were extended to infinitary languages. Boolean algebras
with attached probability measures were considered as suitable models for reason-
ing about probability. Let I and m denocte an interpretation and & probability
defined on a Boolean algebra, respectively. A probability assertion A is a tuple
{a,s1,...,8,), where a is a formula of the language of real closed fields with n free
variables, while s;’s are sentences of an infinitary first order language. A speaks
about probabilities such that it holds in a model if a{m(f(s1)),...,m{I(sn))) is
true in the reals. Then, a probability assertion A is a consequence of a set T of



PROBABILITY LOGICS 43

assertions if A holds in every model of 7. In [120] a number of results about such
a consequence relation were proved.

H. Reichenbach investigated the logical structure of probability statements from
the philosophical and technical points of view. He introduced a fundamental
probability relation between classes and real numbers using formulas of the form
P(A,B) = p which could be read as “for every i, if z; belongs to the class
A, then y; belongs to the class B with probability p”. Reichenbach gave a fre-
quency interpretation for the probability relation, and the corresponding axioms
({A = B) = (P(A, B) = 1), for example). If «; € A for every 7, he used P(B) =p
instead of P(A4, B) = p, and constructed truth tables for the classical connectives
with a continuous scale of truth (if P{A} = p, P(B) = q, and P{A, B) = u, then
P(Av B) = p+ g~ pu, for example). However, as can be seen, the value of
P({Av B) = p+ g — pu depends on three values, i.e., on FP(4), P(B), and P(4, B),
and not on P{A) and P(B) only, as it is the case in the classical two-valued logic.

Aleksandar Kron {1938-2000), Belgrade’s logician and philosopher, studied re-
lationship between multi-valued logics and probability theory [64]. He considered a
unary operation generating a Boolean algebra of sets of formulas, and a probability
function defined on that algebra, and gave some statement connecting notions from
probability theory (conditional probability, independence) and logic (implication,
proof}.

In spite of the mentioned works of Reichenbach, Carnap and their followers, the
mainstreams of development of logic and probability theory were almost separated
during second half of XX century. Namely, in the last quarter of XIX century,
independentiy of the algebraic approach, there was a development of mathematical
logic inspired by the need of giving axomatic foundations of mathematics. The
main representative of that effort was Gottlob Frege (1848-1925). He tried to
explain the fundamental logical relationships between the concepts and propositions
of mathematics. Truth-values, as special kinds of abstract values, were described by
Frege according to whom every proposition is a name for truth or faisity. It is clear
that, according to Frege, the truth values had a special status that had nothing to
do with probabilities. That approach culminated with Kurt Gédel’s (1904-1977)
proof of the completeness for the first order logic [37]. Since those works, the first
order logic played the central role in the logical community for many years, and
orly in the late 70°s a wider interest in probability logics reappeared.

The most important advancement in probability logic, after work of Leibnitz
and Boole, was made by H. Jerome Keisler. The purpose of his famous paper [54]
was to give model-theoretic approach to probability theory, Also it is important
to emphasize that in this paper he makes use of nonstandard analysis as an useful
method.

Keisler introduced several probability quantifiers, as for example Pz > r. The
formula (Pz > r)é(x) means that the set {z : ¢(z)} has probability greater than
r. A recursive axiomatization for that kind of logics (the main one denoted by
L ap) was given by D. Hoover [46]. Ile used admissible and countable fragments of
infinitary predicate logic (but without ordinary gquantifiers ¥ and ). In the follow-
ing years Keisler and Hoover made very important contributions in the field. They



44 ZORAN OGNJANOVIC, MIODRAG RASKOVIC AND ZORAN MARKOVIC

proved Completeness theorem for various kinds of models (probability, graded,
analytic, hyperfinite etc.) and many other model-theoretical theorems. The de-
velopment of probability model theory has engendered the need for the study of
logics with greater expressive power than that of the logic Lap. The logic L4y,
mtroduced in [55] as an equivalent of the logic L 4 p, allows us to express many prop-
erties of random variables in an easier way. In this logic the quantifiers [ ...dz are
incorporated instead of the quantifiers Px > r. The completeness proof for L a;
used the Loeb construction of the Daniell integral (see also [22, 23, 24, 25]).

The logic L 41 is not rich enough to express probabilistic notions involving condi-
tional expectations of random variables with respect to o-algebras, such as martin-
gale, Markov process, Brownian motion, stopping time, optional stochastic process,
etc. These properties can be naturally expressed in a language with both integral
quantifiers and conditional expectation operators. The logics LAE and Lad intro-
duced by Keisler in [53], are appropriate for the study of random variables and
stochastic processes. The model theory of these logics has been developed further
by Hoover in [47], Keisler in [57, 58], Rodenhausen in [118] and Fajardo in [29].

In [97] Ragkovi¢ introduced new L 457 logic which, instead of probability measure,
has o-finite one and give the method how to transfer results from Lap to Lap. Ina
series of papers [98, 99, 101, 104, 108], he also gave answers to a number of problems
proposed by Keisler in [55]. In [98, 99] a new method of using Barwise compactness
theorem [4] in proving completeness theorems was presented. It is difficult to
mix ordinary and probability quantifiers because of the fact that projection of a
measurable set can be nonmeasurable. As a consequence of that it is hard (if
not impossible) to expect adequate logic in its full strength. But some effort in
that direction has been made in [100, 102, 103, 105]. The notion of a cylindric
probability algebra can be considered as a common algebraic abstraction from a
geometry associated with basic set-theoretic notions on the one hand and the theory
of deductive systerms of probability logic on the other. These two sources are
connected because models of deductive systems of probability logic give rise in
natural way to probability structures within set-theoretical algebras. As is well
known, the theory of Boolean algebras is related to the sentential calculus, and
theory of cylindric algebras to the first-order predicate logic. The theory of cylindric
probability algebras, designed to provide an apparatus for an algebraic study of
probability logics, 1s presented in [49, 109, 111] analogously to Boolean algebras
and cylindric algebras. The model theory for probability logic with undetermined
finite range is given in [104]. Continuous time probability logic LY p, developed in
[1071, is a logic appropriate for the study of a space with a family of continuous
time probability measures. The set of universal conjunctive formulas of L, . is the
least set containing all quantifier-free formulas and closed under arbitrary A, finite
v, and quantifiers (Pz > r), r € ¢ N[0,1]. The completeness theorem and finite
compactness theorem (for universal conjunctive formulas) were proven.

Since the middle of 1980’s the interest in probabilistic logics started growing
because of development of many fields of application of reasoning about uncet-
tain knowledge: in economics, artificial intelligence, computer science, philosophy
etc. Researchers attempt to combine probability-based and logic-based approaches



PROBABILITY LOGICS 45

to knowledge representation. In the logical framework for modelling uncertainty,
probabilities express degrees of belief. For example, one can say that “probability
that Homer wrote Iliad is at most a half” expressing one’s disbelief that Homer is
the real author of Iliad. The first of those papers is [79] (see also: [80]) which re-
suited from the work on developing an expert system in medicine, where N. Nilsson
tried to give a logic with probabilistic operators as a well-founded framework for
uncertain reasoning. Sentences of the logic spoke about probabilities. He was able
to express a probabilistic generalization of modus ponens as “if o holds with the
probability s, and G follows from o with the probability ¢, then the probability of

Gis 7.
3. Logic LPP;

In this section we present the logic LPP,. We describe its syntax and some
classes of madels, give an infinitary axiomatization and prove that it is sound and
complete with respect to the mentioned classes of models.

3.1. Syntax. Let S be the set of all rational numbers from [0,1]. The language
of LPP; consists of the denumerable set ¢ = {p,q,7,...} of primitive propasitions,
classical propositional connectives —, and A, and a list of probability operators Py,
for every s £ §. The set Forg of all classical propositional formulas over the set ¢
is defined as usual. The formulas from the set Fore will be denoted by «, 3,...If
o € Forg and s € S, then Py ,a is a basic probability formule. The set Forp of all
probability formulas is the smallest set

e containing all basic probability formulas, and

s closed under formation rules: if A, B € Forp, then A, AA B € Forp.

The formulas from the set Forp will be dencted by A, B,...Let Forppp, =
Fore UY¥orp. The formulas from the set Forypp, will be denoted by &, ¥ ...
We use the usual abbreviations for the other classical connectives, and also
denote:
-1P2505 by P<sa:
Ps1-sma by Pgsa,
_‘P<sa by P)sa:
Py,a AN Pgsa by Pojo, and
both e A~ and AA—-A by L, lettmg the context determine the meaning.

As it can be seen, neither mixing of pure propositional formulas and probabil-
ity formulas, nor nested probability operators are allowed. Thus, a A Py, and
P Pyr0 do not belong to the set Forppp,.

Let p1,..., pn be alist of all primitive propositions from ¢ € Forppp,. An atom
a of ¢ is a formula of the form £p; A ... A £py,, where p; is either p;, or —p;.

3.2. Semantics. The semantics for Forypp, will be based on the possible-world
approach.

Definition 1. An LPP;-model is a structure M = (W H, p,v) where:
s W is a nonempty set of objects called warlds,



46 ZORAN OGNJANOQVIC, MIODRAG RASKOVIC AND ZORAN MARKOVIC

e H is an algebra of subsets of W, and

e 4 is a finitely additive measure, p: H — [0,1],

o v : W x ¢ — {true,false} provides for each world w € W a two-valued
evaluation of the primitive proposition, that is v(w,p) € {true,false}, for
each primitive proposition p € ¢ and each world w € W, a truth-evaluation
vlw, ) is extended to classical propositional formulas as usual.

If M is an LPPy-model and « € Forg, the set {w : v{w,a) = true} is denoted
by |alm. We will omit the subscript M from [e]am and write [o] if M is clear
from the context. An LPPy-model M = (W, H, u,v) is measurable if [o]yg € H
for every formula a € Forg. In this section we focus on the class of all measurable
LPPy-models (denoted by LP P peas)-

Definition 2. The satisfiability relation FC LPP) \eas % Forppp, fulfills the fol-
lowing conditions for every LP P pmeas-model M = (W, H, g1, v):

if & € Fore, M E « iff for every w € W, v(w, &) = true,

if ME Py o iff u(fe]) > s,

if A€ Forp, ME—A iff M, K A,

ifA,BeForp, MEFAABITME A and ME B, O

Definition 3. A formula @ € Forppp, is satisfiable if there is an LP P pmeas-model
M such that M F &; & is valid if for every LPP; pjeas-model M, M F @; a set of
T formulas is satisfiable if there is an LPP; yeas-model M such that M E @ for
every ¢ € 7.

Example 4. Consider the set T' = {—P—ga} U {Pc/na : n is a positive integer}.
Although every finite subset of 1" is LP P neas-satisfiable, the set T° itself is not.
So, the compactness theorem “If every finite subset of T is satisfiable, then T is
satisfiable” does not hold for LPP;. O

Example 5. Note that the classical formulas do not behave in the usual way:
for some o and @ € Forg and an LP P> peas-model M it car be M F o v 3, but
that neither M £ o, nor M £ 3. Similarly, it can be simultaneously M K « and
M ¥ —q. Nevertheless, the set of all classical formulas that are valid with respect
to the above given semantics and the set of all classical valid formulas coincide,
because every world from an arbitrary LP P peas-model can be seen as a classical
propositional interpretation.

In the sequel we will also consider the following classes of LP Py-models:
LEPs meas,al, LPPpease  and  LPPa Meas Neat -

A model M = (W, H, 1, v} belongs to the first class if H is the power set of W, Le.,
if every subset of W is pi-measurable. A model M belongs to the second class if it
is a o-additive measurable model, i.e., if g is a ¢-additive probability measure. A
model M belongs to the second class if it is a measurable model such that p{H:) =0
iff Hy =0, ie., if only the empty set has the zero probability.



PROBARBILITY LOGICS 47

3.3. Complete Axiomatization. The set of ali valid formulas can be characterized
by the following set of axiom schemata:

(1) all instances of the classical propositional tautologies
(2) P;()O{Z
(3) Pera = Pega, s>
(4) P<sa — Pgsa
(5) (PeraAPesB A Poi(m(a A B))) = Pomingres) (@ V 3)
(6} (Pcra A Peyfl) = Pepyslavp), r+s< !

and inference rules:

{1) From & and ¢ — ¥ infer ¥.
(2) From o infer Py, c.
(3) From A — Py 1a, for every integer & > L,and s > 0 infer 4 — Py o

We denote this axiomatic system by Azppp,.

Definition 6. A formula & is deducible from o set T of formulas {denoted by
Tt &) if there is an at most denumerable sequence of formulas ®g, $4,..., ¢, such
that every @; is an axiom or a formula from the set T, or it is derived from the
preceding formulas by an inference rule. A proof for @ from T is the corresponding
sequence of formulas. A formula @ is a theorem {denoted by F &) if it is deducible
from the empty set. O

Definition 7. A set T of formulas is consisient if there are at least a formula from
Fore, and at least a formula from Forp that are not deducible from T, otherwise
T is inconsistent. A consistent set T of formulas is said to be mazimal consistent
if the following holds:

o for every o € Foreg, f T'F o, then o € T and Py € T, and

e for every 4 € Forp, either AT or ~AeT.

A set T of formulas is deductively closed if for every ® € Forppp,, if T - &, then
deT.

Alternatively, we can say that T is inconsistent iff 7 F L. Also, note that
clagsical and probability formulas are handled in different ways in Definition 7:
it 1s not required that for every classical formula «, either o or -« belongs to a
maximal consistent set, as it is done for formulas from Forp.

Let us now discuss the above axioms and rules. First note that, by Axiom 1,
the classical propositional logic is a sublogic of LPP,. It is also easy to see that
every LPPs-proof consists of two parts {one of them may be empty). In the first
one only classical formulas are involved, while the second one uses formulas from
Forp. Two parts are separated by some applications of Rule 2. There is no inverse
rule, so we can pass from the classical to the probability level, but we cannot
come back. It follows that LPP;-logic is a conservative extension of the classical
propositional logic. The axioms 2—- 6 councern the probabilistic aspect of LPPs.
Axiom 2 announces that every formula is satisfied by a set of worlds of the measure
at least 0. By substituting - for o in the axiom, the formula Pyo—a is obtained.
According to our definition of the operator Pg¢q, we have the following instance of
Axiom 2:



48 ZORAN OGNIANOVIC, MIODRAG RASKOVIC AND ZORAN MARKOVIC

26, PSIOC (= le_s_\a, for s = 1)
It forces that every formula is satisfied by a set of time instants of the measure
at most 1, and gives the upper bound for probabilities of formulas in LP P peas-
models. In a similar way,the axioms 3 and 4 are equivalent to

3. Pyro = Pogo, t > s

4", Po,a— P;sa
respectively. The axioms 5 and 6 correspond to the additivity of measures. For
example, in Axiom 5, if sets of worlds that satisfy a and 4 are disjoint, then the
measure of the set of worlds that satisly a v # is the sum of the measures of the
former two sets. Rule 1 is classical Modus Ponens. Rule 2 can be considered as the
rule of necessitation in modal logics, but it can be applied on the classical proposi-
tional formulas only. Rule 3 is the only infinitary inference rule in the system, i.e.,
it has a countable set of assumptions and one conclusion. It corresponds to the
Archimedean axiom for real numbers and intuitively says that if the probability is
arbitrary close to s, then it is at least s.

3.4. Soundness and completeness.

3.4.1. Soundness. Soundness of our systemn follows from the soundness of classi-
cal propositional logic, as well as from the properties of probabilistic measures, so
we give only a sketch of a straightforward but tedious proof.

Theorem 8 (Soundness). The aziomatic system Azypp, is sound with respect to
the class of LP P meas-models. '

Proof. We can show that every instance of an axiom schemata holds in every model,
while the inference rules preserve the validity. For example, let us consider Axiom 5.
Suppose that Py,a, Py,3, and Pyi-{aV §) hold in a model M = (W, H, u,v). It
means that p(la]) = r, p{|8]) 2 ¢ and that [a] and [8] are disjoint sets. By the
defmition of finitely additive measures, the measure of {o] U [8] (which is {a v 3])
is p([a]) + p([B]). Hence, M F Py yin1,r+5(aV 3}, and Axiom 5 holds in M. The
other axioms can be proved to be valid in a similar way.

Rule 1 is validity-preserving for the same reason as in classical logic. Consider
Rule 2 and suppose that a formula a € Forg is valid. Then, for every model
M = (W, H v}, [} = W, and p(fa]) = 1. Hence, Py« is valid tco. Rule 3
preserves validity because of the properties of the set of real numhers. O

3.4.2. Completeness. In the proof of the completeness theorem the following
strategy is applied. We start with a form of Deduction thecrem (Theorem 9) and
some other auxiliary statements (the lemmas 10, 11, 12). Then, we skow how to
extend a consistent set ' of formulas to a maximal consistent set 7% {Theorem
13). Finally, the canonical model My is constructed using the set T* (Theorem
14) such that Mg E ¢ iff ¢ € T {Theorem 15}.

Theorem 9 {Deduction theorem). If T is a set of formulas and v € Forg or
i, % € Forp, then

Tu{p) by if Trp— .



PROBABILITY LOGICS 49

Proof. The implication from right to left can prove exactly in the same way as
in the classical propositional case. For the other direction we use the transfinite
induction on the length of the proof of 4 from T U {¢}. The cases when either F 2
ot ¢ = 1 or ¢ is obtained by application of Modus Ponens (Rule 1) are standard.
Thus, let us consider the case where ¢ = Ps;o is obtained from T'U {¢} by an
application of Rule 2, and ¢ € For‘g. In that case:
T,ol «
T,¢F Pyya by Rule 2

However, since a € Forg, and ¢ € For}‘g,7 w does not affect the proof of & from
T U {p}, and we have:

(1) T'Fa

(2) T+ Pyia by Rule 2

(3) Tk P;l(l — (Lp — P;la)

4 Tre— Psi0 by Rule 1.
Next, let us consider the case where ¥ = A = Py, o is obtained from T U {o} by
an application of Rule 3, and ¢ ¢ Forp. Then:

(1) T,oF A— Py, _1a, for every integer k > {

(2) THe—= (A= Py, 10), for k2 1, by the induction hypothesis

(3) TH(pAA) = Py e for k>t

(4) T {@gArA) = Ps,a, from (3) by Rule 3

(5) TH o - !
Lemma 10.

(1) F Poi(a— 8) = (Pesa = P f3),

(2) ifFae B, then - Pyso & Py,f3,

(3) F Pysa— Pyra, s 21,

{4) + Pgpao—» Py, s 2.

Proof. (1) First note that using Rule 2, from F —~a V =L, we obtain

{1) F Pyi(—o V=l
and similarly, from F {=a A —L1) V 7 we have
(2) FP;l((‘ﬁCE/\—lJ_)Vﬁ“lOA).

By Axiom 5, we have F (Py,a A Pyo Ll A Pyi(naV —i)) = Pyo{aVv L), Since
F Pspl by Axiom 2, from (1) it follows that

(3) F Pyso = Psy(aVv L),

The expression Pyg(aV 1) denctes Py,—(-a A =L}, Py _g-(ma A -L), and
Pey_s(~a A —L). Similarly, 2P ;~—a denotes Pey-—a. By Axiom 6, we have

F{(Pgi—s(~a A=L) A Pegmmar) = Poy((na A-L) V =-a).
Since Py1({(~aA-1)V -a) denotes Py ((maA-L) V =), from (2) we obtain
F (Pgr—s(—a A LY A Pegmma) —
(Paa{(ma A =d) Voma) APa({(naAod) vV omag).



50 ZORAN QGNJANOVIC, MIODRAG RASKCVIC AND ZORAN MARKOVIC

It follows that F Pgy_s{—a A —~L1) = =Psa, le.,
{4) FPs(av L) =+ Poyoo
From (3) and (4) we obtain F Pysa — Pyy—=-a. The negation of the formula
Poi{a = 8) = (Posa = Py,f3) is equivalent to Py {(—aV ) A Pysa A PegfS. Since
= Pyya = Pyy—oa, this formula implies Pog(—aV 8) A Pyg——a A P 8 which can
be rewritten as Py (=aV 8) A Pgi_yma A Peg3. From:

¢ Axiom 6, Pgi_sma A Pey8 = Po(-o v 3), and

e Poja=-Pya,
we have

Fo(Poifa = 8) = (Pesa = Pouf)) = Por{-a Vv ) A-Pyi(-a Vv j),
a contradiction. It follows that

(o P;l((l{ — ﬁ) - (P;sa — P;Eﬁ).

(2) It is an easy consequence of Lemma 10(1).

(3) This formula expresses monotonicity of probabilities. From Axiom 3’ Py a —
Psro, s > 7, and Axiom 4’ Pora = Pyra, we obtain - Poya = Pyra for s > v,
If s = », the formula is trivially a theorem of the form - ¢ —+ .

(4) Similarly as (3). a

Lemma 11. Let T be o consistent set of formulas.

(1) For any formula A € Yorp, either T U {A} is consistent or T U {—A} is
consistent.

(2) If ~(a — Py,8) € T, then there is some n > % such that TU {a —
Py, 1B} is consistent.

Proof. (1) The proof is standard: f TUW{A} F L, and TU{-A} F L, by Deduction
Theorem we have T F L.

(2} Suppose that for every n > 1:
Tia— Py 1k L.
By Deduction Theorem, and manipulation at the propositional level, we have
Tea-s Py, 1f,

for every n > % By application of Rule 3 we obtain T F « — P53, a contradiction
with the fact that —=(oc = Py,08) € T. 0

Lemma 12. Let T be a mazimal consistent set of formulas. Then,

(1) for any formula A € Forp, exactly one member of {A,-A} is in T,

(2) for all formulas A,B € Forp, AVBeT if AcT or Be T,

(3) for all formulas ,+, where either @2 € Fore or v,1) € Forp, o AW €T
iff {o, ¥} C T,

(4) for every p € Forrpp,, tf TH @, thenw € T, _

(5) for all formulas @,1, where either ¢, € Forg or @, € Forp, if {¢,¢ =
Y} CT, thenw €T,



PROBABILITY LOGICS 51

(6) for all formulas @1, where either 9 € Forg or ¢,9 € Forp, if o € T
and b @ =y, theny €T,
(7) for any formula o, if t = sup, {Pssx € T}, and t € S, then Pya € T,

Proof. Proofs (1)—(6) are standard.

(7) Let ¢ = sup,{Ps,c € T} € S. By the monotonicity of the measure (Lemma
10(12}), for every s € §, s < ¢, I'F Py, 0. Using Rule 3 we have T' - Py, Since
T is a maximal consistent set, it follows from Lemma 12(4) that Py, € T a

Theorem 13. Fuvery consistent set can be extended to a mazimal consistent set.

Proof. Let T be a consistent set, Cng (1) the set of all classical formulas that are
consequences of T', and Ag, A;,...an enumeration of all formulas from Forp. We
define a sequence of sets T;, 1 = 0, 1, 2,...such that:
(1) Ty =TUuCnc(T)U{Ps1a: o € Cne(T)}
(2) for every i z 0,
(a) if T, U {A;} is consistent, then ;1 = T; U {4;}, otherwise
(b) if A; is of the form § — P47, then Tiyy = T3U{=A4;, 8 - =P, 17},
for some positive integer n, so that Ty4q is consistent, otherwise "
{c) Tyy1 =T U {—\A...;}‘
(3) 7 =UZ, 7o
The set Ty is consistent since it is contains consequences of an consistent set, and
similarly for the other members of the family of sets, by Lemma 12 each T3, ¢ > 0,
is consistent.

It remains to show that 7 is maximal and consistent. The steps 1 and 2 of the
above construction fulfill all requirements from Definition 7 which guarantees that
T is maximal. We continue by showing that 7 is a deductively closed set which
does not contain all formulas, and, as a consequence, that 7 is consistent.

First of all, 7" does not contain all formulas. If & € Forg, by the construction of
Ty, o and —a cannot be simultaneously in Ty. For a formula A € Forp the set T
does not contain both A = A; and =A = Ay, because T ax, 7)1 18 consistent.

I remains to show that 7 is deductively closed. If a formula @ € Forg and
T + o, then by the construction of Tp, a € 7 and Py € 7. Let A € Torp. It
can be proved by the induction on the length of the inference that if 7 = A, then
A€ T. Note that if A = A; and T; - A, it must be A € 7 because Tiyax(i j)+1 18
consistent. Suppose that the sequence 1, 2, .., A forms the proof of A from 7.
If the sequence is finite, there must be a set T; such that T3 - 4, and A € 7. Thus,
suppose that the sequence is countably infinite. We can show that for every i, if
tp; is obtained by an application of an inference rule, and all the premises belong
to 7, then it must be ; € 7. If the rule is a finitary one, then there must be a set
T which contains all the premises and 7 F ;. Reasoning as above, we conclude
wi € T. Next, we consider the only infinitary rule 3. Let ¢; = B —+ Py,a be
obtained from the set of premises {pf = B — Ps,,v: s € S}. By the induction
hypothesis, ¥ € T for every k. If ¢o; ¢ T, by the step 2b of the construction, there
are some [ and j such that =(B = Py,0), B = =Py, 1y € T}. It means that for

some j' = f:



52 ZORAN OGNJANOVIC, MIODRAG RASKOVIC AND ZORAN MARKOVIC

e BA-Py,a €Ty,
e Be Tj',
® 'jpzs—%%P;s——%”f €Ty,
which is in contradiction with consistency of T}. a

The set 7 is used to define a tuple My = (W, H, u, v}, where:

W = {wF Cne(T)} contains all classical propositional interpretations that
satisfy the set Cna(T) of all classical consequences of the set T,

e [a]={weW: :wka}and H = {[a] : @ € Forg},

e u: H —[0,1] such that u([¢]) = sup,{Pssx € T}, and

o for every world w and every primitive proposition p € ¢, v(w,p) = true iff
w = p.

The next theorem states that My is an LP Py peas-model.

Theorem 14. Let My = (W, H, i, v) be defined as above and a, B € Fore. Then,
the following hold:

(1) H is an algebra of subsets of W,

(2) If [o] = [B), then u([a]} = pw((]),

(3) o)) > 0 -

(4) (W) =1 and u(d) =0.

(5) p(la]) =1 = p((~al).

(6) u(le] U[B]) = ulla]) + w((8), for all disjoint (o] and (5],

Praof. (1) Let a, ay, as,. ..o, be formulas from Fore. Tt is not hard to see that
the following hold:
o W=[aV-a],and W e H,
e if (o] € H, then its complement [—a] beiongs to H, and
o if {al} . lo,] € A, then the union [al] .U [an] € H because [aq] U
[an] =la1 V...V
Thus, H is an algebra of subsets of W.

(2) Tt is enough to prove that o) € [3] implies p([a]) < w([8]). By the com-
pleteness of the propositional logic, [a] C [5] means that @ = 8 € Cne(T) and
Psi{ac — 8) € 7. By Lemma 10(1) we have that for every s € S, Py, = Py 0 €
T Thus, u([a]) < u([6]).

(3) Since Pyoa is an axiom, p({a]} 2 0

(4) Since pV -p € Cng(T) and Psi(pV -p) € T for every p € ¢, we have
W = [pV -p] and p(W) = 1. On the other hand, obvicusly, p(#) = 0. Since
Por{pV p) = Prio(pV -p) = Peom(p VY —p) = Peo(p A =p) = ~Puo(p A -p), by
Axiom 3, sup {Fss(pA-p) € T} =0, and p{0) = 0.

(5) Let r = p([a]) = sup,{Pssa € T}. Suppose that » = 1. By Lemma 12(7),
Pyra) € T. Thus, ~Pyo—a(= Pgpma = Psia) belongs to 7. If for some s > 0,
Psy=a € T, by Axiom 3’ it must be Pup—-a € w, a contradiction. It follows
that p([-a]) = 1. Next, suppose that r < 1. Then, for every rational number
re (r 1], "Pypa = Pepa, and Pepa € T. By Axiom 4, Pera and Py



PROBABILITY LOGICS 53

belong to 7. On the other hand, if there is a rational number r" € {0,7) such that
Pyr_prmoe € T, then ~Popna € T, a contradiction. Hence, sup {Py,(-a) € T} =
12 sup,{Psa € T} e, ulla]) = 1 - u{[-al).

{6) Let [a]Nn[8] =0, u([a]} = r and p{[3]) = s. Since [] C [~a], by the above steps
{2) and (5), we have r + s < r+ {1 —r) = 1. Suppose that r > 0, and s > 0. By
the well known properties of the supremum, for every rational aumber v’ € [0, r),
and every rational number s’ € [0, 5), we have Pypa, Pop B € T. It follows by the
axiom 5 that Pyrqe(aV B) € T. Hence, r + s < tp = sup {Poilav g) € T} If
r+ s = 1, then the statement trivially holds. Suppose r +s < 1. il r +5 < tg, then
for every rational number ¢ € (r + 5,1p) we have Pyp(a VvV 3) € T. We can choose
rational numbers ' > » and s” > s such that:

_'P?r"a: Pema €T, _'PBS”,Ba Pegn (6) €T and r"+s" =t £l
By Axiom 4, Pgpna € T, Using Axiom 6 we have
Poposgr(aVB) €T, —Poryg(aVP) €T and —Prplavp)eT,

a contradiction. Hence, r+s = #g and p{[a)U[S}) = u({e))+p([8]). Finally suppose
that » = 0 or s = 0. Then we can reason as above, with the only exception that
' =0 or s = 0. O

Theorem 15 (Extended completeness theorem for LPPs Meas). A set T of formu-
las is Axppp,-consistent iff it is LP P \eas-satisfioble.

Proof. The (<)-direction follows from the soundness of the above axiomatic system.
In order to prove the (=)-direction we can construct the LP P peas-model Mo,
and show that for every v € Forppp, MrFypiff ¢ € T.

To begin the induction, let ¢ = @ € Fore. If @ € Cng(T), then by the defi-
nition of My, My B a. Conversely, if My E «, by the completeness of classical
propositional logic, o € Cn (T).

Next, let ¢ = Py,a. If Prya € T, then sup, {Py,(a) € T} = u(la]) = s,
and Mz F Py, For the other direction, suppose that My F Py.a, ie., that
sup.{Psr(a) € T} 2 s. If p{le]) > s, then, by the well known property of
supremum and monotonicity of g, Pysa € T. If u([a]) = s, then by Lemma 12(7),
PBSCE cT.

Let ¢ = —A € Forp. Then My E Al Mgy E A ff A¢ T iff (by Lema 12(1))
-AeT.

Finally, let © = AANB € Forp. M E AAB I My E A and My E B iff A4,
B e T iff (by Lema 12(3)) AANB e T. O

In the last part of this section the canonical model My from Theorem 15 will
be used as a weak model, i.e., as a tool in proving completeness with respect to the
classes: LPPQ,ME&S,AU) LPPQ,Meas,nr and LPP2,Meas,Neat-

Theorem 16 (Extended completeness theorem for LPP; pveas,an)- 4 set T of
formulas is Axppp,-consistent iff it is LPPs pMeas,an-s0tisfiable.



54 ZOBRAN OGNJANGVIC, MIODRAG RASKOVI( AND ZORAN MARKOVIC

Proof. The proof can be obtained by applying the extension theorem for additive
measure®. on the measure u from the weak canonical model M. Thus, there is a
finitely additive measure @ defined on the power set of W that is an extension of
the measure p. O

Theorem 17 {Extended completeness theorem for LPP; Meas,s)- A set T of for-
mulas is Azppp,-consistent iff it 15 LPP; \eas o -Satisfiable.

Proof. By the Loeb process and a bounded elementary embedding [46] we can
transform the weak canonical model My into a g-additive probability model *My
such that for every formula &, My £ ¢ iff *My F &. O

Theorem 18 (Extended completeness theorem for LPPs peas Neat). A set T of
formulas is Az pp,-consistent iff it is LP Py \eas Neat-Satisfiadle.

Proof. In this proof we use a slightly changed construction of the set 7 from The-
orem 13. Using the same notation as above, the sequence of sets T;, 1 =0, 1,2,...
is now defined in the foliowing way:
(1) To=TUCnc(TYV{Psia:a€ Cne(T)}
(2) for every ¢ = 0,
(a) if T; U {A;} is consistent, then Tipy = T; U {A;}, otherwise
(b) if A4; is of the form § = Py, then Tipy = TiU{~A;, 8 — ~P,,_ 17},
for some positive integer n, so that T4y is consistent, otherwise &
(C) T =Tu {ﬂAl}
(d) if T; is enlarged by a formula of the form Pooc, add —a to Tyyy as
well.
(3) T=U T
Ag it can be seen, the only new step is 2d. We can show that it produces consistent
sets, too. So, suppose that for some a € Forg, (T3 U {Popa}) U {~a} - L. By
Deduction theorem, we have that T; U {P—pa} F «. Since a € Forg, a belongs
to Cnc(T), and by the construction, we have that Ppia € Ty which leads to
inconsistency of T; U { P=gu} since:
(1) T;, Pmoa F Py, since Py1a € T;,
{(2) Ti, P—oa + Pgpa, by the definition of P—g,
(3) Ti, Pooar b Py, by Axiom 3
and Py = =Pya. The rest of the completeness proof is the same as in Theo-
rem 17. O

The situation that the axiomatic system Azppp, is sound and complete with
respect to three different classes of models is similar to the one from the moedal
framework where, for example, the system K is characterized by the class of all

2Theorem 3.2.10 from [9]. Let C be an algebra of subsets of a set 0 and u{w) a positive
bounded charge-a finitely additive measure-on . Let F' be an zlgebra on §2 contzining €. Then
there exists a positive bounded charge u{w) on F such that p{w) is an extension of p{w) from C
to F and that the range of p{w) is a subset of the closure of the range of g{w} on C




PROBABILITY LOGICS 55

models, but also by the class of all irreflexive models. In other words, LPP;-
formulas cannot express the differences between the mentioned classes of probability
models.

3.5. Decidability and Complexity. In this subsection we will consider the prob-
lem of satisfiability of Forypp, formulas. Since there is a procedure for deciding
satisfiability and validity for classical propositional formulas, we will consider Forp-
formulas only.

S0, let 4 € Forp. Recall that an atom a of A is a formula of the form £py AL .. A
+pa, where £p; is either p;, or —p;, and py,..., pn are all primitive propositions
appearing in A. Note that for different atoms a; and a; we have - a; = —a;. Thus,
in every LPP) Meas-model p(a; V a;) = ple;) + pla;). It is easy, using propositional
reasoning and Lemma 10(2), to show that A is equivalent to a formula .

m k;
DNF(A) =\ A X*(p1,...pa)
i=1 j=1
called a disjunctive normal form ofA, where:
¢ X*“7 is a probability operator from the set { Py, ;, Pes, ; }, and
e X4i{p,...,pn) denotes that the propositional formula which is in the scope

of the probability operator X7 is in the complete disjunctive normal form,
i.e., the propositional formula is a disjunction of the atoms of A.

Theorem 19 (Decidability theorem). The logic LPPy is decidable.
Proof. As it is noted above, a Forp-formula A is equivalent to
m ks
DNF(A) =\ N\ X" (p1,....pn)-
i=1 j=1

A is satisfiable iff at least one disjunct from DNF({A) is satisfiable. Let the
measure of the atom a; be denoted by y,. We use an expression of the form
a; € X{p1,...,pn) t0 denote that the atom «; appears in the propositional part of

X(p1,-,pa). A disjunct D = AS_) X3(py, ..., pn) from DNF(A) is satisfiable iff
the following system of linear equalities and inequalities is satisfiable:

om

> v

i=1
yiz0fori=1,...,2"

zs i X'=Pyy
(5) Z yt{ 1 L =

s fXt=
ae€EXH(P1 .., pa)ED < X0 = Fes

Z {2 - Py,
Yt i .
ae€X*(p1,....pn) €D <sp XY= Foy,



56 ZORAN OGNJANOVIC, MIODRAG RASKOVIC AND ZORAN MARKCVIC

Since the problem of LP P \eas-satisfiability of A is reduced to the linear systems
solving problem, the satisfiability problem for LPPs-logic is decidable. Finally,
since A is LP Py pjeas-valid iff —A is not LP P peas-satisfiable, the validity problem
is also decidable. O

We can show that the LP P nese-satisfiability problem is NP-complete.
Theorem 20. The LPPs yeas-satisfiabilily problem is NP-complete.

Proof. The lower bound follows from the complexity of the same problem for clas-
sical propositional logic. The upper bound is a consequence of the NP-complexity
of the satisfiability problem for weight formulas from [27, Theorem 2.9]°. O

3.6. A heuristical approach to the LPP; y..s-satisfiability problem. Since the
LP P, \eas-satisfiability problem is NP-complete, it is natural to try to solve its
instances using heuristics. In this section we describe such an approach which is
based on genetic algorithms.

Genetic algorithms (GA) use populations of individuals. Each individual (also
called chromosome) is seen as a possible solution in the search space for the par-
ticular problem. Thus, a GA can be seen as a searching procedure for the global
optima of the corresponding problem. Individuals are represented by genetic code
over a finite alphabet. An evaluation [unction assigning fitness values to individuals
has to be defined. Fitness values indicate quality of the corresponding individu-
als, while average fitness of entire populations may be good measures of obtained
quality of the procedures. GA’s consist of applications of the genetic operators to
populations that must ensure that average fitness values are continually improved
from each generation to subsequent. Basic genetic operators are selection, crossover
and mutation, but some additional operators such as inversion, local search, ete.,
may be used.

Selection mechanism favourizes highly fitted individuals (as well as parts of ge-
netic code of individuals, i.e., genes) to have better chances for reproduction into

3Statements about complexity of the satisfiability problem for weight formulas from [27]. |A]
and [|Al] denote the length of A {the number of symbols required to write A), and the length of
the longest coefficient appearing in A, when written in binary, respectively. The size of a rational
number afb, where o and b are relatively prime, is defined to be the sum of lengths of o and b,
when written in binary.
Theorem 2.6 Suppose A is a weight formula that is satisfied in some measurable probability
structure. Then A is satisfied in a structure (5, H, g, v) with at most | Af states where every set of
stafes is measurable, and where the probability assigned to each state is a rational number with
size O Al||Al| -+ | Al log{|A]}).
Lemma 2.7 If a system of r linear equalities and/or inequalities with integer coefficients each of
length at most { has a nonnegative sclution, then it has a nonnegative solution with at most r
entries positive, and where the size of each member of the soluticn is Q(rl + rlog{r)).
Lemma 2.8 Let A be a weight formula. Let M = (S, H, 1, v) and Mg = (5, H, i, v') be probability
structures with the same underlying probability space (5, H, p). Assume that v(w,p) = v'{w,p)
for every state w and every primitive proposition p that appears in A. Then M £ A4 iff My E A.
Theorem 2.9 The problem of deciding whether a weight formula is satisfiable in a measurable
probability structure is NPcomplete.



PROBABILITY LOGICS 57

InputDataf);

PopulationInit(};

while(not FinishedGA()}{
for (i=0; %< Nyop ; 1+ +) p; = ObjectiveFunction();
HeuristicImprovement(};

ComputeFitnesses();
Selection();
Crossover();
Mutation();

¥

QutputResults(};

FIGURE 1. A general description of GA’s

next generations. On the other hand, chances for reproduction for less fitted mem-
bers are reduced, and they are gradually wiped out from populations. Crossover
operator partitions a population into a set of pairs of individuals named parents.
For each pair a recombination of their genetic material is performed with some
probability. In that way nondeterministic exchange of genetic material in popula-
tions 1s obtained. Multiple usage of selection and crossover operators may produce
that the variety of genetic materials is lost. It means that some areas of search
spaces become not reachable. This usually causes the convergence in local opti-
mums far from the global optimal values. Mutation operator can help to avoid this
shortcoming. Parts of individuals (genes} can be changed with some small proba-
bility to increase diversibility of genetic material. An initial population is usually
generated by random, although sometimes it may be fully or partially produced by
an initial heuristic. A general description of GA’s is given in Figure 1, where Npop
and p; denote the number of individuals and their objective values, respectively.
The objective value of an individual corresponds to the value which the individ-
ual owns in the case of the considered problem. The for-loop is repeated until a
finishing criterion (the global optima is found, the maximal number of iterations
is reached,...) is satisfied. Since the procedure is not complete, if the maximal
number of iterations is reached, we do not know whether the considered problem is
solvable. HeuristicImprovement() can be optionally included to improve efficiency
of GA and/or to help the procedure to escape from local optima.

In this section, we slightly change syntax of probabilistic formulas. Namely, as
we will mention below in Section 1{, sometimes is suitable to consider boolean
combinations of basic weight formulas of the form: ajw(ea) +--- + apwia,) 2 ¢,
where a;’s and ¢ are rational numbers, and «;’s are classical propositional formutas
containing primitive propositions from ¢. The intended meaning of w(a) is “the
probability of o”. Note that w{a) 2 s can be written as Py o in our notation. A
weight literal is an expression of the form 3, asw(a;) 2 c or 37, a;w(ay) < ¢. The
logic that allows such kind of formulag is still NP-complete-which can be proved as



58 ZORAN OGNJIANOVIC, MIODRAG RASKOVIG AND ZORAN MARKOVIC

above, i.e., by reducing the L.P P; peas-satisflability problem to linear programming
problem - so by using this logic we just add some expressiveness to our language.

Since Forp-formulas can be equivalently translated into their disjunctive normal
forms, and a disjunction is satisfiable if at least one disjunct is satisfiable, in the
sequel we will only consider formulas of the following form:

k
N @l w(CDNF(ad)) + - + o, w(CDNF(cd,, ))rho; &,

=1

where p; € {>,<}, al’s and ¢ are rational numbers, and CDNF{a) denotes the
complete disjunctive normal form of o. We say that such a formula is in the weight
conjunctive form (wic-form). Also, we will use at € CDNF(a) to denote that the
atom at appears in CDNF(a).

Example 21. The formula w(p — ¢} + w(p) 2 1.7 Aw(g) > 0.6 is satisfiable since
the same holds for the linear system

ppAg)+ppA-g) +u(-pAg)+ p(-pA-g) =1

ppAg) 20

pwpA-g) 20

p-pAg) 20

plopA-g) 20

pp A —g) + p(—pAg) + p(-pA—g) +2ulpng) 2 1.7
plpAg)+up(-pAg) 206 0

The input for the LP P veas-satisfiability checker based on genetic algorithms
18 a weight formula f in the wic-form with L weight literals. Without loss of
generality, we demand that classical formulas appearing in weight terms are in
disjunctive normal form. Let ¢(f) = {p2,...,pn} denote the set of all primitive
propositions from f, and |¢(f)| = NV.

An individual M consists of L pairs of the form (atom, probability) that describe
a probabilistic model. The first coordinate is given as a bit string of length N, where
1 at the position ¢ denotes —p;, while 0 denotes p;. Probabilities are represented
by floating point numbers.

For an individual M = ((at1, ulat1)),..., (atn, u(aty))), the linear system is
equivalent to: \/f=1 (Ef:l aijp{at;))pic;). Note that it is possible that some
aij = 0, though [a;;] matrix is usually not sparse.

The individuals are evaluated using function d{M), which measures a degree
of unsatisfiability of ar individval M. Function d{M) is defined as the distance
between left and right hand side values of the weight literals not satisfied in the
model described by Af:

ay= | 3 [ag S pety ka3 ,u(at)—cir.

MEL; p; e at€CDNF (al) atcCDNF (o, )

If d(M) = 0, all the inequalities in the linear system are satisfied, hence the indi-
vidual M is a solution.



PROBABILITY LOGICS 39

Some features of GA have been set for all tests:

s the population consists of 10 individuals,

¢ one set of tests has been performed with a population of 20 individuals,

¢ selection is performed using the rank-based roulette operator (with the rank
from 2.5 for the best individual to 1.6 for the worst individual-the step is
0.1y,

¢ The crossover operator is one-point, with the probability 0.85

o the elitist strategy with one elite individual is used in the generation re-
placement scheme,

e multiple occurrences of an individual are removed from the population.

Two problem-specific fwo-parts mutation operator were used. The first operator
(TP1) features two different probabilities of mutation for the two parts (atems,
probabilities) of an individual; after mutation, the real numbers in probabilities
part of an individual have to be scaled since their sum must equal 1. The second
operator (TP2) is a combination of ordinary mutation on atoms part, and a special
mutation on probabilities part of an individual. Instead of performing mutation
on two bits in the representation of probabilities part, two members p;y, pse of
probabilities part are chosen randomly and then replaced with random pj ,p;,,
such that p;, + p;, = p;, +pj, and 0 < pj ,p,, < 1. The sum of prababilities does
not change and no scaling is needed.

We have experimented with the following choices in the local search procedure:

LS1 (LS denotes “local search”): For an individual M all the weight literals
are divided into two sets: the first set (B) contains all satisfied literals, while the
second one (W) contains all the remaining literals. The literal tp pp cp € B
(called the best one) with the biggest difference |u(tp) — cg| between the left and
the right side, and the literal tw pw cw € W{the worst one) with the biggest
difference |u(tw) — cw| are found. Two sets of atoms are determined: the first
set Bagyy contains all the atoms from M satisfying at least one classical formula
of from tp = afw(af) + - +af wlaf ), while the second one Wy contains
all the atoms from M satisfying at least one classical formula @Y from tw =
aVwal”)+---+a} w(al’ ). The probabilities of a randomly selected atom from
Barsy ~ Wayy) and a randomly selected atom from Ways) ~ Bae(y) are changed
so that tg pp cp remains satisfied, while the distance |u(tw ) — cw| is decreased or
tw pw cw 18 satisfied.

L32: For na individual M, the worst weight literal tw pw cw from W (the
set of unsatisfied literals) with the biggest difference |u(tw) — cw| is found. The

literal can be represented ag Ef:l aw;plat;)pwew . We try to change the vector of
probabilities [u(at;)], so that the linear equation Ef:l awjp{at;) = cw is satisfied.
The equation Zf___l aw;pat;) = cw represents a hyper-plane in R™ while [aw ]
denotes a vector normal to the hyper-plane. The projection of {u(at;)] to the
hyper-plane, which satisfies the equation, is [¢'(at;)] = [u(at;)] + kw(aw;]. The



60 ZORAN OGNJANOVIC, MIODRAG RASKOVIC AND ZORAN MARKOVIC

calculation of k and the projection vector is simple and straightforward, and gives

L
L — G aw e lplaty)] o= 2 e Blatj)aw;

2 L ;
|aw| 2oi=1 Ow;”
We set the new vector of probabilities to be

fmasx (1 (at;), )]
Ele max{p'(at;), 0}

(negative coordinates are replaced with 0, and the vector is scaled so that the sum
of its coordinates Zf’zl w{at;} equals 1).

153 is similar to L52, with the difference being made when choosing the weight
literal tyw pw ew from W (the set of unsatisfied literals). The chosen literal is the
one with the smallest difference |u(tw) — cyw|; it is the best bad literal.

LS4 is similar to LS2 and LS3. Instead of calculating the projection [1'(at;)] =
[(at;)] + kwlaw,] for one chosen weight literal tw pw ew from W, we calculate
kw, |aw, ;] for each literal tw, pw; cw, from W (the set of unsatisfied literals)
and calculate the intermediate vector [u'(at;)], by adding the linear combination
to the original vector: [p'{at;})] = [u(at;)] + Y, kwilaw,;]. The new vector of
probabilities {¢'’(at;)] is then calculated in same fashion as in LS2.

In our methodology, introduced in {86], the performance of the system is eval-
uated on a set of PSAT-instances, i.e., on a set of randomly generated formulas
in the wic-form {with classical formulas in disjunctive normal form). The advan-
tage of this approach is that a formula can be randomly generated according to
the following parameters: N-the number of propositional letters, L-the number of
weight literals, 5-the maximal number of summands in weight terms, and D-the
maximal number of disjuncts in DNF’s of classical formulas. The considered set of
test problems contains 27 satisfiable formulas. Three PSAT-instances were gener-
ated for each of 9 pairs of (¥, L), where N € {50, 100,200}, and L € {N,2N,5N}.
For every instance S = D = 5. Having the above parameters, L atoms and their
probabilities (with the constraint that the sum of probabilities must be equal to
1) are chosen. Next, a formula f containing I basic weight formulas is generated.
It contains primitive propositions from the set {p1,...,pn} only. Every weight
literal contains at most .S summands in its weight term. Every classical formula
is in disjunctive normal form with at most D disjuncts, while every disjunct is a
conjunctior of at most N literals. For every weight term ¢ coefficients are chosen,
and the value of ¢ is computed. Next, the sum sp(¢) of positive coefficients and the
sum sn(t) of negative coefficients are computed. Finally, the right side value of the
" weight literals between sp(t) and sn(t), and the relation sign are chosen such that
f is satisfiable.

We prefer to test more problem instances of different sizes (even very large scale
instances) rather than making more trials on a smaller set of instances (of smaller
or average size). Since the tests are of large sizes, the necessity to perform them in
a reasonable time imposed to set the maximal number of generations to be: 10000
for N = 50, 7000 for N = 100 and 5000 for N = 200.

W (at;)] =



61

PROBABILITY LOGICS

RLLT OLLT 818¢ gzoe | 0801 | ge11 | os¥T || e¥se | 26 | BOET | 26TC 1981 68P1 £ ‘0001 ‘00T
44661 z8561 v/N VN [ w/n | w/N ] VN || v/ vIN | VN VN viN VIN % ‘0001 ‘00T
2£02 80T £0¢% GORT | TLET | V18 | LOET || 2462 | 4¥E1 | £88 | P90E £41T £641 1 ‘0001 ‘602
FLE PEE 6TF 20Z oz €91 V/N L¥E 450G V4T v/N 082 c0% £ ‘'00% ‘002
AR 989 B8L¥ 96T 191 141 v/N BRE £81 g6 v/N 98¢ 8€Z Z ‘00% ‘002
L 1t 8 B S 4 g t4 g 9 ¥ 1t Al 1 ‘00F ‘00T
€ z F i L T ¥ z Z T ¥ £ 4 € ‘00T ‘00T
] 11 €1 8 (134 L 11 FT 4 L 11 9 & ¢ ‘60T ‘00¢
202 028 [l 1488 59 84 TE ¥ET 9g 801 14 16 i3 T ‘005 ‘008
1.9 2L, 6T0T 19% EEH 06g 96T gLl 91F 60% 9TE §L8 ¥8F € ‘605 ‘00T
08¥ 092 9£% 8TT 191 90¢ 681 oRg 86% %2 la24 608 S6T T ‘00g ‘001
1L8 FGE 69E 82T jaad 51 ¥6 PSE [ikal 0g1 0LT 9€T 481 1 '00% ‘001
4 4 z 4 1 1 [ 9g 4 1 4 € 1 £ ‘00% ‘00T
4 4 ¥ |3 T ¢ 1 4 T € 1 € z z '00& ‘00T
& g g 4 2 [ a 53 8 £ Q1 zl 2 1'00Z ‘001
1 1 T 4] ] 0 1 1 0 0 1] T [ € '00T ‘001
0 0 0 0 [ Q s} 0 0 0 o} 1 ! Z ‘00T ‘00T
1] 0 i} o o Q o ) 0 0 0 1 i 1 '00T ‘001
61 91 [ Pl £1 ] 01 4 LT 6 81 114 8T £ '0%% '0%
zer 0L 29 og ot et az LE pE oS ¥ 95 8] T ‘09T ‘0%
zF a8 oF 1z i1 2t zz 68 91 91 i 0z ST 1 ‘09z ‘0%
£ 5 1 4 € Z 1 01 4 z 1 € £ £ '001 08
€ A [ z T 1 1 z z 1 1 4 1 z '001 '08
1 0 T 1 0 0 1 4 o} o 1 1 1 1'001 ‘08
0 0 [1] 3} 0 [} [ 0 1 i [} 1 0 £ 0% ‘09
a 0 0 ¥ 0 i} 0 0 ¥} i} 1 1 0 z ‘D% ‘0%
a o] 0 o 0 0 0 0 o 0 0 t 0 105 ‘og
uotyelsusd yowa ¥e1 | e8T | 257 1 18y P33 | €8T | 289 | ¥gT ‘ou jsug

ut pandde 857 uojerousd pangy uoreisusd yous <1 oN N

JO UOIRwquIos

yoes ur perjdde £,.97

u1 patpdde s,g7

S[ENPIATPUT O

S(EnpLApUL O]

S[ROPLAIPUI T

pul 0z [ "pu 0T

(o1's¥)edl | (8'p2)zdd | (FTIZdL

{(F'21ledl

(v'erledt

(pg1}2dL

g 2l9BL

€ Slq=L

Z S9%L

T 51981,

TABLE 1. Average time (rounded to seconds) used by the test

computer to execute successful tests for some selected parameters.

{Note

Value O means that the average lime was less than holf

second.)



62 ZORAN OGNJANQVIC, MIODRAG RASKOVIC AND ZORAN MARKOVIC

As an iilustration of the corresponding results we give Table 1 which contains
the average running time of successful tests as measured on our test computer (a
Pentium P4 2.4GHz, 512MB-based Linux station). The table shows running times
only for selected tests. Columns 2 and 3 show times for tests without LS’s, with
different population size (10 individuals vs 20 individuals). Increased population
size does result in smaller number of iterations needed to find the solution, but the
computational cost for each iteration is increased and the overall computational
cost is greater than with smaller population size. In columns 4-7 and 8-11 we
can compare the efficiency of various LS%. It is clear that L52 and LS3 are more
efficient than LS1 and LS4 when used for large problem instances, however it is
not clear which of them is the most efficient. The running times in columns &-
11 (LS's applied in each third generation) are on average smaller than times in
columns 4-7 (LS’s applied in each generation). However, this does not mean that
the principle of reducing application of LS’s to each third generation is always more
efficient. Finally, columns 12-14 show execution times for tests using combination
of LS’s. Combined usage of LS’ is not justified in terms of time efficiency, but it
is justified in terms of increased success rate. Higher mutation rate in this setup
leads to better time efficiency and higher success rate, except for a few less complex
problem instances,

4. Some variants of the logic LPP,

The lack of compactness in the presence of a finitary axiomatization might cause
a logical problem: there are consistent sets of formulas that have no maodel. Exam-
ple 4 contains suck a set for LPP;. One way to avoid consistency of unsatisfiable
sets is to employ infinitary logic aé we do above. On the other hand, the lack of com-
pactness motivates also investigations of models in which probabilities have a fixed
finite range in which case a finitary axiomatization does not imply the above prob-
lem any more. In this section we present three logics inspired by the idea of restrict-
ing the range of probability measures. In the first logic (denoted LPPZF ")) we give
a finitary sound and complete axiomatization with respect to a class of models with
measutres which have a fixed finite range of the form {0,1/n,2/n,...,n —1/n,1}.
Then we introduce another logic (denoted LPPf'“’"Fi“) in which the assumption
about the range of the measure is relaxed, and we consider the class of all probabilis-
tic models whose measures have arbitrary finite ranges (without the requirement
that the range is fixed in advance). Finally, we analyze the logic LPPy . Tt involves
a rule that enables us to syntactically define the range of the probability function
which will appear in the interpretation.

4.1. Logic LPP;r(”). Let n be a fixed positive integer, and Range = {0,1/n, ...,
(n—1)/n,1}. If s € [0,1), ther s denotes min{r € Range: s < r}. If s € (0,1],
s~ = max{r € Range : s > r}. The most of the notions defined in Section 3 are
also used for the logic LPPQF\]r ) The main, but important, differences are:

¢ in Definition 1-the finitely additive measure u maps the algebra H to Range
and



PROBABILITY LOGICS 63

¢ in Definition 6-proofs are finite sequences of formulas.

Note that LPP; ") _models are given relatively to n, and that different choices of n

produce different logics. The axiomatic system Az L PP contains all the axioms
2

from the system Azjpp,, and the inference rules 1 and 2 (but note Rule 3), as well
as the following new axiom:

(7) Posa— Pyora
Since the only infinitary inference rule from Azypp, (Rule 3} is not included in

Az, e, iU 1S @ finitary axiomatic system. Nevertheless, many statements {rom
2

the previous section still hoid. The next lemma states that Axiom 7 implies that
the range of measures must be the set Range.

Lemma 22. Let « be o sentence. Then:
(1) F Pera = Pe,a,
(2) F Psra e Pora,
(3) - PQT—OE A x4 P(TO!,
(4) F Vs’ERange Fasa,
(5) F Vicpange P=s@, where ¥ denotes the exclusive disjunction.

Proof. (1) The considered formula is equivalent to Axiom 7 because FPs,a =
“‘IP\<\,~O¢ = --P;l_,,—'cz = P<1_f-—=01, and P;TJra = Pkl_(l_,.ﬂa = Pgl—r+_'a =
Pea-n-—a ‘

(2) The formula is obtained from the axioms 7 and 3'.

{3) The formula is obtained from Axiom 3, and Lemma 22(1).

(4) From Axiom 2’ Pgia (= =Py 1), we have F (PyiaV-Pia)A—Ps o Thus,

- (P;la A —\P>1a) v (—IP;I A —|P>1Ct).

From PyieA—-Psa= P, and F Peoya ~+ Pgia, wehave - PojaV Poa. From
= P(lOd — ((P;l—O:V_‘Pgl—Oi) /\P<1a), [ (P;Sa — P}s—O’,) — (P<3—Q’. —r P<SC{),
we have
FPaa e ((Py-an-Py-a)V(Pe-anPqa)), and F PojaV P oV P -a

P_,a) V Peoa. Since b =Peoa, we finally

In such a way we obtain (VseRange -

have stRange Pesor.

(5) From P_.a = Pyra A -Psp, and the axiom 3, we have - Po,a =+ ~FP;a,
for s > r. Similarly, by the axiom 3', we have b P_.ov = -P_;a, for s < r. It
follows that = Py = ~Pesa, forr # s, and BV cpap oo Pasor a

The completeness proofs for the classes:

E Fr(n Fr Fr(n
LPP?,E\EIZ?&S’ LPPE,I\E[EZLS,AH’ LPP ) and LPP?,]\SIE?&S,NEBI}

2,Meas,o
are similar to the corresponding proofs from the previous section. In the sequel we
sketch this proof and emphasize some modified steps.
We begin as in the statements 8, 9 and 10. In the counterpart of Theorem 13 we
do not use the step 2b of the construction of a maximal consistent set, but otherwise
follow the corresponding proof. Then, the statements 12(1)-12(6) obviously hold,



64 ZORAN OGNJANOVIC, MIODRAG RASKOVIC AND ZORAN MARKOVIC

while Lemma 12(7) needs some explanation. By Lemam 22(3), the supremum s
of the set {r : Pyra € T} must be in the set Range. Also, for that s, it must be
Pysa € T, where T is the considered maximal consistent set. Thus, Lemma 12(7)
holds. A canonical model My = (W, H, 11, v) is introduced as above. Note that in
the counterpart of Theorem 14 for every formula o € Forg, sup{r : Po,a € T}
is the same as max{r : P>, € 7,r € Range}, because the set Range is finite.
Theorems 15— 18 can be now proved similarly as it is done above.

Thecrem 23 announces a property that does not hold for the systems considered
in the previous section. Another difference between logics from this and the previous
sections is illustrated in Example 24.

Theorem 23 (Compactness theorem for LPP;R(")). Let L be any class of models
considered in this section and T be a set of formulas. If every finite subset of T is
L-satisfiable, then T is L-satisflable.

Proof. I 1" is not L-satisfiable, then it is not Az y-consistent. It follows that

LEpFRs

T+ L. Since the axiomatic system Az, ,.ra( is finitary one, there must be a
2

finite set T/ < T such that 7' F L. It is a contradiction because every finite subset

of T is both L-satisfiable and Ax FR{nj-CONSIStENL, [

LPF}

Example 24. For every positive integer n and Range defined as above, it is easy
to construct an LPPs Meas-model M = (W, H, u,v) which does not satisfy that
Axiom 7. For example, let n =3, and p € ¢:

o« W= {?.U]_,’UJQ},

e H is the power set of W

e plwy) =172, plun) =1/2 and

o v(wy,p) = true, v(ws,p) = false.
Since p([pim) = 1/2, obviously M E Py 3p, and M E Py, /3p, so the instance
Poqy3p = Pyosap of Axiom 7 does not hold in M. O

Finally, decidability of the satisfiakility problem for the classes of models con-
sidered in this section can be proved similarty as Theorem 19. Only, note that the
measures of atoms must be in the set Range. Since that set is always finite, there
are only finitely many possibilities for such distributions, and decidability easily
follows.

4.2. Logic LPP;* ¥ In Section 4.1 the considered measures have a fixed fi-
nite range. Using ideas from [98], that assumption is relaxed, and we prove the
completeness theorem with respect to the class of all probabilistic models whose
measures have arbitrary finite ranges (without the requirement that the range is
fixed in advance). In the sequel some notions from [4] are used.

Let 4 be a countahle admissible set and w € 4. We use LPPZA""I’Fin to denote
our logic. The language of LPPQA’“"FI“ is a subset of A. It is the classical propo-
sitional language (-, A, V) augmented by a list of unary probabilistic operators of
the form Ps,, for every s € [0,1]NA. An important characteristic of LPPZA"”I’Fi” is
that the conjunction symbol and the disjunction symbol may be applied to finite or



PROBABILITY LOGICS 65

countable sets of probability formulas. Tt means that if G € A is a set of formulas of

LPP U™ then: Agee @ and \ geo @ and are also LPP VT formulas (but

note that all formulas from the set &' must be from Forp). For an LPPZ;A’W“Fi"—

formula @, the formula ®- is obtained by moving a negation inside the formula
® over the classical connectives. For example, (Ag- ®)— denotes V4., %, and
similarly for the other classical connectives,

Here we consider a particular subclass of the class LP P peas Of all measurable

probabilistic models. We denote it LPP21F " and it contains all measurable
models whose measures have finite ranges. The satisfaction relation F generalizes
the corresponding relation from Definition 2. The new cases are related to infinitary

formulas:

e if G is a finite or countable set of Forp-formulas, M F A G iff for every
BeG, ME B, and

e if (7 is a finite or countable set of Forp-formulas, M F \/ G iff there is some
be G sothat MF B.

The axiomatic system Az 4.0, Fin containg all the axioms and rules from the

LPPj
system Axzpp,, and also the following new axioms:

() (=2) & (2)
(8) {Ageg B) » C, C€G, G e A G is aset of probability formulas
(9) Vo Npea(Psorr = Psca), G € A, G is a set of classical propositional
formulas
and the rule

{(4) From B — C, for all C € GG, infer B — Ao C, G is a set of probability
formulas
introduced in [53]. In the completeness proof a result? from [9] and the weak-strong

model construction from {98] will be used. A weak model is an LPPSI;}"Q;S _model
defined above.

Theorem 25. An LPPzA’w"Fi" -formula @ is consistent iff it is satisfiable in a weak

A,ul,Fin
PZ

model in which every LF -theorem s true.

Proof. The simpler direction follows from the soundness of the axiomatic system.
For the other direction, let A;, 45, ... be an enumeration of all LPPf’”l’F‘“-Forp-
formulas. We modify the construction from Theorem 13:
(1) To = {2} U Cne(P)U {Pria:a € Cne{®)}
{2) forevery i 20,
(a) if A; = VpeeB and T; U {A;} is consistent, then for some B € G,
Tip1 = T3 U {A;3 U {B} such that T;4, is consistent, otherwise
(b) if T; U {A;} is consistent, then T34 = T3 U {4;}, otherwise
(¢) if A; is of the form 3 — Py, and T; U {4;} is not consistent, then
Tigr = TiU{~A;, 8 — =~P5,_ 17}, for some positive integer n, so that
T4 is consistent, otherwise

n

4Theorem 3.2.10 from [9] If u is a finitely additive measure and there is a real number
e € (0, 1) such that ;(8) > ¢, whenever 1(6) # 0, then y has a finite range.C]



66 ZORAN OGNJANOVIC, MIODRAG RASKOVIC AND ZORAN MARKOVIC

(d) Ti+1 = T; U {_'Az}

(3) T=UZ T
We can show that every T; obtained by the new step in the construction (the
step 2a) is also consistent. To prove that, suppose that T; U {A;} is consistent,
where A = \/ g, B, but that for every B € G, the set Ti4 = LU {A;JU{B} is
not, consistent. It means that
TiU{A;}U{B}F L, forevery Be &
T, U{A} B, forevery B G
T;U{Ai} F Agee —B, by Rule 4
Ty U{Ai} b~V peg B, by Axiom 7
which contradicts consistency of T; U {A;}. Then, we can follow the completeness
prof for LP P Meas, and construct the canonical model Mg. The axioms guarantee
that Mg is a weak model in which every LPP;“**™ theorem is true, and that
MeEpiffpeT. a

Note that, although in a weak model (since Axiom 9 holds) for every Forg-
forrula o the following condition is fulfilled:

(6) if M £ Popa then M F Py oa

it may be the case that there is no single ¢ > 0 such that the condition (6) holds
for all formulas. Thus, we will now construct the corresponding strong model, i.e.,
a weak model M which satisfies that there is a ¢ > 0 such that for every Fore-
formula o the condition (6) holds. By Theorem 3.2.10 from [9] (see Footnote 4),
measures [rom a strong model have finite ranges, and the model belongs to the
LPP ™ class.

Theorem 26. An LPP{l’W"Fi”-farmula D is consistent iff it is satisfiable in a
strong model in which every LPP{ " ™ theorem is true.

Proof. Again, the simpler direction follows from the soundness of the axiomatic
system. To prove another part of the statement we consider a language L4 con-
taining:
¢ the following three kinds of variables:
— variables for sets (X, Y, Z,...),
— variables for elements {z, ¥, z,...),
— variables for reals from [0,1] (r, s,...), and
— variables for positive reals greater than 1 (uw,...)
o the predicates: £ for reals, V(u,u), E(z, X) and p(X,7),
s a set constant symbol W, for every LJF'PQ4 w1FIn pore-formula «,
¢ a constant symbol r' for every real number r € [0,1] N A4, and
e two function symbols for additions and multiplications for reals.

The intended meaning of E(z, X) is ¢ € X, V{(u,u) means that a formula &
with the Gédel-number u (denoted ¢b{®) = u) holds in the model, while p(X,r)
can be understood as “r is the measure of X”. We use u(X) > r to denote
{Zs)(s 2 r Ap(X ), and V(@) to dencte V{gb(P), gb(2)).



PROBABILITY LOGICS 67

We define a theory T of L,,,, M A which contains the following formulas:
1) (VXOHYYI(V2)(E(z, X) « E(z,Y) & X =Y) ’
2) (Vo) (Blz, Wanp) ¢ (E(z, Wo) A E(z, W) for every a A 5 € Forg
) (Vo) (B(x, W_,) < ~FE(x,W,)), for every a € Forg
) (v2) (E(z, Wyup)
) Ve & W, = Wyyny, for every a € Fore
) V(Pesa) & u(Wy) > s, for every o € Forg
) ViApea B) ¢ Apeg VI(B), for every set of probability formulas & € A
) V(=B) ¢ =V(B), for every LP P Forp-formula B
) (V)3 (X, 7)
(10) (ZX)VYH((X,7) A (Y, 5) A ~(F)(Bly, X) A By, ) —
= @Z)((W)(Ely, X) V By, ¥)) > Ely, Z) AplZr + 5))

(11) (YXN(YWE(y, X) = p(X, 1))

(12) Gr> VX (X)) >0 = (X)) >7)

(13} Axioms for Archimedian fields for real numbers

(14) (Vz)E(z, Wy) where ¥ is an axiom of LP P Fm

(15) {(Zz)E(z, Wa) where @ is the formula from the formulation of the statement.
Let a standard model for L4 be (W, H, F,V, E, u, +, %, &, Wo, ) acFore rer, where
Hcec2W, F=Fn[0,1),FP CRafleld, VCRExR ECWxH, p:H—F,
4,4 F2 5 F, <CF? and W, € H.

Let M = (W, H, i, v} be a weak model for LPPVT"  If we define W, =
Uwew 0w, and H = {W,, : a € Forg}, it easy to show that M can be transformed
to a standard model. On the other hand, if ¥ is a consistent LP P 1P formula,
then there is a weak model in which it is satisfied, and consequently there is a
standard model in which V(%) holds.

Tet Tp € T, Ty € A. Since Axiom 9 holds in the weak model M it follows
that every Ty has a model. Hence, by the Barwise corapactness theorem, T has a
model M' = {W, H FV.E, p, +, %, <, Wa, ") acForg rer- We define a strong model
M = (W, H, u,v) such that the following holds:

e for every w € W, v(w,p) = true iff w € W, for every primitive proposi-
tion p, )
« H= {Wa e EFOI‘c},
o u(X) =r il p(X,r) holds in M".
Since (15) holds in M', M" E &, ' |

Cormpleteness also holds for 2y definable theories, but we it is possible to show
that it cannot be generalized to arbitrary theories.

4.3. Logic LPP$. Another generalization of the logic PP/ F™ contains an
infinitary rule which enables us to syntactically define the range S of the probability
function which appears in the interpretation:

s From A — Pr., for every s € 5, infer A — L.

However, we will skip all technical details here and discuss another logic which
extends LPP§ in Subsection 9.1.



68 ZORAN OGNJANOVIC, MIODRAG BASKOVIC AND ZORAN MARKOVIC

5. Logic LPP,

In this section we will present the logic LPP which extends LFPF; so that
iterations of the probabilistic operators are allowed. For example, a A Po P50
is a formula of LPP,. In that way we can express statements about higher order
probabilities and mix classical and prebabilistic formulas. More formally, the set
Forp pp, of formulas is the smallest set containing primitive propositions, and closed
under formation rules: if o and 8 are formulas, then Py, a0, —a and a A 3 are
formulas. The formulas from the set Forppp, will be denoted by o, 3,. ..

The corresponding semantics can be given as follows:

Definition 27. An LPP-model is a structure M = (W, Prob, v} where:

¢ W is a nonempty set of objects called worlds,
¢ Probis a probability assignment which assigns to every w € W a probability
space, such that Prob{w) = (W (w), H (w), u{w)), where:
— W{w) is a non empty subset of W,
— H{w) is an algebra of subsets of W{w) and
— plw) : H{w) — [0,1] is a finitely additive probability measure.
e 7 assigns to every w € W a two-valued evaluation of the primitive propo-
sitions, i.e., for every w € W, v(w) : ¢ — {true, false}.

Note that, in contrast to Definition I, there are as many probability spaces (in a
model M = (W, Prob, v}) as the worlds (in the set 1), i.e., for every world w there
is a particular {W(w), Prob(w}, u(w)). As a consequence, the satisfiability relation
is now defined betweenr worlds and formulas:

Definition 28. The satisfiability relation F fulfills the foliowing conditions for
every LP P -model M = {W,Prob, v) and every world w € W

if p € ¢ is a primitive proposition, M, w F a i v(w)(p) = true,

M,wF —a il M,w¥ a,

M,wkanAfiff M,wF aand M,wE 3, and

M, wF Pyoiff plw)(falmw) 2 5,

where [a]nm, denotes the set {uw € W(w) : M,u F a}. We will omit M from
M, w F o and write w F o if M is clear from the context. Similarly, we will write
[o].y instead of [a]ng -

Similarly as above, we consider measurable models only. An LPPj-model M =
(W, Prob, v} is measurable if for every w € W the set H(w) = {[a]w : @ € Forppp, }.
LPPy Meas denotes the class of all measurable LPP;-models. .

Definition 29. A formula o € Forppp, is satisfiable if there 1s a world w in an
LPP) Meas-model M such-that w F a; « is velid if it is satisfied in each world in
each LP P peas-model. A set T' of formulas is satisfiable if there is a world w in an
LP P Meas-model M such that w F o for every o € 7.

5.0.1. Axiomatization, completeness, decidability. It is interesting that a
sound and complete axiomatization with respect to the mention class LFPP; peqs can
be given by the axiomatic system Axypp, from Section 3. Of course, instances of



PROBABILITY LOGICS 69

axiom schemata must obey the syntactical rules that hold in this section. However,
the notions of deducibility and consistency introduced in the definitions 6 and 7
must be changed.

Definition 30. A formula e is deducible from a set T of {ormulas (T + «) if there
1s an at most denumerable sequence of formulas aq, ,. .., @, such that every o, is
an axiom or a formula from the set T, or it is derived from the preceding formulas
by an inference rule, with the exception that Rule 2 can be applied to the theorems
only. If § b a, we say that « is a theorem (+ a).

Definition 31. A set T of formulas is inconsistent if T' F a, for every formula «
otherwise it is consistent. Equivalently, T is inconsistent if T F L. A set T of
formulas is mazimal if for every formula o either o € T or — € T

Now, the restriction from Definition 30 that Rule 2 can be applied to the the-
orems only guarantees that Deduction theorem for LP P, holds. Also, the coun-
terparts of the statements 10-13 can be proved in the same way as above. The
canonical model M = {I¥, Prob, v} can be defined such that:

e W = {w:w is a maximal consistent set of formulas},
e for every primitive proposition p € ¢, and every w € W, v(w)(p) = T iff

p € w, and
e for every w € W, Prob{w) = (W{w), H{w), p(w)) is defined as follows:
- W{w) =W,

- Hw)={{u:ueW,acu}:acForrpp}, and
— plw)({uw:u € Wya € u}) =sup{s: Pp,0o € w}.
Similarly as above, we can prove that for every formula a and every world w, a € w
iff wE @ It follows that:
o for all @ and w, [a], = {v:uwe W,a € u},
o for all w, Prob(w} = (W (w), A (w), u(w),} is a probability space,
¢ the canonical model M is an LP P peas-model, and
s every consistent set of formulas is satisfiable in some world from M,

i.e., we obtain the extended completeness theorem for the class LPF) yeas. Fur-
thermore, reasoning as in the sections 3.4 and 4, we can prove completeness for
the following classes of models LP Py neas. all, LFPPL Meas,e a0nd LP P} Meas Neat, and
logics LPPT™  LppvFim and LPPS.

Decidability and complexity of the satisfiability problem for the class LP P Meas
are analyzed in the sequel of this section.

Theorem 32. If ¢ formule « is satisficble, then @ s satisfiable in an LPP) Meas-
model with a finite number of worlds. The number of worlds in that model is at
most 2% where k denotes the number of subformulas of o

Proof. Suppose that o holds in a world of an LP P, Meas-model M = (W, Prob, v).
Let Subf(a) denote the set of all subformulas of o, and k = |Subl{«)!. Let = denote
the equivalence relation over W2, such that w ~ u iff for every 8 € Subf(a), w = 8
iff w F 3. The quotient set Wy, is finite. From every class C; we choose an element
and dencte it w;. We consider the model M* = {W* Prob*,v*}, where:



70 ZORAN OGNIJANOVIC, MIODRAG RASKOVIC AND ZORAN MARKOVIC

o W= {wi},
e Prob” is defined as follows:
= W*(w;) = {w; € W*: (Ju € Cy; Ju € Wiw;)}
— H*(w;) is the powerset of W* (w;)},
— uMwi)(w;) = p(wi)(Cy;), and for any D C H*(wi), p"(wi)(D) =
Pw,ep (wi{w;),
e v*(w;)(p) = v{w;)(p), for every primitive proposition p € ¢.

It is easy to show that M* is an LPP) Meas-tnodel. For example, for every wy,
1 (w;) is a finitely additive probability measure, since

P W w) = > ptwdw) = Y gt (wi)(Cuy) =1

w; €W (w;} Cu EW/n

We can now show that for every 5 € Subf(a), § is satisfiable in M iff it is
satisfiable in M*. If 8 € ¢, M,w F 3 iff for w; € Oy, M,w; E § iff M*, w; E 5.
The cases related to A and - can be proved as usual. Finally, let 8 = F5,v. Then,
M, wF P,y i for w; € Cp, M,w; B Pyyy iff

5K ﬂ(wi)([;Y]M,uu) = Z wlwi)(Cu) = Z p(wi)(Cu) = ﬂ*(wi)([’Y]M*,wi)

Cu:M,uFy Clu:M* uisy

M M, w; B Py
Finally, it is clear that the number of different classes in Wy, is at most 2% and
the same holds for the number of worlds in M™. ]

Theorem 33 (Decidability theorem). The logic LPP, is decidable.

Proof. As it is noted above, a formula a is LPP| peqs-satisfiable iff it is satistiable
in an LPP) pMeas-model with at most 2% worlds, where k denotes the number of
subformulas of a. Ohserve that it does not necessary imply decidability of the
satisfiability problem for the class LFP P peas because there are infinitely many
such models. Nevertheless, the next procedure decides the satisfiability problem.
The procedure is applied for every such { £ 2%.

Let Subf(a) = {£1,-- - Bns 7y -- -, Ym ), and k = n + m. In every world w from
M exactly one of the formulas of the form

§w=ﬁ1/\.../\ﬁn/\—|’yll\.../\—wm

holds. For every [ < 2% we will consider { formulas of the above form. The chosen
formulas are not necessarily different, but at least one of the formulas must contain
the examined formula . Using probabilistic constraints (1.e., formulas of the form
Ps,3, =Py, (3) from the formulas we shall examine whether there is an LP Py peas-
model M with [ worlds such that for some world w from the model w = a. We do
not try to determine probabilities precisely. Rather, we just check whether there are
probabilities such that probabilistic constraints are satisfied in the corresponding
world. To do that, for every world w;y, 1 < [, we cousider a system of linear equalities
and inequalities of the form (we write § € §,, to denote that # occurs positively in



PROBABILITY LOGICS 71

the top conjunction of d., i.e., if §,, can be seen as A, d;, then for some ¢, 5 = §;):

!

3 plwi)(w;) = 1

=1
pwlw)(w;) 2 0, for every world w;
(7) Z wlwi){w;) = s, for every Pyyff € by,
wj:ﬁeéwj
Z plws)(wy) < s, for every Py 8 € O,
w,-:ﬁeéu,j

The first two rows correspond to the general constraints: the probability of the
set of all worlds must be 1, while the probability of every measurable set of worlds
must be nonnegative. The last two rows correspond to the probabilistic constraints,
because

S plwidwy) = p(wi) (8w

w_,‘:ﬁedwj

Such a system is solvable ifl there is a probability u{w;) satisfying all probabilistic
constraints that appear in §,,,. Note that there are finitely many such systems that
can be solved in a finite number of steps.

If the above test is positively solved there is an LPP; peas-model in which every
world w; F §y,. Since o belongs to at least one of the formulas &,,, we have that a
is satisfiable. If the test fails, and there is another possibility of choosing ! and/ot
the set of [ formulas 6, we continue with the procedure, otherwise we conclude
that « is not satisfiable.

It is easy to see that the procedure terminates in a finite number of steps. Thus,
the satisfiability problem for the class LFPFi meas 15 decidable. Since F o iff —a is
not satisfiable, the LP P peas-validity problem is also decidable. |

The satisfiability problem for the class LP P Meas 18 in PSPACE, while NP is
the lower bound of the complexity. The former statement is a consequence of
the PSPACE-completeness of a more expressive logic from [28], while the later
statement follows from the fact that the legic LPP, can be seen as a sublogic of
LPP;.

6. Some extensions of the probabilistic tanguage

I this section we will analyze some possible extensions of the considered prob-
abilistic language. The first extension contains probabilistic operators of the form
7 with the intended meaning “the probability belongs to the set F”. The next
extension allows reasoning about qualitative probabilities. Finally, we mention a
logic introduces in [27] in whick linear combinations of probabilities can be ex-
pressed. All extensions will be considered in the framework of the logic LPFP;, but
analogue analysis can be performed for the cther above presented logics.



72 ZORAN OGNJANOVIC, MIODRAG RASKOVIC AND ZORAN MARKOVIC

6.1. Probability operators of the form Qr. We will use LPP; pg o to denote
a probability logic whick depends on a recursive family O of recursive subsets of S
in a manner which will be explained below, while P and @ in the index means that
two kinds of probabilistic operators will be used. More precisely, the language of
LPPs p oo extends the LP Ps-language with a list of unary probabilistic operators
of the form Qg, where F' € 0. For example, the set Forzpp, ., of formulas
contains Qper = ~ P> . Note that every particular choice of the family O of sets
produces a different probability language, a different set of probability formulas
and a distinct LP P p g o-logic.

To give semantics to formulas, we use the class LP P, vjeas of measurable ZP Ps-
models, and the corresponding satisfiability relation {from Definition 2) with addi-
tional requirement that: ‘

e ME Qraiff u([a]) € I, for every F € O
which covers the case of the new operators. Note that ~Q ra is not equivalent to
Qo 1~ re because [0,1] ~ F' ¢ O, and the later is not a well formed formula.

It is obvicus, using the semantics of P, and () r-operators, that for a set F' =
{fisfos. .-} € O, Qra =V oy P=pir. But, if the set F is not finite, the right
side of this equality is an infinitary disjunction which does not belong to the set
Forppp, po.o Of formulas. Similarly for the formula Py < Qs 10, where s is a
rational number from [0, 1), the formula Q, jja € Forgpp, 1 5 - More formally:

Definition 34. Let ®, ¥ € Forppp, 1o o- The set Mod(®) = {M € LPP) Meas :
M F @} consists of all LPP, peas-models of the &. & is definable from ¥ if
Mod(®) = Mod(¥).

The above discussion suggests that in a general case neither the P -operators
are definable from the Q) -operators {i.e., some formulas on the language {—, A, P }
are not definable from the formulas on the language {-,A,Q.}), nor are the @ -
operators definable from the P -operators. The next theorems formalize these
conclusions. ‘

Theorem 35. Let O be o recursive family of recursive rational subsets of [0,1],
F € O an infinite set, and LPP; pg o the corresponding logic. For an arbitrary
primitive proposition p € ¢, there is no probabilistic formule A on the sublanguage
{ A, Py} such that Qpp is definable from a.

Proof. Suppose that there is a formula A on the language {—, A, P} such that
Mod(Qrp) = ({W, H, p,v) : p([p]) € F} = Mod(A). Recall that A is satisfiable iff
at least a system from the set of all linear systems that correspond to DNF(A)
is satisfiable. Let a,’s be the atoms of A and y;’s be the corresponding measures.
The solutions of any of those systems must satisfy ZmeDNF(p) y; € F. But, the
solutions of the systems are of the following form: y; € (r,s), ¥ € {r, 5}, . € (v, 5],
and y; € [r, s]. Such sets of solutions cannot produce the infinite, but denumerable
set I as it is required. Hence, Qpp is not definable over A. (W

Theorem 36. Let O be o recursive family of recursive rational subsets of [0,1],
LPP; pqo the corresponding logic, and s € S~ {1}. For an arbitrary primitive



PROBABILITY LOGICS 73

proposition p € ¢, there is no probabilistic formula A on the sublanguage {~, A, Q }
such that Py,p is definable from A.

Proof. Suppose that there is a formula A on the language {-, A, @} such that
Mod{Ps;p) = Mod(A4). The models of A are exactly those that satisfy p[p] > s.
But, similarly as above, the set of values for u[p] produced by Mod(A) can be either
denumerable, or its complement is denumerable. Hence, P p cannot be definable
over A. O

Example 37. Formulas with the new probabilistic cperators are suitable for rea-
soning about discrete sample spaces. For example, consider an experiment which
consists of tossing a fair coin an arbitrary, but finite number of times. Then, Qra
holds in this model, where o means that only heads (i.e., no tails) is observed in
the experimént, and F denotes the set {1, 3, 5,...}. Since Qp is not definable
over the probability language {—, A, P> }, this sentence cannot be described in the
probability logics used so far. .

6.1.1. Expressiveness of LP P po o-logics. As it is noted above, every par-
ticular choice of the family of sets O produces a different LP P pg o-logic. In
this section we describe a relation of “being more expressive” between these logics.
The fact that the corresponding hierarchy has no upper bounds, is a gooed reason
for introducing many probabilistic logics with new type of probability operators,
since no single probabilistic logic covers all contexts. The choice of particular logic
depends on the particular situation that we wish to formalize.

Definition 38. Let F be a rational subset of [0, 1]. The guasi complement of F' is
aset 1—-F={1-f:feF}
Example 39. If ' = {51— : ¢ = 1,2,...}, then, following Definition 38, 1 — F =
212%113'21,2,...}.
[t is easy to see that the quasi complement has the following properties:
s - (FNGE)={1-F)N(1-0G),
s 1 - (FUG)=(1-FU(l-aG),
e - (F~G)={1-F)~(1-G)and
e 1l -(1-F)=F.
These properties, as well ag the properties of U, N and ~, guarantee that an arbitrary
expression on the language {U,N,~,1-} can be rewritten in a normal form as a

finite union of finite intersections of differences between sets and quasi complerents
of sets.

Definition 40. Let O and O be recursive families of recursive rational subsets
of [0,1]. Let Fy € Oy. Fy is representable in Oy if it is equal to a finite union of
finite intersections of sets, differences between sets and quasi complements of sets
from Oy and sets [r, g], [r,3), {r,s] and (r,s), where r and s are rational nmumbers
from [0,1]. The family of sets Oy is representable in Oy if each set Fy € O is
representable in Oy.

Example 41. Let us consider a positive integer £ > (), the sets



74 ZORAN QGNJANOVIC, MIODRAG RASKOVIC AND ZORAN MARKOVIC

Fy={&: zzk,k+1,...}U{%l:@'=k,k+1a-~}=
Fzz{zl 3:1:27"'}7
v{; i=1,2,...},

and the family O, = {Fy, F3}. By Definition 40, F} is representable in O, because
F o= (Fn[0,1/2F) u ((1 - B)n [(3* - 1)/3%,1]).
On the other hand, the set Fy = {1/2% :{=1,2,...} is not representable in Os.

Theorem 42. Let Oy and Os be recursive families of recursive rational subsets of
[0,1]. Let Fy € Oy be representable in Og. For an arbitrary formule a € Fore,
there is a formula ¢ € Forppp, p 5.0, such that Mod(@Qr,a) = Mod(¢), i.c., Qra
and ¢ have the same models.

Proof. Suppose that Fy = |JI, ﬂf:l F;; (for the meaning of F} ; see below). It is
easy to see that for an arbitrary formula o € Fore we have (in the LP P, p g .0,u0,):

m kg
FQra e \/ N\ Rr,a

i=1 j=1
where
Pysa i Pera, if Fy i = [5,7]
Pysa A Pero, if F;; =s,1)
Ps,o A Pera, if F ;= (s,7]
Po,an Poya, if F5; =(s,7)
Wr if Fi; € Oy
Rp, ;o =< @r o, if Fij=1-F/; Fl, €0,
Qr 0 A ~Qpp a, it Fy;=F;~F/,,F;,Fl, € O
Qr,a A~(Pysa A Pgra), if Fyj = F;,j N[5, 7], FL € Oy
QF‘_"J_(X/\ “(Pysa A Perpar), if Fi= F." j ~ [s,7), F,’ ;€ O
QF;,J.Of A ={Pssa A Pgpar), if Fyj = F’ ~ (s,7], F € Oy
Qe aN(Posa A Pepa), I Fij fF' ~ (s,7), Fi’jeOg

Formula V", /\?;1 Rp, ;a belongs to LPP; pg.o,, and

m  k;
Mod(Qr, o) = Mod( VA Rpi‘ja> : a

i=1 j=1

Definition 43. Let (J; and Oz be recursive families of recursive rational subsets
of [0,1], and Ly and Lo be the corresponding LPPs p g o-logics. The logic Ly is
more expressive than the logic Ly (L1 £ Ls) if for every formula ¢ Foerngp!Q‘ol
there is a formula 1 € Forppp, 54,0, such that Mod(¢) = Mod{y).

Theorem 44. Let O5 and Oy be recursive families of recursive rationel subsets
of [0,1], and L, and Ly be the corresponding LPPs po o-logics. The family Oy is
representable in the family Oz iff Iy < La.



PROBABILITY LOGICS 75

Proof. (=) Let A € ForLpp, g o, - A is equivalent to

m ok
DNF(A) = v /\ Xi‘j(pl:"‘:p’rl):l

=1 j7=1

where every X*/ can be from the set {Ps, ;, Pes, ;, @r, ;- ~Qr,, }. Furthermore,
Mod(4) = Uir, ﬂ;‘zl Mod{(X* (py,...,pn)}. Let us consider the case where X*7 =
(F, ;- By the hypothesis the set Fj; is representable in Oy. Using the theorem
42 there is a formula B;; € Forppp, ., ., such that Mod(X*(p1,...,pa)} =
Mod{B; ;), and similarly for X = ~Qp, ,, whilst the cases where X/ = Py,
or X4 = P.,, . are both expressible in the logics L, and L;. Hence, there is a
formula B € Forppp, 440, Such that Mod(A4) = Mod(5).

(«<=) To avoid repetition of similar arguments, in the sequel of this proof we will
use ()1 instead of P—;. By the hypothesis, for every primitive proposition p € ¢,
and every Fi € Op there is a formula € € Forrpp, o, o, s0 that Mod(Qr,p) =
Mod(®). If F is an empty set, or a finite set, the formula Qg p & Vier @np
is a theorem {an empty disjunction is a contradiction), and 1, = Usepg, [f, f] is
representable in 0.

We can show that, if /| = {f1, f2,...} is an infinite set of rational numbers from
[0, 1], the formula € cannot be propositional. Suppose that B € Forg. Then, the
following cases must he distinguished:

o if ® - —p and & — p are not theorems, consider the model M = {({wy,ws},
olwewn} oy such that p({w:}) = ¢, p({wz)) = 1 — ¢, where ¢ is an irrational
number, v{wy }{p) = v(w,)(8) = T, and v(w:)(—p) = v{w2)(B) = T; since p(p]) =
g, it follows that M € Mod{®) and M ¢ Mod(@Qp, p}, a contradiction,

e if & — -p is not a theorem, whilst & — p is a theorem, consider an s €
Fy~ {0}, and the model M = {{wy,ws}, 280w} 1y v) such that p({w,}) = s,
pl{ws}) = 1 - s, v{w)(p) = vw)(~®) = T, and vuws)(~p) = v{wz)(~®) = T
since {[p]) = s, it follows that M ¢ Mod(®) and M € Mod(Qr,p), a contradiction,
and

o if & -+ —p is a theorem, consider an s € Fy ~ {0}, and the model M =
({wr,wa}, 200w2), 0} such that p({wi}) = s, p({wa}) = 1 -5, v(wi)(p) =
v(w ) (—~®) = T, and v(w2)(—p) = v(ws)(P) = T; since p{[p]) = s, it follows that
M ¢ Mod(®) and M € Mod{Q r p), a contradiction. '

Hence, @ € Forppp, pq.0, ~Forc. Let the disjunctive normal form of @ be
DNF(®) = Vi AjLy X% (py,...,pa) such that all A¥ X% (py, ..., pn) are con-
sistent. Since & <+ (® A Pyop) is a valid formula, we can suppose that the primitive

proposition p appears in ®. Let p be py, and a1,..., ao» be the list of all atoms
of & ordered such that a; = pA ..., for ¢ = 1,...,27" and a; = —pA ..,
for 4.= 2771 £ 1,...,2"% Let y1,..., yon denote the atoms’ measures. All the
LPPs Meas-models can be seen as points (s1,52,...,52~) in the 2”-dimensional

space E, such that ith coordinate corresponds to y;, for ali ¢ = 1,...,2". Since



76 ZORAN OGNJANOVIC, MIODRAG RASKOVIC AND ZORAN MARKOVIC

Mod(@ r, p1) = Mod(®), we have for every y € [0, 1]:
(,0,-..,0,1-y,0,...,0) € Mod(@mp1) iff (3,0,...,0,1-5,0,...,0) € Mod(®),
where the entry 1 — y is in the 2* ! + 1’st position. Thus,

m ky
yeFiffyel () {vl@0...,0,1-50,...,00MX"(@p,....p)},
i=14=1
and by straightforward inspection of equalities, inequalities and constraints that
can appear in the systems corresponding to the disjuncts from DN F(®), the set

Fl = {y ‘ (y:O:--':Dxl_yuou---70> EMOd(X{’j(pla"'apn))}:

is representable in the family Os.
Since every F) € () is representable in the family Os, the family O; is repre-
sentable in Oq. O

Theorem 44 correlates the relations of “being more expressive” between the
LP Py pg o-logics, and “being representable in” between the corresponding families
of sets. In the sequel we investigate the later relation having in mind the former
one. The relation “being more expressive” describes the hierarchy of expressiveness
of the LPP; p g o-logics.

Definition 45. Let O be a recursive family of rational subsets of [0,1]. The family
of all rational subsets of [0, 1] that are representable in O is denoted by O.

It is easy to see, using Definition 40, that a family O is closed under finite
union, finite intersection, quasi complement and difference of sets. Each family
O contains all finite rational subsets of [0,1]. Since the operations of union and
intersection satisfy the commutative, associative, absorption and distributive laws,
every family O with the standard set operations is a distributive lattice. Note that,
if complement of a set F' is understood as [0,1] ~ F, O is not a Boolean algebra
since [0, 1]~ F ¢ §. On the other hand, if S € 0, and complement is understood
as S~ F, O becomes a Boolean algebra.

Definition 46. Let O1 and Oy be recursive families of rational subsets of [0,1].
The binary relation ~ is defined such that Oy ~ O3 iff O) =

The relation ~ is an equivalence relation on the set @ of all recursive families
of rational subsets of [0,1]. We use O, to denote the corresponding quotient sct.
Each equivalence class o ¢ ;.. contains a unique maximal family O, such that
0, = 0. For such an equivalence class o and the corresponding family O, we say
that O, represents o. Let the set {O, : O, represents o0 € 0.} be denoted by O*.
Clearly, O* is countable.

Definition 47. Let &y and Os be different families from O%. Then Oy < O, iff
(01 18 representable in Oy,

Theorem 48. Let O and Oy be daﬁerent families from O*., Then Oy < Og iff
Ol C Og



PROBARILITY LOGICS 77

Froof. The statement is an immediate consequence of the corresponding definitions.
a

Theorem 49. The structure (0%, <) 15 a lattice.

Proof. Since C is a partial ordering, by Theorem 48, the relation < defined on
O* is a partial ordering, too. Moreover, any two elements of (0%, <) posses both
the least upper bound, and the greatest lower bound. Suppose 01,0, € OF. Let
O3 = 0p U0;. Obviously, 01 < Os, and Oy < ;. Suppose that there is an
(4 € O, such that O < 04 and Oy < 4. But then, by Theorem 48, O; C Oy,
Os C O4, and O1 U Oz C Q4. It follows that O3 < Q4. Hence, O, U0, is the
least upper bound of {0, 04}. Similarly, the greatest lower bound of {0,005} is
0 N Oy Since {O*, <) is a partially ordered set such that any two elements posses
both a least upper bound, and a greatest lower bound, it is a lattice. [

The meet (-} and join (4) operations can be defined as usual:
Oy Oo=01N02, and Oy +03 =0,U0s.

Since every set that is representable both in O and in O, is representable in
0y N Oy, we have O N Oy = 01 N O3, and O - O = O N Oy. On the other hand,
note that the join operation and the set union do not coincide, because for some
01,0 € 0", it can be O U0 # Oy U Oa.

Theorem 50. The lattice (0%, <) is not a modular.

Proof. We can find a counter example for the modularity law: if Qs < O, then
{0y - (O3 + 03)) = (02 + (01 - O3)). Let Prim = {k1, k2, ...} denote the set of all
prime numbers. Then, consider the sets: £ = {3r 1 i =1,2,...}, F = {5} -1 =
1,2,...}, and Fy = Fy ~ {55 4 = 1,2,.. .}, and the families 01, 04,05 € O,
such that O, = {F\,F}, Oz = @, and O = {Tg,} Obviously, Os C Oy,
and Oz < Oy, Since [y = [y U F3, F) is representable in Os + O3z, and also in
01 - (02 + Oz). On the other hand, Fy is neither representable in Oz nor in Oj.
Thus, F is not representable in O -+ (O} - Og), and the modularity law does not
hoid. O

Theorem 51. 0 is the smallest element of (0%, <).

Proof.  contains all the finite rational subsets of [0,1] only. Since an arbitrary
O € O contains these sets,  C O and @ < O. O

Let | = {rg,r1,...} be a rational subset of [0, 1] with only one accumulation
point. Let Gy = {F}, Uy € ©O*, and Oy < ). Note that a set Fy € O can
be either a finite set, or an infinite set such that symmetric difference of either
Fy and Fy, (F1 ~ Fo) U (Fy ~ F1), or 1 — Fy and F5 is finite. If all the sets from
()5 are finite, then O = 0. Suppose that there is an infinite set Fy € (Jy that
is representable in Op. F differs from F} (or 1 — Fy) in finitely many elements.
It follows that F} is representable in Oy, O < Oy, and O = Os. Hence, O; is
an atom of (0%, <). Suppose that a family O € O* contains a set F with finitely




78 ZORAN CGGMIANGVIC, MIODRAG RASKOVIC AND ZORAN MARKOVIC

many accumulation points. For every Fy; C F with only one accumulation point,
and 07 = {F1} holds Oy < ©. Finally, let us consider a family which contains a
set with infinitely many accumulation points. Suppose that a set Fgy is dense in
(@o,be) C [0,1], and Oy = {Fy}. We can obtain two sequences ag < a3 < ag < -+

and by > by > by > .- such that a; < b; for every 7 and j, a sentence of sets
Fy o R D F, D --- that are dense in {a;,b1) C [0,1], (az,b2) C [0,1],---,
respectively, and an infinite sentence of families Oy = {F1}, Oz = {F2},..., such

that 0 < --- < O3 < Oy < Oy. Obviocusly, there is no atom in this sequence.
In particular, we have the following theorems:

Theorem 52. A necessary and sufficient condition that an O € O be an atom
is that O = {F}, where I is a set with only one accumulation point. The lattice
(0", <) is non-atomic.

Theorem 53. There is no greatest element in (0%, <). Consequently, the lattice
O* is o-incomplete.

Proof. Since the family of all recursive subsets of S is not recursive, for each recur-
sive family O of recursive subsets of S there is a recursive F' C S non-representable
by . Hence, there is no greatest element in (O*. Furthermore, o-incompleteness
is an immediate consequence of the fact that O* is a countable ordering without
upper bounds. O

Thus, we can define a hierarchy of the LPFs p o o-logics, so that a logic Ly is
less expressive that a logic La (Lq < Lg) iff the corresponding families Oy and O,
of rational subsets of [0, 1] satisfy & similar requirement {4y < O3). The hierarchy
of the probability logics is isomorphic to (0%, <). Thus, the probability logic LPP,
is on the lowest level in the hierarchy of the LPP, p o o-logics and corresponds to
the O-element of (O*, <).

6.1.2. Complete axiomatization. Let us consider a fixed recursive family O
of recursive subsets of 5 and the corresponding LPP: pg o-logic. The axiomatic
system AzZppp, p g, extends the system Azppp, with the following axiom:

{(7) Posox = Qro, where F e Q andse F
and the inference rule: )

{4) From P-;a = ¢, for all s € F, infer Qra = ¢.
As an illustration we give a list of useful theorems of Azrpp, ., o:

Theorem 54. If all the mentioned formulas belong to the set Forppp, ,, o, the
following holds in the corresponding LP P; p g o-logic:

(1) FQra— Qga, for F C G

(2) F{QranQga) & Qrnca

(3) F{QraV Qga) + Qruca

(4) F(QraA Pysa) & Qs ajnra, and similar for Py, Pesa, Pega

(B) FQra & Qi—p—a, where l - F={1l—f:fcF}

(6) F{QraA-Qga) & Qr.ga



PROBABILITY LOGICS 79

Proof. Let us consider the case (1). If F,G € O:

b Posa = Qo for every s € F C (¢, by Axiom 7
FQra = Qga, by Rule 4.

The other statements follow similarly. O

The completeness proof for Azrpp, ., o follows the ideas from the correspond-
ing proof from Section 3.4.

6.1.3. Decidability. In Section 3.5 we proved decidability of the LFPP, logic
which can be seen as an LFP P p g o-logic with the empty family G. The proof
involves a reduction of a formula to a system of linear (in)equalities. A look on
this method indicates that the similar procedure might be applied for an arbitrary
LPPF; pg.o-logic. However, since there are also the operators of the form @Qr,
instead of the system (5), we have to consider linear systems of the following form:

gn
Zyi =1
i=1

yi>0, fOI“i:]_:___,Qn
> s if X' = Py,
Z y < 5] lel =P<$1
t o
(8) 2 €X 1 (pr,opn)ED eFm X _QF1
¢F1 1fX1 :_|QF1
zs, i XF=Pyg,
> g 4 <k if Xk =P,
t . L
@ EXH(pr e pa) €D €F, if X'=Qp
¢Fk lel :—1QFk

An obvious statement holds:

Theorem 353. An LPP; pg o-logic is decidable iff for every probabilistic formula
A &g Forppp, ;o ~ Forg there s af least one disjunct from DN F(A) such that the
corresponding system (8) is solvable.

The requirement from Thecrem 55 is very strong. For example, consider the
system
Y1ty =1
y, =20, fori=1,2
i1 28
1 €F

obtained from the formula Ps,pAQprp. The system is solvable only if F'N[s,1] # 0
is decidable, and this depends on the set F. If F' is a codomain of a suitable



80 ZORAN OGNJANOVIC, MIODRAG RASKOVIC AND ZORAN MARKOVIC

rational-valued function, the system can be solved, but, in the general case, decid-
ability of the set F' does not imply that either the system is solvable or that the
LPP; pg o-logic is decidable. However, there are recursive families O such that
the corresponding probabilistic logics are decidable. A trivial example of this kind
is any recursive O C [S§]<%, where [S]<% is the family of ali finite subsets of S. A
nentrivial example of a decidable logics concerns the logic which is characterized
by the family O such that each F € O is definable (with rational parameters) in
the language of ordered groups.

6.2. Qualitative probabilities. Reasoning about qualitative probabilities is one of
the most common cases of qualitative reasoning. Here we offer the first strongly
complete formalization of the notion of qualitative probability within the framework
of probabilistic logic. We obtain the language of the corresponding logic {denoted
LPP; <) by extending the L.PPy-language with an additional binary operator =,
such that for some Forg-formulas a and 8, o <%  means “3 is at least proba-
ble as «”. Similarly as in Section 6.1, we use the class LPP; yeas 0f measurable
LPP;-models, and the corresponding satisfiability relation (from Definition 2) with
another additional requirement that:

o Ifa,J € Forg, MF a < §iff u(fa]) < p([8]),

The axiomatic system Azppp, , extends the system Azppp, with the following
axioms:

() (PgsaAPpeff) 2a=p

(8) (= BA Pysa) = P8,
and the inference rule:

(4) From A = (Py.a —+ Py.ff) forevery s€ 5, infer A = a < 4.
The next theorem gives us some useful properties of the probability operator <:

Theorem 56. Suppose that T is a set of formulas and that o, 3, v € Forg. Then
the following holds:

(1) TFa =g if and only if T+ Py (a) — Pys(B) for all s € S;

(2) FaxpVvB=a;

By FlaXBAB 2y vy,

4) Fa<a;

(5) If Tk Por{a — B) then T H o < 3;
(6) fTra—SthenThHa<p.

Proof. Since {5) directly follows from (1)}, (4) from (2), and (6) is a consequence of
(5) and Rule 2, we wiil prove only the first three statements.
(1) Suppose that T+ @ < 8. By the axioms 1 and 8 we have that

Tha=8—= (Pla) = Py (8))

Now applying Rule 1 we obtain that T Py.{a) = Ps.(8). Conversely, suppose
that I'F Pyy(a) = Py,(0) for each s € §. Then by Axiom 1

Tk P;o(a) — (PQS(O() — PBS(B))



PROBABILITY LOGICS 81

for each s € S. Applying Rule 4 we deduce that T F Pyp(e) = a = 8. Finally,
since T F Pyo{c) (Axiom 2), by Rule 1 we conclude that 7' o < 3.
{2) First let us observe that Axiom 7 is equivalent to

(e 2 8) = (Pes(B) = Posla))-
Since F Ps(a) = Pyi{a), we have that b (o = 8) = (Ps,(8) = Pss(a)) for
every s € S, so by Rule 4 we obtain F ~(a < 4) — 3 =< o, which is equivalent to
Fa<3dvi<a
(3) According to Deduction theorem, it is sufficient to prove that

axgftvrazy
Since a < Bt Py{a) — Pue(3) and 8 < vk Pyy(8) = FPys(v), we have that
a 23,8 2yt Pyyla) = Pes()-

This holds for alt s € 5, so applying the statement (1) from this theorem, we obtain
that @ X 3,0 <yt a2y .

The corresponding completeness proof follows the same steps as above for LP ;.
Also, decidability can be proved in the same way as in Section 3.5 since the only
new type of formulas (« < ) can be reduced to an inequality of the form:

Z pllar]) < Z p(lax])-
ax €CDNF(a) er ECDNF{3)

It is also interesting that, if we add the qualitative probability operator to the
logic LPPY ") due to the fact that the set Range (which denotes the range of the
considered probability functions) is finite, « < 8 can be seen as an abbreviation of
the formula A cpanze{Fss = P3¢8). Thus, the notion of the qualitative proba-
bility is definable in LPP;" ™, and the logics LPP, " and LPP; ™ coincide (in
the sense that the later one is a conservative extension of the former logic).

7. First order probability logics

This section is devoted to a probabilistic extension of first order classical logic.
In this case interleaving of the probabilistic operators and the classical quantifiers
is important, especially when we compare first order probability logics to first order
modal logics. Thus, to avoid repetition and contrary to Section 3, we will start here
with the logic LFOP,, the first order counterpart of the propositional probability
logic LPF;.

7.1. Syntax. The language of the LFQ P, -logic is an extension of the classical first
order language. It is a countable set which contains for each non negative integer

k, k-ary relation symbols P§, PF,. .., and k-ary function symbols Ff, Ff,. .., and
the logical symbols A, and -, quantifier ¥, a list of unary probability operators P,
{or every rational number s € [0, 1], variables =, vy, z, . . ., and parentheses.

The notions of existential quantifier, arity of a functional or a relational symbol,
term, atomic formula, bound and free variables, sentence, and a term free for a
variable in a formula can be defined as usual, while the set Forprop, of formutas



82 ZORAN OGNJANOVIC, MIODRAG RASKOVIC AND ZORAN MARKOVIC

is the smallest set containing atomic formulas and closed under formation rules: if
o and (3 are formulas, then -a, Py 0, a A S and (Vz)a are formulas.

Example 57. An example of a formula is:
Pys(Ya) P (2) — P{(y, I7) A Por Poe PLY).

alry, ..., Tm) indicates that free variables of the formula « form a subset of
{z1,...,8m}. If £ is a term free for 2 in o, then a(t/z) denotes the result of
substituting in « the term ¢ for all free cccurrences of z. We will alsc use the
shorter form «(f) to denote the same substitution.

7.2. Semantics. The models we will use are similar to LPP; peas-models with
an important difference that worlds of models are now classical first order models.
More formally:

Definition 58. An LFOP;-model is a structure M = {W, H, u,v) where:
¢ W is a non empty set of objects called worlds,
o D associates a non empty domain D{w) with every world w € W,
o [ associates an interpretation J(w) with every world w € W such that:
— I{w)(FF) is a function from D(w)* to D(w), for all ¢, and k,
— I{w)(PF) is a relation over D{w)*, for all ¢, and k.
e Probis a probability assignment which assigns to every w € W a probability
space, such that Prob{w) = (W (w), H(w), u(w)), where:
— W{w) is a non empty subset of W,
~ H{w) is an algebra of subsets of W (w) and
—~ p(w) : H{w) = [0,1] is a finitely additive probability measure.

The next definitions reflect the mentioned fact that worlds in LFOP, -models
are classical first order models.

Definition 59. Let M = (W, D, I Prob} be an LFOP,-model. Avariable valuation
v assigns some element of the corresponding domain to every world w and every
variable z, i.e, v{w)(z) € D(w). Hw & W, d € D{w), and v is a valuation, then
vp[d/z] is a valuation like v except that vy,[d/z[{w)(z) = d.

Definition 60. For an LFOP;-model M = (W, D, I,Prob) and a valuation v
thevalue of o term t (denoted by I{w)(¢),) is:
e if ¢ is a varlable =, then I'(w)(z), = v(w)(z), and
o ift=F™(t1,...,tm), then
Hw)(E)o = H(w)(E (I (w){t1)w, - 1(w)(En)u)-
Definition 61. The truth value of a formula ¢ in a world w € W for a given
LFOP-model M = (W, D, I, Prob), and a valuation v (denoted by I{w){a),) is:
o if o= PM(ty, ... twm), then I{w)(a)y = T if T(w)(E1)v, -, T(W)(tm)w) €
I{w)(P™), otherwise I{w){a)y = L,
o if o = =73, then I{w)(a), = T if I{w)(#)y = L, otherwise I{w)(a ) =1,
o if @ = Py.f3, then I{w)(a), = T if plw){u € T/V[ Vi I{w)(B)e = T} 2 s,
otherwise I{w)(a), = L,



PROBABILITY LOGICS 83

|
-

o if &« = A, then I{w){a), = T if H{w)(B)y = T, and I{w)(y), =
otherwise J{w)(x), = L, and

o if o = (Vx)83, then I{w)(a), = T if for every d € D, Iw)(B)yy(asz) = T
otherwise I{w)(a), = L.

Definition 62. A formula holds in a world w from an LFOP-model M = (W, D,
I,Prob}y (denoted by (M,w) E a) if for every valuation v, I{w)(a), = T. If
d € D(w), we will use (M,w) = ald) to denote that for every valuation v,
Iw){a(z))o, (@/=) = T

A sentence o issetisfieble i there is a world w in an LFOP;-model M such
that (M,w) F a. A set T of sentences is satisfiable if there is a world w in an
LEFOP-model M such that for every a € T, (M, w) F a.

A sentence « isvalid if for every LFOP -model M = (W, D, I, Prob) and every
world w € W, (M, w) F a.

In the sequel we will consider a class of all LFO P -models that satisfy: 7

e all the worlds from a model have the same domain, i.e., for all v,w € W,
D(v) = D{w),

e [cr every sentence o, and every world w from a model M the set {u €
Wiw) : I{u){a), = T}of all worlds from W{w) that satisfy « is measurable,
and

e the terms are rigid, i.e., for every modei their meanings are the same in all
worids.

We use LFOPF,; Meas t0 denote that class of all fixed domain measurable maodels
with rigid terms.

Example 63. Let us consider the formula P, P/ (z}, and suppose that for an
LFOP Meas-model M = (W, D,I,Prob), w € W, (M,w) F Py,P}(z). By Defi-
nitien 62, this holds iff for every valuation v, I{w}{Pss Pl (z))y = T iff (M, w)} F
(Vz) Py Pl(z).

On the other hand, as we will show in Example 64, the satisfiability of the formula
P, Pl{z) does not imply the satisfiability of Pys(Vz)Pl(z). The example assures
an already existing impression that, although probability and modal logics are
closely related, modal necessity (denoted by O) is a stronger notion than probability
necessity (probability one, Pyy).

Example 64. Let us consider, the well known Barcan formula of the first order
modal logic:

BF (Vz)Oa(z) = D(Vz)a(z)

It is proved that BF holds in the class of all first order fixed domain modal models,
and that it is independent from the other first order modal axioms. However, the
behavior of the reminiscence of this formula:

BF(s) (Vz)Psa{z) = Py,(Ve)a(z)

is quite different.



84 ZORAN OGNJANOVIC, MIODRAG RASKOVIC AND ZORAN MARKGVIC

If s = 0, BF(0) is valid, because Pyo(Vz)a(z) always holds since probability
functions are nonnegative. So, suppose that s > 0. Let us consider the LFOP) jeas-
model M such that:

o W= {wr, ws, ws, i)
e D={d,dn},
b (M,'H)g) = Pll(dl)i (Mv ’U)g) 2 Pll (dg), (M: w3) F Pll (dl): (M1 ‘LU3) F Pll(dB);
(M, wq) # P (dr), (M, wy) E P} (da),
o plw)(wz) = &, plw)ws) = s — 2 plwi)(ws) = 2
It is easy to see that (M, w) F (Vz)Ps, Pl (z), because

plw){w :wE P (d))}) = plw)({ws, ws}) = s,
plwn)({w :w E PH(dz)}) = plwr)(§ws, wi}) = s.

On the other hand, (M,w) ¥ (Vz)Pl{z), (M,w,) ¥ (¥z)Pl(z), and (M, w,) #
(Vz)P{ (z), whilst (M, w3) F (Va)P} (). Since plwi)({ws}) = s — =, (M, w) ¥
Pss(Vz)Pl(z), and for s > 0, (M, w;) ¥ BF(s).

7.3. A sound and complete axiomatic system. The axiomatic system Az rop,
is a combination of a classical first crder axiomatization and the probabilistic axioms
.introduced in Section 3. It involves the following axiom schemas:

(1) ail the axioms of the classical propositional logic.

(2) (Va){x = ) = (o — (Vz)5), where z is not [ree in « ‘

(3) (Vz)al(z) = alt/z), where a(t/z) is obtained by substituting all free oc-
currences of = in a(z) by the term ¢ which is free for z in a(z)

(4) Pyoa

(5) Perao = Pogo, s> 7

(6) P<sa - P@a

(7) (Pora A PysB A Pri(maV =f)) = Pomin(r+s{aV f)
(8) (PS:"O‘/\ PesfB) = Perps(aVv ), r+s <1

and inference rules:

{1) From @ and o — f infer 5.
(2) From a infer (Vz)a
{3) From « infer Pyyev.

{4) From 3 = P;s__%ca, for every integer k > 1

5, infer 8 - Py,a
We use the notions of deducibility and consistency introduced in the definitions 30
and 31 from Section 5. The theorems 65 and 66 show that Az, rpop characterizes

the set of all LEO P, peas-valid sentences.

Theorem 65 (Soundness theorem}. The aziomatic system Azprop, is sound with
respect to the LEQO P Meas class of models.

Proof. Let o be an instance of a classical propositional axiom « obtained by sub-
stituting propositional letters by formulas. Suppose that the formula o is not valid,
L.e., that for some world w from a model M, and a valuation v, I{w){a'), = L. Tt
follows that we can find a classical propositioral valuation p such that pla) = L, a
contradiction. Let M = (W, D, I, Prob}) and w € W such that (M, w) F (Vz)a(z).



PROBABILITY LOGICS 45

It means that J{w)((Vz)a(z)), = T for every valuation v. Among these valua-
tions there must be one (denoted v') which assigns to z the value d = I(w)(t)y.
For this valuation I(w){a(z))y = 7. Since I{w){a(x))y = I{w)(a(t/z)),, we
have I(w)(a(t/z))y, = T for every valuation. Thus, every instance of Axiom 3
is valid. Note that the assumptions about fixed domains and rigidness of terms
are crucial. If it is not the case, and a(t/x) is of the form Py, 8(t/z), the term
t refers to objects in other worlds (different from w). It can have a consequence
that I(w)(a(t/z))y = L. The axioms 4— & concern the properties of measures from
. LEOP| peas-models and obviously hold in every model. The inference rules 1 and 2
are validity-preserving for the same reason as in the classical first order logic. Con-
sider Rule 3 and suppose that a formula a is valid. Tt must hold in every world from
every LFO P Meas-model. Thus, for every modet M = (W, D, I, Prob}, and w € W,
the sets {u € W{w) : (M,u) F o} and W{w) coincide. Since p(w)(W(w)) =1, it
follows that (M, w) F Pic. Rule 4 preserves validity because of the properties of
the set of rational numbers. d

Theorem 66 (Extended completeness theorem for LFOP| Meas). The aziomatic
system Azppop, is sound with respect to the LEOP| pMeas class of models.

Proof. The completeness proof follows the same ideas as above, for example as in
Section 5. The main new step is that, since we work with first-order formulas, we
have a special kind of maximal consistent sets called saturated sets. A set T of
formulas is saturated if it is maximal consistent and satisfies:

o if =(Vz)a(z) € T, then for some term ¢, —a(t) € T.

We can prove a counterpart of Theorem 13, where the new step:

o if the set Tjy; is obtained by adding a formula of the form —(¥z)5(z) to
the set 73, then for some ¢ € C, =8(c) is also added to T;1q, so that Tiy
is consistent,

guarantees that every consistent set of sentences can be extended to a saturated
set (C is a countably infinite set of new constant symbols). Then, the canonical
model M = (W, D, I, Prob) can be defined in the following way:

W is the set of all saturated sets,

D is the set of all variable-free terms,

for every w € W, I'{(w} is an interpretation such that:

— for every function symbol F™, I(w)(F™) is a function from D™ to D
such that for all variable-free terms 5, . . . , 4, in £, Fl oty tm) =
Fr(iy, ..o t,), and

— for every relation symbol P/™, I{w)(P™) = {{t1,...,tm) for all variable-
free terms t1, ..., bm € £: PM™(t1, .. bm) € w}.

for every w € W, Prob{w) = (W {w), H{w), p(w)) such that:

*

- Wiw) =W,
— H{w) is a class of sets [o = {w € W : a € w}, for every sentence a,
and

- for every set A € H({w), p{w)(4) = sup, {Pr. € w}.
and the rest of the proof is standard. O



86 ZORAN OGNJANOVIC, MIODRAG RASKOVIC AND ZORAN MARKOVIS

The same arguments as in Section 3.4 can be used to prove completeness of
Azprop, with respect to the classes: LPFOP) Meas,all, LFOP| Meas,Near and
LFOP) Meas,s, While the modifications similar to the ones from the previous sec-

tions will be appropriate for logics LFOP™™  LFOP#1F" LFOPS, and the
logic LFOP (the first order probability logic without iterations) and its variants.

7.4. Decidability. The logic LFOP, and its variants contain classical first order
legic. Thus, they are undecidable. The monadic fragments of the considered sys-
tems are undecidable, too. To show that, we can use the procedure due to Saul
Kripke [48, 62] and consider a translation of classical first order formulas that
contain only one binary relation symbol P? to monadic probability formulas such
that a classical first order formula is valid if and only if its translation is a valid
probability formula. The original translation replaces every expression of the form
P2(t;,12) in a classical formula by O(FP}(£1) A Py (i2)), and instead of the modal
formula we can use its probabilistic counterpart Pyo(Py (t1) A Py (t2)). Since the
fragment of the classical first order logic with a single binary relation symbol is not
decidable, the same holds for the monadic fragments of the first order probability
logics with iterations of probability cperators. However, it is interesting that the
monadic fragment of LFOP; is decidable.

8. Probabilistic logics with the non-classical base

Let us use the termthe basic logic for a logic from which we start building a
probability logic. So far, we have used only classical (propositional or first order)
logic as the basic logic, and it might be usefull to provide some motivation for other
possible choices. The most important reason to change the hasic logic, from our
point of view, might be the very nature of classical logic. Namely, it is basically
the logic of mathematics conceived as pertaining to some outside (Platonic) reality.
On this conception, statements are either true or false and forever so (truth is
independent of time and place), there is no room for modality (maybe, possibly,.. .)
or value judgment. It is not surprising that the resulting logic will have some’
consequences which seem rather odd in real-life situations and this issue has been
dehated throughout the last century, often under the heading “paradoxes of the
material implication”. In this section we will address those issues, and consider
two logics: in the first one we will use intuitionistic logic as the basic logic, while
in the second we will start from a temporal base. However, we do not argue that
either “classical” or any of “non-classical” probabilistic logics is the unique logic
for modelling probabilistic reasoming. Our view is more pragmatic: we believe that
there are real-life situations in whick the former approach could be appropriate,
but the same holds for the later one.

8.1. An intuitionistic probability logic. Intuitionistic logic arises quite naturally
from a conception of mathematics as a human endeavor not pertaining to some out-
side reality. Since the statements of mathematics are not about something which
exists out there, they cannot be true or false but only proved or disproved. This
leaves another category of statements, those which are as yet undetermined. Thus



FPROBABILITY LOGICS 87

intuitionistic logic may be viewed as the logic of the growth of human knowledge
{as opposed to the classical logic which we may regard as the logic of the static
Platonic universe of mathematical objects). Thanks to this, intuitionistic logic has
less consequences which would seem rather unintuitive in a real-life situation (e.g.,
(p=g)vig—=pland (p - (gvr)) = ({p = g}V (p = r)) are not intuitionistic
theorems, i.e., there are models in which they are false). In reality, there is the fact
that the intuitionistic logic might be the least popular non-classical logic among the
practitioners of artificial intelligence and computer science in general. However, for
those comfortable with the ubiguitous S4-modal logic and uncomfortable with intu-
itionism, we should emphasize that these two logics are practically the same: their
models are the same, while the Gddel translation enables us to interpret syntax.
Furthermore, as we shall show in the Remark at the end of this section, intuition-
istic logic arises naturally whenever we deal with possible worlds semantics. In
any case, starting with intuiticonistic logic, we naturally have, besides proved state-
ments (probability is 1) and disproved statements (probability is 0}, undetermined
statements whose probability should range between 0 and 1. This is more obvious
il we consider a Kripke model in which we can assign a probability to a formula on
the basis of the number of possible worlds in: which it is true. In our approach the
probabilistic operators have the classical treatment. As a justification, we may say
that once we determine the probability of an uncertain proposition «, it should be
either greater or equal to some s € [0, 1] or not, so it is not unreasonable to assume
PssoV =Pya (even if we reject oV —a).

We use LPP{ to denote the corresponding intuitionistic probability logic. At
the propositional level, the language contains the connectives —, A, V and —,
while on the probabilistic level we have two lists of unary probabilistic operators
(Pss)ses, and (Pgs)ses, and the connectives - and A. Note that, since we have
the intuitionistic base:
¢ at the pronositional level, the propositional connectives are independent, and
s at the probabilistic level, the probabilistic operators P, and P are indepen-
dent, but ¥ and — can be defined from — and A.

Similarly as for the logic LP P;, we do not allow iterations of probabilistic aperators,
and define the sets Fory of propositional formulas, Forp of probabilistic formulas,
and Forp ppr of all formulas, as in Section 3.1.

8.1.1. Semantics. Corresponding to the structure of the set Forpppyr, there are
two levels in the definition of models. At the first level there is the notion of
intuitionistic Kripke models [63], while probability comes in the picture at the
second level.

Definition 67. An intuitionistic Kripke model for the language Fory is a structure
{W, <, v) where:
o {W, <} is a partially ordered set of possible worlds which is a tree, and
e v is a valuation function, i.e., v maps the set W into the powerset P(d),
which satisfies the condition: for all w, w' € W, w € w'implies w{w)} C
v{w').



88 ZORAN OGNJANOVIC, MIODRAG RASKOVIC AND ZORAN MARKOVIC

The last requirement from Definition 67 allows that v does not determine the
status of some primitive propositions from ¢ in some worlds. In each Kripke model
we define the forcing relation IFC W x Fory by the following definition:

Definition 68. Let (W, <,v) be an infuitionistic Kripke model. The forcing rela-
tion I+ is defined by the following conditions for every w € W, «, 8 € Fory:

s ifac g wlkaiff o u{w),

wlkanfiff wikaand wik 3,

whrav il wltoaorwl 3,

wlt a — B iff for every w' € W if w € w' then w' ¥ a or w' I+ 3, and
w ke iff for every w' € W if w £ w' then w' ¥ «.

We read w IF « as “w forces o or “o is true in the world w”. Validity in the
intuitionistic Kripke model (W, <, v) is defined by (W, <, v} F a iff (Yw € W)w IF a.
A formula o is valid (F ) if it is valid in every intuitionistic Kripke model.

Let M; = (I, £, v} be an intustionistic Kripke model. We use [¢]n, (or shortly
[e] if M is clear from the context) to denote {w € W : w I &} for every a € Fory.
The family H; = {[a)m, : @ € Fory} is a Heyting algebra with operations:

[oqU[B] = Tavi],  [an[B] = [anp], [al =8l =[a— 5], and ~ o] =[-al.
Thus, Hy is a lattice on W, but it may be not closed under complementation.

Definition 69. Ameasuroble probabilistic model is a structure M = (W, <, v, H, it)
where:

o M; = {W,<,v) is an intuitionistic Kripke model,

s II'is an algebra on W containing Hr = {[a]m, @ @ € Forr},

o 1 H —[0,1] is a finitely additive probability.

Note that H contains all sets of the form W ~ [a]m;,, even if for some « € Fory
it may be that W ~ [a]m, # [7a]n, . The fact that [-a does not have to contain
the complement of [«] is the reason why we need both P, and Pg, operators since
Peoo will not imply Py -

We use LPP{ ;.. to denote the class of ali measurable probabilistic models.

Definition 70. The satisfiebility relation F is defined by the following conditions
for every LPPj \y .-model M = (W, <, v, H, -

e ifae Forr, ME o if (Vw € Wiw Ik o,

« M Posaif p(fa]) 2 5,

o MF Peyaif p(fa)) < s,

o if A €Forp, ME —-A if M F A does not hold, and

s ifABeForp, MFAABIHMEA and ME B.

Definition 71. A formula @ € FoerPQ; issatisfiable if there is a LPPQ{MeaS-model

M such that M F &; & isvalid if for every LPPZ{Meas-model M, M E ¢; a set of

formulas is satisfiable if there is an LFP Pz{
® from the set, M = &,

Meag-T0del M such that for every formula



PROBABILITY LOGICS 89

wy wy  w(we) = {g} p({w})=1/3
\ / o) = (p}  wl{wn}) = 1/3
wo vwg} =0 p({wol) = 1/3

FIGURE 2. A tree-like probabhilistic model

8.1.2. Examples. In this section we consider some conseguences of probabilistic
reasoning which is based on classical logic and which can be avoided using proba-
bilistic logic based on intuitionistic logic.

Example 72. 1t is well known that —{p A ¢} — (~pV —g) is a classical tautology,
called De Morgan’s law which is not an intuitionistic tautology. Still, even if we
believe that it is impossible to have your cake and eat it, we do not believe that it
is impossible to have your cake and we also do not believe that it is impossible to
eat your cake. More formally, we would like to have Py1—(p A q), but also Pg.—p
and Pg,~yg for come small ¢, which is impossible with classical logic.

Exaraple 73. Consider the classical tautology {p — q) V {¢ = p) and probabil-
ity logic based or classical logic. Since tautologies have probability equal to 1,
Por{{p = g}V (g — p)) is valid. Let us now take a real-life situation, where p and ¢
mean “it rains” and “the sprinkler is on”, respectively. It is clear that the sprinkler
should not he on when it rains, i.e., that p — ¢ should have low probability, say
less than e (P {p — ¢)). Since probability is additive, the measure of the union
of two sets is less or equal than the sumn of the measures of those sets. Thus, the
probability of ¢ — p has to be high. In other words, we get that it is very probable
that it will rain whenever the sprinkler is on (Ps1_.(¢ — p)). If we were designing
a controller for the sprinkler, this certainly would not be a desirable consequence.

On the other hand, {p — ¢) V(g — p) is not an intuitionistic tautology. Consider
the model from Figure 2. Recall that p — ¢ being false in a Kripke model means
that there is at least one possible world in which it is raining but the sprinkler is
off. Tt s easy tosee that wi b g 2 p,w Wp s quslbp— g, w W¥Wg—p,
wo W (p = O Vig—p) pllle = g Vig = plu) = 2/3, and M ¥ Por((p -
g} V (g = p)). Thus, the above consequence, that with high probability sprinkler
causes raining, does not follow any more.

Note also that we can construct a mede! in which both p = ¢ and ¢ = p will
have very low probability, say less than 1/n, by simply adding n — 3 linearly ordered
new worlds below wp in M, and having p{w) = 1/n, w € W. In the same model we
have Py1-(p A q), Pgiynmp and Pgiy, g, demonstrating the point of the previous
example.

Example 74. Consider the classical {but not intuitionistic) tautology (p — (g Vv
) = {{p — ¢)V{p — r)). Starting with classical logic makes P»((p = {gVr)) =
((p = ¢)V(p — r))) valid in probabilistic logic. If we take now p to be a description
of our knowledge, ¢ to be the P=NP-hypothesis, and 7 its negation, we obtain that
Poi({p — (g V1)) since gV r is ¢V g It follows that Pyi((p = ¢V (p = 7)),



30 ZORAN OGNIANOVIC, MIODRAG RASKOVIC AND ZORAN MARKOVIC

which either means that our knowledge is incensistent or that there is a considerable
probability of at least one of the sentences “The P=NP-hypothesis follows from our
current knowledge”, “The negation of P=NP-hypothesis follows from our current
knowledge”, which is not very much likely. Again, since the above propositional
formulais not intuitionisticaly valid, there is no such conclusion in the “intitionistic”
probability logic.

8.1.3. Axiomatization, completeness, decidability. An axiomatization that
characterizes the set of all LPPZ‘:MeaS-valicl formulas can be obtain by combining:

e any propositional intuitionistic axiomatization for Fory,
¢ any classical propositional axiomatization for Forp and
s probabilistic axioms and rules from Section 3.3

with the proviso that in this framework the probabilistic operators P>, and Pg
are independent, so for example, Axiom 3 from the system Azppp, should be
rewritten in the form: Pyy_,—~o — Py, for s > r. We skip the corresponding
completeness proof, but the proof of decidability for LPP{ contains more new
details and we give it in the next theorems. Let A € Forp and Subf;(4) = {a €
Fory : ais a subformula of A}, Let |4] and |Subfr(A4)| denote the length of A, and
the number of formulas in [Subf ({A4)|, respectively. Obviously, |Subf;y(A)] < |4].

Theorem 75. A probabilistic formula A € Forp s satisfiable iff it is satisfiable in
a finite probabilistic model conteining at most 2147 worids.

Proof. Let M = (W, <, v, H, ), and M E A, For every w € W, we use Subfr(w)
to denote the set of all formulas from Subf;(A} forced in w, Le., Subf;(w) = {a €
Subf {(A4) : w Ik a}.

In the sequel we will follow the idea from [121, Theorem 5.3.4}, and select some
of the worlds from W to construct a finite model M* satisfying A.

Let wg be the least element from W. We define the worlds of M* (indexed by
finite sequence) in the following way:

e ugy = wy, where () denotes the empty sequence,
® given uy let Ug.(1y, - Uowixy De the maximal set of worlds w® . w®)
from W such that for every 4,5 € {1,...,k}:
- Us £ w'?,
— Subfr(u,) # Subf;{w?),
— if uy € w < w®, then either Subfr{u,) = Subfr(w) or Subf;(w) =
Subfr(w), and
— if i # §, then Subf,(wt?) # Subf;(w).
Let W* = {0 : u, is defined}, €* be the usual crdering of finite sequences, and for
all o € W*, and & € Var, a € v* (o) iff o € v(u,).

Using the induction on complexity of formulas we can prove that for every o €
Subf;(A} and every ¢ € W*, o IF o in (W*, <%0 il up b o in W, < 0). I
« € Var, the statement holds by the definition of v*. Let & = 3 — ~. Suppose that
a W 5 = . Then there is some p € W* such that ¢ <* p, p(F F and p ¥ ~v. By the
induction hypothesis, u, IF 8 and u, ¥ v, u, < u,, and ue ¥ § = . On the other



PROBABILITY LOGICS 91

hand, suppose that u, ¥ 3 — <. Then, there are two possibilities. First, if u, iF 3
it must be u, ¥ ~v, and by the induction hypothesis ¢ I 3 and o ¥ +, which means
that a ¥ 3 — . In the second case there is some w € W such that u, € w, w k- 3,
and w W . Since u, ¥ 5, obviously Subfj(u,) % Subf;{w). According to the
above construction, there must be some wg € W such that u, < ug < w, o <* 0,
ug t+ 3, and ug ¥ . By the induction hypothesis, 8 t 3, 6 ¥ v, and o ¥ 3 — .
The other cases follow similarly.

Let ' be the finitely additive probability defined on {{w € W= : w I+ o} :
a € Subf;(A)} such that p'{{w € W* : w Ik a}) = u([a]y). Since for every
a € Subfj(A4), [ala # 0 {w e W* :w Ik a} # 0, is easy to see that u' is
correctly defined. Let M* = (W™ <™ v*, H* p*} be the probabilistic model such
that H* is the smallest algebra on W™ containing family {[a]m- @ o € Fory}, while
p* is a finitely additive probability on H* which is an extension of p'. Note that
it follows from Theorem 2 that such an extension always exists. Since probabilities
of Forr-subformulas of 4 remain the same, M* = A.

Finally, note that the set W* is finite because every world has at most
immediate successors and every branch contains at most [Subf;(A4)| worlds. Thus
(77| < (2ISubtr{a)lyiSubli(4)] « EE 0

o|Subfr(4)|

Theorem 76. The satisfiabelity problem for probabilistic formulas s decidable.

Proof. 1t follows from Theorem 75 that A is satisfiable iff it is satisfiable in a prob-
abilistic model with at most k4 = 214" worlds. Thus, we can check satisfiability
following ideas from Theorem 33: for every !, 1 €1 < ka, there is only finitely many
intuitionistic models with different valuations with respect to the set of proposi-
tional letters that occur in A. For every such intuitionistic model My = (W, <, v)
we can find the algebra H generated by the set {[a]lm, : o € Subf;(A)}, and
consider a linear system similar to the system (7). As there is a finite number of
models and linear systems we have to check, and since linear programming problem
is decidable, the same holds for the considered satisfiability problem. O

8.1.4. Remark. We will show here that even if we start with classical logic,
possible-worlds semantics naturaily produces intuitionistic logic. It turns out that
intuitionistic implication will coincide with conditional probability when probability
is equal to 1.

Let us start with a standard possible-world model M = (W, H, », v). We may
define a pre-order (reflexive and transitive relation) R on W by: uRw iff for every
primitive proposition p, v(u,p) = true implies v(w, p) = true. From this we may
obtain a partial order in the usual way. First we introduce an equivalence relation ~
defined by: u ~ w iff uRw and wRu, and then we split W into equivalence classes:
Cu = {w: v ~ w}. Now we may pick a selection W' C W of representatives of
equivalence classes (one for each class). So we have (Vu € W) (3w € W){u ~ w).
Obvicusly, R induces a partial order € on W' such that v € w iff uRw. Now we
have a Kripke mode! with a partial ordering refation on worlds {W’, <, v} which
makes it'a model for intuitionistic logic. Namely, we may define (semantically)
a new propositional connective — by: w F a = 8 iff (Vo' 2 w){w’ F o implies



92 ZORAN OGNJANOVIC, MIODRAG RASKOVIC AND ZORAN MARKOVIC

w' £ J). We may also define a new, intuitionistic, negation by: —a = o - L.
Therefore, even if we start with classical logic, when we come to models, we have
an intuitionistic implication built in.

The interest in intuitionistic implication, besides the arguments proposed at the
start of this section, comes from the fact that conditional probability, which is often
used as the proper form of entailment in the context of probability logic, coincides
in a sense with the intuitionistic implication, as can be seen from the following
theorem.

Theorem 77. p{a — ) =1 iff pla A ) =1

plex)

However, this symmetry holds only in the case when probability is equal to 1.
It is possible to construct models in which conditional probability is high while
the probability of (intuitionistic) implication is low and vice versa. The reason is
that, despite the fact that both operators are define globally (and not locally, in
each world) the definitions are quite different. Conditional probability considers
(i.e., counts) only worlds in which o is true, while intuitionistic implication takes
into account also their predecessors. We may say, in a sense, that conditional
probability disregards the development of events and regards only the final stages
(with regard to the validity of «), L.e., the analysis starts with the worlds in which
a is true and disregards the previous stages in which « may be “not yet true”.
Existence of long time-lines which end with worlds in which « is not true adds to
the probability of o — &, while it is irrelevant for the conditional probability. On
the other hand, a long sequence which has an ending in which « is true and 3 is
not, reduces considerably the probability of & — 4, while it may, in the presence
of a relevant number of worlds in which both & and 3 are true, be insignificant for
conditional probability.

8.2. A discrete linear-time probabilistic logic. In this section we describe a way
in which probabilistic reasoning can be enriched with some temporal features. The
temporal part of the logics is a standard discrete linear-time logic LTL [119], where
the flow of time is isomorphic to natural numbers, i.e., each moment of time has a
unique possible future, while the corresponding language contains the “next” oper-
ator () and the reflexive strong “until” operator (U), (the operators “sometime”
F and “always” G are definable: (Fo = TUa and Ga = -F-«). Similarly as in
Section 7, nesting of the probabilistic and temporal operators is important and we
will start from the logic LPP;. In our logic, denated LPPFTT, the probabilistic
operators quantify events along a single time line. It allows us to express sentences
such as “(according to the current set of information) the probability that, some-
time in the future, « is true is at least s”. And, as the knowledge can evolve during
the time, the probability of o might change too. Note that, since the operators
“sometime” and “always” can be seen as the existential and universal quantifiers
over time instants, the probabilistic operators give more refined quantitative char-
acterization of sets of time instants definable by formulas. We may try to motivate
the proposed semantics in the following way.



PROBABILITY LOGICS 93

Example T8. A suitable representation of all possible cutcomes of an infinite
sequence of probabilistic experiments (let us say that experiments 4 and B are
permanently repeated resuliing in a or —a, and b or —b, respectively) could be
an inifinite tree, where every branch corresponds to a possible realization of the
sequence of the experiments, and every time instant is described in the form +a, +6
depending on obtalning {or not obtaining) @ and b in the corresponding experiment.
We might be interesied in probabilistic properties that hold for all branches. In
that case we can reason about an arbitrary branch and need ability to express
probabilities of events along it, for example that the probability of the event « is
at least s, or some more complicated conditions, like that in every time instant, if
the probability of a is less than r, then b must hold forever.

The set Foryppprre of formulas is defined inductively as the smallest set con-
taining primitive propositions and closed under formation rules: if & and § are
formulas, then =, O, Py, for every s € 5, a A f, and aUf are formulas. We
will use the following notational definition: (% = a, and O"'a = O Of « for
i20 T ={a,a,...}is aset of formulas, then (OT denotes {Oay, Oaa, ...}

Example 79. An example of a formula is (OPsrp A FPe(p — ¢)) =+ GP=q
which can be read as “if the probability of p in the next moment is at least r and
sometime in the future ¢ follows from p with the probability less than s, then the
probability of ¢ will always be equal to ¢t.”

8.2.1. Semantics. The semantics for LPPLTE

quences of natural numbers as frames.

is a Kripke-style one using se-

Definition 80. An LPPITY model is a structure M = (W, Prob, v) where:

o W = {wp,w:,...} is a sequence of time instants,
¢ Probis a probability assignment which assigns to every w € W a probability
space, such that Prob(w) = (W(w), H({w), u{w)), where:
S W) = {w; 2 1),
— H{(w) is an algebra of subsets of W{w) and
~ w{w) 1 H(w) — [0,1] is a finitely additive probability measure.
e v assigns to every w € W a two-valued evaluation of the primitive propo-
sitions, Le., for every w € W, v{w) : ¢ — {true, false}.

Definition 81. Let M = {W,Prob,v) be a LPP T -model, i € w and « be a
formula. The satisfiability relation = is inductively defined as follows:

if p € ¢ is a primitive proposition, w; F p if v(w,;)(p) = true,

w; F oo if wy ¥ a,

wi; B Py if plw){{wisy,j 2 0wy Fal) 2 s,

wq F OO{ if Wi4-1 F o,

wiEaAfdifw Foand w; FS.

w; F aUJF if there is an integer § 2 0 such that wiy; F 3, and for every &
such that 0 < &k < 7, wipy F a.



94 ZORAN OGNJANOVIC, MIODRAG RASKOVIC AND ZORAN MARKOVIC

We concern a reflexive, strong version of the until operator, i.e., if aUg holds in
a time instant, 5 must eventually hold. In the above definition the future includes
the present, so that:

o w; F Fo if there is j 2 0 such that w;y; F o, and
e w; EGaif for every j 2 0, wiy; F .

Also, the present time instant is included when the probability of formulas are
considered. All the presented results then can be proved with essentially no change
if we use the temporal and probabilistic operators referring to the strict future that
does not concern the present.

Again, we will considermeasurable models only, ie., the class LPPIE - of all
LPP[TL models such that for every w; € W the set H{w;)) = {[afw, : @ €
FOerPiLTL}, where [a]w; = {wiﬂ- j = 0,wi+j F a}.

The notions of satisfiable and valid formulas and satisfiable sets of formulas are
defined as in Section 5.

8.2.2. Axiomatization. An axiomatization A%y pprre that characterizes the set
of all LPPli:g[‘gaS—valid formulas extends the system Az pp, (having in mind that in-

stances of the axiom schemas and rules must obey the syntactical rules for LPPLTE)
with the following axiom schemas:

(7) Olo =+ B8) = (Oa = OBF)
& ~Oae O-a
(9) aUf © BV (anO(aUf))
(10) «UB — 3
(11) Ga — Psia

while the inference rules should be rewritten in the following form:

(1) from o and o — 3 infer g

(2) from a infer Qo

(3) from 8 — O'a for all i 2 0, infer 8 — Ga

(4) from 8 — O™ P, 1a, for any m 2 0, and for every k > L infer g —

OmP;SO:.

The main novelty in Az pprre concerns axioms about temporal reasoning (the
axtoms 7 and 8 are the usual axioms for the next operator (), as well as the axioms
9 and 10 for the until operator) and mixing of probabilistic and temporal reasoning
(Axiomm 11). There are two infinitary inference rules: 3 and 4. The former one
characterizes the always operator.

In this framework we can use the definitions 30 and 31 of deduction and consis-
tency.

Note that, similarly to the probabilistic logics, compactness does not hald for
LTL. For example, every finite subset of the set {F™p : nis a positive integer} U
{FG—p} is satisfiable, while the set itself is not. So, the temporal part of Az, p PpETL
offers possibility to prove extended completeness which cannot be proved using
finitary means.



PROBABILITY LOGICS 95

Modifications of Aryppere according to ideas presented in the previous sections
could produce the corresponding axiomatic systems for a first order logic for reason-
ing about discrete linear time and probability, a temporal probabilistic logic with
probabilistic functions with a fixed finite range, etc. Also, we can specify additional
relationships between the flow of time and the probability measures by adding new
AX10IMS:

Example 82. The formula —a - (Py,a = (OFs,0), considered as an additional
axiom scheme, characterizes models with the property that if a formula does not
hold in a time instant, then In the next time mstant its probability will be not
decreased.

8.2.3. Completeness and decidability. The proof of extended completeness
again follows the ideas given in the previous sections, so we only outline the main
new details,

Theorem 83 (Extended completeness theorem for LPPIE ). A set T of formu-

las is Azppprre-consistent iff it is LPPf‘ﬁ‘é‘as-satisﬁable.
Proof. We start with Deduction theorem. For example, assume that T,a F 3 —
(G’ is obtained by Rule 3. Then:

(1) Tyat+ 38— Qi fori 20

(2 THoa—= (8= (8", for i = 0, by the induction hypothesis,

B) Tr{anp) = foriz0

(4) T+ (angd) -+ GF', by Rule 3,

(85) THa-» (83— GF.

The axioms and rules 1mp1y some auxiliary statements (7' denotes a consistent set
of formulas):

(1) F Ga & a A OGe,
{(2) FGO a+ OGq,
(3) F{Oa = Of) = Ola = 8),
( ) EO{an ) & (OQarOB),
) FOlav #) & (Oav OB,
) Gat O'a for every 7 2 0,
} if F @, then F Ge,
) I T F a, where T is a set of formulas, then OT F Oa.
) for j 30, 076,0%, ..., e k- aUB,
(10) For any formula o, elther T U {a} is consistent or T'U {—-a} is consistent.
(11) If ~(a — GB) € T then there is jo 2 0 such that TU {a —» ~ Q% S} is
consistent.
(12) If ~{e = Q™Ps,8) € T, then there is jp > % such that T'U {a —
" P;k%ﬁ} is consistent.

HDQDOOﬂO)m

(
(
(
(
1
1

For example, the statement (9) follows in the following way. Assume - @. By
application of Rule 2, we get - ()% a, for every k € w. We obtain - Ga by Rule 3.
From Axiore 11 and by application of Modus Ponens, we have - Py



98 ZORAN QOGNJANOVIC, MIODRAG RASKOVIC AND ZORAN MARKOVIC

Then we can show that every consistent set T of formulas can be extended to
a maximal consistent set. Let aq, «1,...be an enumeration of all formulas. A
maximal consistent extension 7 of T can be obtained as follows:

(1) v =71.

(2) Forevery iz 0if T;U{a;} is consistent, then Tiyq = 73U {ev;}. Otherwise,
if a; is of the form v — G3, then Tipy = T U {~ay, v = = Q% 8} for
some jo = 0 such that T;¢1 is consistent. Otherwise, a; is of the form
v = QO™Psef, then Tipy = T; U {~og,y = -~ O™ P;S_J%JB} for some
jo > 0 such that Ty, is consistent. Otherwise, Ty = T3 U {-ay}.

(3) 7= Uzo ;.

For a maximal consistent extension 7 of a consistent set " of formulas we define
the canonical model My = (W, Prob, v} such that:
o W =wo,wi,...,wp=T,andfori>0, w; ={a: Oa € w, 1},
o for ¢ > 0, Prob{w;} = (W (w;), H{w;), u(w;)} is defined as follows:
~ Wiw) = {wiss 3 2 0},
— H(w;) = {{wir; 1J 2 0,0 € wiyjt},
— for plwi)({wig; 17 2 0,0 €weys}) =sup {Ps.a € w;i},
o for every primitive proposition p € ¢, and every w; € W, v{w;)(p) = T iff
First of all, we can prove that for every ¢ > 0, w, is a maximal consistent set. By
hypothesis, wy is maximal and consistent. Suppose that w;41 is not maximal. There
is a formula « such that {a, ~a} Nwyy = §. Consequently, {Oa, O-a}nw; = §.
We obtain that {Oa, ~(Qa}Mw; = @ which is in contradiction with the maximality
of w;. Suppose that w;;; is not consistent, i.e., that w11 F a A @ Then,
wy F Ofa A —a), and w; - OQa A - () a which is in contradiction with consistency
of Wi
Then, similarly as in the previous sections, we can show that M is an LPPFIL -
model such that for all w; and o, o € w; iff w; F a. For example, if o = (OF, we
have w; F o ff wigq B Sl B € winy i @ € w; {by the construction of wi+q). O

For the previousty presented logics as the first step in the proofs of their decid-
ability we have used some kind of the filtration technique which helps as to show
that every formula is satisfiable iff it is satisfiable in a finite model. The problem
is that the filtration cannot be used here since the LPPJL -models are (by their
definition) infinite. However, we can show (following the ideas presented in [119])
that a formula is satisfiable if and only if it is satisfiable in an model such that the
sequence of time instants of the model has a finite initial sequence of time instants
followed by another finite sequence of time instants which permanently repeats and
in that way forms the rest of the whole time-line. The lengths of both sequences
are bounded by functions of the size of the considered formula. The full proof of
decidability and complexity of the LPP{{E -satisfiability problem can be found

in [91]. As it is rather long, we give only the corresponding main statements:

Theorem 84. Euvery LPPHLL -satisfiable formula a is satisfiable in o model with
the starfing sequence of time instanis, followed by the sequence of time instants



PROBABILITY LOGICS 97

which permanently repeats. The length of the former sequence is < 222l + 1, and
the length of the later sequence is < (211 + 1) x 21¢1, where || denotes the length
of .

Theorem 85 (Decidability and complexity for LPPETL). The LPPETL is decid-
able. The LPPMYE -satisfiability problem is PSPACE-hard and in non-determin-
istic exponential time.

9. Logics with conditional probability

An important reason to censider conditional probability logics is given in [80].
It is argued there that conditional probability offers a more natural generalization
of the rule “if «, then §” than probability of implication. Namely, if @ has a low
non-negative probability and ~a A 3 is very likely to happen, then “the probability
of @ = 7 could be very high (since o — J holds whenever « is false) and does not
properly reflect the meaning of the rule, while on the other hand, “the conditional
probability of B given a” is more appropriate.

Also, it turns out that a specific kind of conditional probability (with a nonar-
chimedean range) is useful in modelling default reasoning. We start this section
by presenting a logic (denoted LPC Py*™) which formalizes such conditional prob-
ability and represents approximate probabilistic knowledge, but in a similar way
axiomatizations could be given to ordinary [0, 1]-real-valued conditional probability.
LPCPS™ can be seen as a generalization of the logic LPPS from Section 4.3.

In the second part of the section we introduce another logic LPCPS which
axiomatizes so-called de Finetti’s view of conditional probability [20]. In that ap-
proach conditional probability is seen as more primitive concept than unconditional
prohability, in contrast- to Kolmogorov’s definition where conditional probability is
defined via unceaditional probability. Conditional probability in the sense of de
Finetti can be defined using a structure {W, H, u}, where W is a non empty set,
H is an algebra of subsets of W, and p: H x H® = [0,1], H = H~ {0}, is a
(coherent) conditional probability satisfying:

o u(A,A)=1, for every A HY,

e u(-, A) is a finitely additive probability on H for any given A € HY,

o u(CNB,AY=u(B,A) - p(C,BNA),forall C € H and A, B, ANB € H°,
Note that u(A4, B) has a meaning with the only condition that B is different from
the impossible event.

9.1. A logic with approximate conditional probabilities. In this subsection, we
use notions defined in Section 3, and only emphasize the main novelties. Let S be
the unit interval of the Hardy field Q[¢]- Q[e] is a recursive nonarchimedean field
which contains all rational functions of a fixed positive infinitesimal € which belongs
to a nonstandard elementary extension *R of the standard real numbers [36, 117).
An element ¢ of *R is an infinitesimal if |¢] < £ for every natural number n. Q[e]
contains all rational numbers. Let Q[0,1] denote the set of rational numbers from
[0,1].



98 ZORAN OGNJANOVIC, MIODRAG RASKOVIC AND ZORAN MARKOVIC

The language of LPC'PL;S ® beside the set. ¢ of primitive propositions and Boolean
connectives - and A contains binary probabilistic operataors:

(CPgs)ses, {(CPss)ses, and {CPur)reqgion-

If a,8 € Forg and s € S, r € Q[0,1] then CPy (e, ), CPgys(a,3) and
O FPor(e, ) are basic probability formulas with the intended meaning “the con-
ditional probability of a given J is at least (at most) s and, approximately r”. The
set Forp of probabilistic propositional formulas is the smallest set containing all
hasic probability formulas and closed under Boolean formation rules (so, there are
no iterations of the probabilistic operators). The set of formulas For; p= 1S
Fore UForp. Also:

CPes(a, B) denotes ~C P (a, f) for o, B € Fore, s € S,

CPss{a, B) denotes ~C Pg,(a, B) for a, 8 € Forg, s € S,

CP-g(a, B) denotes CPs (e, 8) A CPgs(a, 8) for a, 8 € Forg, s € S and
P, .o denotes CP, (¢, T) for ¢ € Forg and p € {2, €, >, <, =, ~}.

It should be noted that CP, and CPg are not interdefinable since the appropriate
equivalence breaks down when the probahility of the condition is 0.

9.1.1. Semantics. We consider the class LPQPﬁﬁeas,Neat of all measurable neat

LPCP; "*-models, which can be defined in the same way as the class LP Ps peas Neas
from Section 3.2, with the important difference that:

e 1018 an S-valued finitely additive measure, i.e., p: H - 5.
The neatness condition is used tc make our models a subclass of * R-probabilistic
models of [61, 66). This facilitates the explanation of a possible application of
LPC’PQS ™ to default reasoning. All the results can be also proved for the class of
measurable (but not necessarily neat) LPCP; ™-models.

Definition 86. The satisfiability relation EC LPCPZS’ﬁeas Neat X FOT; perps.= fulfills
;Meas,Ne 3
the following conditions for every LPC'Prfﬁeas’Neat—model M= (W, H,u,v):

{1) if o € Fore, Mk a if (Yw € W)u(w)(a) = true,
(2) M E CPgla, 8) if either u([Blm) = 0 and s = 1 or p{[8lm) > 0 and

p{[eni]m)
W) &5

(3) M F CPs,{, B) if either u([8la) = 0 or u([f]ns) > 0 and ol >

(4) M E CPxp{a, B) if either u([Sjnr) = 0 and r = 1 or p([f]m) > 0 and for
every positive integer n, ”L?‘[E]’BM“)" € (max{0,r — 1/n}, min{1,r + 1/n}].

(5) if AeFory, ME-Ail M ¥ A,

(6) if A,B € Forp, MEAABitMEAand ME B.

Condition 3 is formulated on the useful assumption that the conditional proba-
bility is by default 1, whenever the condition has the probability 0. Also, note that
the condition 4 is equivalent to saying that the conditional probability equals r —¢;
(or r + ¢;) for some infinitesimal ¢; € S. It is easy to see that the defined operators
will behave as expected, e.g., M E P o iff pi[a]n) < 5.



PROBABILITY LOGICS 29

9.1.2. Axiomatization and completeness. The axiomatic system Az, . pS=

which characterizes the set of all LPCP Mea_s Neat-valid formulas contains the fol-
lowing set of axiom schemata:

(1) all Forg-instances of classical propositional tautologies
(2) all Forp-instances of classical propositional tautologies
) CPsola, 5)
) CPgla,8) =+ CPey(e, B), £ > s
) CPesla, B) = CPg(a, B)
) Poila & B) = (Poya = P—.f)
) P<SCE > P>1 e}
) ( s AP iﬁ/\P>1ﬁ(aAﬁ)) _}P—mm(l s+t)(avﬁ)
) Pooff = CPaa(a, B)
(10) (P=eSAP=s(aAB)) = CPyp{a, ), 140
(11} CPuria, B) - CPs, (a, ), for every rational ry € [0,7)
(12) CPar(a,8) = CPgp (o, 8), for every rational ry € (r, 1]
and inference rules:
{1) From i and p — o infer .
{(2) If o € Forg, from o infer Pyion
{3) From A = Fu,q, for every s € §, infer A = L.
(4) For every r € Q{0,1}, from A — CP5,_4,(a, f), for every integer n > 1/7,
and A — CPgiqm(a,B) for every integer n 2 1/(1 — r), infer A —
C Py, 8).
Tt is easy to see (just put T instead of 8) that the axioms 3-5 generalize the cor-
responding axioms from the system Azppp,. Axiom 9 conforms with the useful
practice of assuming conditional probability to be 1, whenever the condition has the
probability 0. Axiom 10 expresses the standard definition of conditional probability,
while the axioms 11 and 12 and Rule 4 describe the relationship between the stan-
dard conditional probability and the conditional probability infinitesimally close to
some rational 7 € Q[0,1]. The rules 3 and 4 are infinitary. Rule 3 guarantees that
the probability of a formula belongs to the set 5.
A useful, but straightforward theorem is:

Theorem 87. Let o, 8 € Fore. Then:
(1) F CPsyle, B) = CPsule, B), £ > s
(2) F CPg(e, 8) = CPge(e, 8), £ < 5
(3) = CPoy(a,8) = ~CFP_(e,8), t #£ 5
(4) F CP=y(o, ) = ~CPsela, B), t < s
(5) F CPoylo, B) = —~CPgla, B), t > s
(6) FCP_p(, ) = CPyr(e,8), 7 € Q[0,1].
(7) & CPuyr, (0, 3} = ~CPury(a, 0), forri,ra € Q[0,1], 71 # ra.
(8) - Pogfl = ~CPgs(e, B), for s < 1.
(9) F Pqa.

Note that, by restricting 3 to T, we obtain analogous statements for uncondi-
tional probabilities.

(3

(4
(5
(6
(7
(8
9
10
11



100 ZORAN QGNIANOVIC, MIODRAG RASKOVIC AND ZORAN MARKOVIC

The main novelty in the completeness proof follows concerns the construction
of a maximal consistent extensions of a consistent set. Following notations from
Thecrem 13, now the construction is:

(1) i =TUCne(TU {Po1a:a € Cng(1)}
(2) for every i 20,
(a) if Tu; U {A;} is consistent, then Thqq = To; U {A:i};
{b) otherwise, if T2; U {A4;} is not consistent, we have:
(1) if Ai is of the form A — CPHT(C{, ,@), then T23'+1 = Tzz‘ W]
{‘LAZ',A — ﬂ0'1'321,_1/,1((_1’,ﬁ)}, or Tosq = T U {"Ai,A —*
~CPgryijnla, §)}, for some integer n, where n is chosen such
that T is consistent (we prove that this is possible below);
(11) Othel’WiSE, Tgi.{.l = Tgi U {"'A,;},

(3) for every i = 0, Thjaz = Toir1 U {P=sa;}, where s is chosen to be an
arbitrary element of .5 such that 7,00 is consistent {we prove that this is
possible below),

(4) for every i = 0, if T; is enlarged by a formula of the form P—per, add —a to
T u {P=00.’} as well.

(5 T=UZ T .

Let us consider the step {3} of the construction, and suppose that for every s € 5,
Tosp1 U { Py} is not consistent. Let Thyp1 = T UT;; 1, where T;; .1 denaotes the
set of all formulas B € Forp that were added to Ty in the previous steps of the
construction. Then the following contradicts consistency of Tz41:

(1) To,T5iq, P=sa; b L, for every s € S, by the hypothesis
(2) To,T5y - —P=sa, for every s € S, by Deduction theorem
(3) To + (/\BGT;+1 B) = -F_,qy, for every s € 5, by Deduction thecrem
(4) o + (/\BET;E.H B) — L, by Rule 3
(5) Toipr - L,
The set T satisfies:

(1) There is exactly one ¢ € S such that Py € T

(2) There is exactly one s € S such that CP=,{e,8) € T

(3) I CPye(e, B) €T, there is r € S such that r 2 s and CP-,(«a, )
(4) If CPg¢s(e,8) € T, there is r € 5 such that r £ s and CP=.(a, 3)
(5) If CPur,(e,3) € T and rp € Q[0,1] ~ {r1}, then CPuyp, (e, B) ¢ T

As an example, let us consider the statement (1). According to Theorem 87 (3), if
P_,a € T, then for every t # s, P_ya € 7. On the other hand, if for every s € S,
~P_sa €T, then T - —~FP_,a for every s € 5. By Rule 3, 7+ | which centradicts
consistency of 7. Thus, for every e € Fore, there is exactly one ¢ € S such that
P_,a € T. Finally, the corresponding canonical model My can be defined as in
Section 3.4, and we have:

eT.
T

Theorem 88 (Extended completeness theorem for LPCP2S, ﬁeaS;NeaE). A set T of

s~ -consistent iff it is LPC’PZS;\Z&S Neat -Satisfiable.

formulas is Ao:chpz



PROBABILITY LOGCICS 101

9.1.3. Decidability. The proof of decidability of LPCP;"™ [114) is rather long,
and, similarly as in Section 8.2, we will omit it here. The proof contains a reduc-
tion of the the LPCPgﬁeaS’Neat-satisﬁability to linear programming problem, as
in Section 3.5. However, note that Section 3.5 deals with the standard real-valued
probabilities, while in LPC'PZS "~ the range of probabilities is recursive and contains
non-standard values, and there are operators of the form C P, that do not appear
above. Thus, in the reduction we have to eliminate the ¢ Py -operators and to
try to solve linear systems in an extension of Q[¢]. The next example contains an
illustration of the technique from [114].

Example 89. Let us consider the formula A = CA{{DV EB) = (DA B)}, where B,
C and D denote C'Panlg, T), CPri(mpA g, g) and CPag.s(pAg,q), respectively.
The set of atoms, At(A), contains a1 = pAg, az = pA~q, az = —p A ¢ and
a4 = p A —gq. Let z; denote the measure of atom a;. The formula 4 is equivalent
to (BACAD)V(-BACA-D). We start with the first conjunct B A C A D and
suppose that the.measures of ¢ and —g are greater than zero, i.e., that z; +z3 > 0,
and zo+ 24 > 0. BACAD is satisfiable iff the same holds for the following system:

1+ 2+ 23 taxg =1, x; 20fori=14

z1+x3 >0 zo+4z4 >0
Ty + 30

zaf{ms +mg) = 1

1 /{31 + @3) = 0.4

which is equivalent to
1+ T+ t+re =1, z;20fori=1,4
x1+x3 >0 Ta+xy >0
0<xp +xg < nyge
Tqf(zg +24) < 1/m2
04 —nge <z /(z1 + x3) < 0.4 + 3¢

for some mny, 19, ng € N. If we replace ny, ng, ng by their maximum denoted by
n, we obtain an equivalent system. Since =~ does not appear in the last system,
Fourier-Motzkin elimination can be performed in the standard way. The procedure
finishes with the true condition {1 — n¢)/n < 1 which means that the considered
formula is satisfiable.

9.1.4. Modelling default reasoning. The ceniral notion in the field of default
reasoning is the notion of default rules. A default rule, which can he seen as a
sentence of the form “if c, then generally 87, can be written as® o — 8. A default
base A is a set of default rules. Default reasoning is described in terms of the
corresponding consequence relation v, i.e., we are interested in determining the set

SNote that the other authors use different symbols {—, |, for example) to denote the “default
implication”. In the present setting those symbols may cause confusion, so we prefer {o introduce
a new symbol here,



102 ZORAN OGNJANOVIC, MIODRAG RASKOVIS AND ZORAN MARKOVIC

of defaults that are the consequences of a default base. Then, if « is a description
of our knowledge and A|~ & — f, we (plausibly) conclude that § is the case.
There are a number of papers which describe |~ in terms of classes of models and
the corresponding satisfiability relations = such that Ap a — g if for every model
M satisfying A, M F o — . In [61, 66] a set of properties which form a core of
default reasoning, called the system P, and the corresponding deduction relation
Fp were proposed. The system P is based on the following axiom and rules {(F
denotes classical validity):

s o — a (Reflexivity)

e from F a ¢ o' and o — §, infer o' »— S (Left logical equivalence)

e from a— § and @ — -y, infer & — S Ay (And)

e from - v and 8 — «, infer o v B >— + (Or)

o from o — 3 and o — v, infer o A § — v (Cautious monotonicity).
Then, for a default base A, Atp a»— g if o>~ § is deducible from A using the
above axiom and rules. Default consequence relation was also described in terms
of preferential models, and it was proved that the system P is sound and complete
with respect to the class of all such models:

Theorem 90. (61, Theorem 5.18] Al~ « — § with respect to the class of all
preferential models if and only if A bp a— 5.

The same holds for a special proper subclass of the class of preferential mod-
els, the so-called rational models, also considered in [66]. These two classes are
not distinguishable using the ianguage of defaults. It turns out that many other
approaches to default reasoning are characterized by P. For example, in [66] a fam-
ily of nonstandard (*R) probabilistic models characterizing bp was proposed. An
* R-probabilistic model can be defined in a similar way as LPCPL;S, Nioas Neag-TOdels,
with the exception that p: H = R*. A default & — /3 holds in an *R:probabilistic
maodel if either the probability of « is 0 or the conditional probability of g given o
is infinitesimaliy close to 1.

We can use C'Pr1{f, ) to syntactically represent the default & — §. In the
sequel, we will use @ B both in the original context of the system P and to
denote the corresponding translation CFPx (8, @). In the case of a finite default
base our approach produces the same result as the other mentioned approaches,
namely it ig equivalent to P.

Theorem 91. For ecvery finite defoult base A and for every default o »—

Al-paHﬂiﬁAhqu ar— .

popd™
Theorem 91 cannot be generalized to an arbitrary default base A, as it is illus-
trated by the following example.

Example 92. It is proved in [66, Lemma 2.7] that the infinite set of defaults 7 =
{pi = pis1,piy1 — p;}, where p;’s are propositional letters for every integer ¢ > 0,
has only non well-founded preferential models {(a preferential model containing an
infinite descending chain of states) in which py ¥~ L, le., pg is consistent. It



PROBABILITY LOGICS 103

means that 7" ¥p py — L. On the other hand, T FAwLPCPS‘z po — L since the
3 ‘

following holds. Let an LPCP Meas Neag-m10del M = (W, H, ., v) satisfy the set 7.
If w([p;]) = 0, for some ¢ > G, then it must be p([pg]) = 0, and M F py — L. Thus,
suppose that u([p;]} # 0, for every ¢ > 0. Then, for every ¢ = 0: “—(%)ﬂu =~ 1
and £ »ﬁ—l-_'p‘/\p‘“ ~ 1, le., plpsrpll o g #lopifeaal) 1_!— €2, for

iflpiy1]) u{lpi]) ; ullpia])
some infinitesimals ¢; and es. A simple calculation shows that which means that

p([p:]) < eopsl[pis1]) for some infinitesimal €5. Since, for some ¢ and k, ¢y < ce¥,
it follows that for every ¢ > 0, 0 < u([po]) < ¢'. Since u{[po]) € S and there is no
positive element of § with such property, it follows that p([pg]) = 0, [pe] = @ and
M E pg — L. Since M is an arbitrary LPCP2 Me‘as Neag-model, T FLPCPS‘* po —
1.

Note that the above proof of u([po]) = 0, does not hold in the case when the range
of the probability ig the unit interval of * R because * R is wy-saturated (which means
that the intersection of any countable decreasing sequence of nonempty internal
sets must be nonempty). As a consequence, thanks to the restricted ranges of
probabilities that are allowed in LPC'P2 Vieas Neas-Class of models, our system goes
beyond the system P, when we consider infinite default bases.

LPCPQS **is rich enough not only to express formulas that represents defaults but
also to describe more: probabilities of formulas, negations of defaults, combinaticns
of defaults with the other (probabilistic) formulas etc. Let us now consider some
situations where these possibilities allow us to obtain more conclusions than in the
framework of the language of defaults.

Example 93. The translation of rational monotonicity, ((& = ) A~{a — —y}) =
: 5,8

(lany)— ), 1s LPCPQ,M%S,N

every *R-probabilistic model, and LPCPfh',;eaS Neat 15 @ subclass of that class of

models. The same holds for the formula ﬁ(true »— false) corresponding to another
property called normality in [31].

ea-valid since rational monotonicity is satisfied in

Note that in this example we use negated defaults that are not expressible in P.

Example 94. Let the default base consist of the following two defaults s »— & and
s > ¢, where s, b and t means Swedes, blond and tall, respectively [6]. Because
of the inheritance blocking problem, in some systems {for example in P} it is not
possible to conclude that Swedes who are not tall are blond ({(s A —=t) = b). Since
our system and P coincide if the default base is finite, the same holds in our
framework. In fact, there are some LPCPZSMeas Neag-0dels in which the previous
formula is not satisfied. Aveiding a discussion of intuitive acceptability of the above
conclusion, we point out that by adding some additional assumptions (C'P—;_.(t,s)
and CP_;_.2{b, s)) to the default base we can entail that conclusion too. First, note
that the assumptions are compatible with defaults s ~~ ¢ and s = b. Then, an easy

calculation shows that £ (;?3;” Pis) P(I: (snt) . Pls) _J;}(?)+P {s)e — ¢, and similarly




104 ZORAN OGNJANOVIC, MIODRAG RASKOVIC AND ZORAN MARKOVIG

W = ¢2. Finally, we can estimate the conditional probability of b given s A -t:

P(sA—-tnb)  P(sA-t)~ P(s At A-b) N eP(s) — 2 P(s)
P(sA-t) P(s A —t) - eP(s)
It follows that (s A —t) — b

=1-c¢.

§.2. A logic with coherent conditional probabilities. In this subsection S again
denotes the unit interval of rational numbers. The set Forp containsbasic probability
formulas of the form CP;,{a, 8) and their boolean combinations. ‘

Definition 95. An LPCPS" -model is a structure M = (W, H, i, v) where:

W is a nonempty set,
H is an algebra of subsets of W, H® = H ~ {#}
p: H x H® - [0,1], is a conditional probability satisfying
u(A, A) =1, for every 4 € H®, -

— ul-, A) is a finitely additive probability on H for any given 4 € HO,

and

— u(CNB, A) = u(B, A)-u(C,BNA), forall C € H and A, B, ANB € H°.
o v : W x ¢ — {true,false} provides for each world w € W a two-valued
evaluation of the primitive proposition.

Let LPCPSES,., denote the class of all measurable LPC P -models.

The axiomatic system Azy pe pon which characterizes the set of all LPCPY -

valid formulas contains the following axiom schemata:

{1) all instances of the classical propositional tautologies,

(2) CPsofe, B), ‘

(3) CP¢rla, B) = CPes(e,B), s >,

(4) CP<S(O!, ﬁ} —r CPgs(a,ﬁ),

(5) (CP;r(CW) A CP}S(IG:’Y) A CP)l(jaVﬁﬁ:rY)) - CP}min{l,qus}(a’V!@:’Y):

(6) (CPgr(o,y) ACPs(B,7)) = CParielaV B,7), r 4+ s < 1,

(7) CPBS(O(: 7) A CPBT()B: o A 7) - Cp;s-r(a A ﬁ: 7):

(8) CP1(B,7) ACPss(ahB,y) = CPxsla, B A7),
and inference rules:

(1) from o and a — § infer S,
(2) from & — 8 infer CP51(3, ),
(3) from A — (CPsi(8,7) = CPssela A B,7y)), for every rational number ¢
from (0, 1), infer A = CPy (a,v A 0).
Note that Rule 3 is the only infinitary rule in Azppepene. 1t corresponds to the
last part in the definition of conditional probability. The proof of

Theorem 96 {(Extended completeness theorer: for LPCPQC’RAFB%). A set T' of for-
mulas is Az pepon-consistent iff it s LPC’PfI{‘;eaS -satisfiable.

follows the main steps from the previous sections, while by reducing the LPC PR, ..
satisfiability problem to the problem of checking coherence of conditional probabil-
ity assessments which is decidable [20], we have that



PROBABILITY LOGICS 105

Theorem 97. The logic LPCPEY is decidable.

The next example contains two formulas that illustrate some peculiarities of
LPCPS,

Example 98. The formula A = CP=o(a,8) = CPs¢(3, T) is not LPC P& -valid.
Let us consider the following LPCPS Y, ,-model M:

o W = {w,uws},

e H= ZW,

hd M({wl}JW) = OJ M({wQ}aW) = 1) #({’LU]_},{’LU]_}) = 11 .Iu'{{w2}1 {?,Ul}) = OJ

p({wi}, {wa}) =0, p({wa}, {w2}) = 1,

¢ U(w17p) = T)('{Ug,p) = v(wl:Q) = true! U(wZSQ) = false.
In this model p([pl, {q]) = p({wi, w2}, {wi}) = 1, u([-p]. [q]}) = u(@, {w1}) = 0, and
2((g), [T]) = p({w1}, W) = 0. It means that M £ CP=o(~p,q) A CP=o(g, T), and
A is not LPCPJYf, ~valid.

The formula B = CP_o(8, T) ACP, (o, B) -+ CP¢y

since u([-1, [B]) ts finitely additive probability measure.

(=a, 3) is LPCP{M-valid

Note that both formulas from Example 98 have the opposite behavior when
we use the Kolmogorov’s approach to conditional probability (with the very often
and useful assumption that the conditional probability of o given 8 is 1, if the
probability of 3 is 0), i.e., A is valid, while B is not.

10. Related work

As we mentioned in Section 2, a lot of recent interest in probability logic was
initiated by [79] in which Nillson gave a procedure for probabilistic entailment
which, given probabilities of premises, could calculate bounds on probabilities of
the derived sentences. The Nillson’s approach was semantic and stimulated some
authors to provide axiomatizations and decision procedures for the logic. In the
same year Gaifman published a paper [35] which studied higher order probabilities
and connections with modal logics.

In [27] Fagin, Halpern and Megiddo presented a propositional logic with real-
valued probabilities in which higher level probabilities were not allowed (the logic
was similar to LPF;). The language of that logic allowed basic probabilistic for-
mulas of the form ayw(e) + - + anw(e,) = s, where o.’s and s are rational
numbers, «;'s classical propositional formulas, and w(o;)’s denote probabilities of
o;’s. Probabilistic formulas are boolean combinations of basic probabilistic for-
mulas. The corresponding class of models was LPP; peas- A finitary axiomatic
system for the logic was given. Since the compactness thearem does not hold for
their logic, the authors were able to prove only the simple completeness. As we
mentioned above, the paper contains a proof of decidability and complexity of the
logic. Models that are not measurable were also considered there. Dropping the
measurability requirement made things more complicated. In that case inner and
outer measures should be used since the finite additivity does not hold for the
considered maodels. Finally, conditional probabilities were also discussed. To ob-
tain a complete axiomatization, the authors used the machinery of the theory of



106 ZORAN OGNJANGVIC, MIODRAG RASKOVIC AND ZORAN MARKQVIC

real closed fields. We note that our syntax can be extended in a straightforward
manner, such that the set of well formed formulas and the related results from [27]
can be exactly obtained. The papers [28, 44] of the same authors introduced a
probabilistic extension of the modal logic of knowledge which is similar to LPP;.

The papers {30, 125] presented logics with probability functions that have a fixed
finite range, similar to the logic LPP; ™.

Frisch and Haddawy presented in [32] an incomplete iteration procedure which
computes increasingly narrow probability intervals, The procedure can be stopped
at any time ylelding partial information about the probability of sentences, and
allowing one to make a tradeoff between precision and computational time. Com-
putational aspects of probabilistic logics were also discussed in [36]. The paper [52]
showed that it is possible to apply a very efficient numerical method of column
generation to solve the LP P peas-satisflability problemn.

First order probability logics were discussed in [1, 43]. It was shown that the
set of valid formulas of the considered logic (which was similar to LEOP;) is not
recursively enumerable. Thus, no finitary axiomatization is possible.

In [38] a propositional logic which can be used for reasoning about probabilistic
processes was presented. Besides all differences between our logic and that one, in
[38] an idea to prove completeness using an infinitary rule was used similarly as in
our approach.

A rule similar to Rule 3 from the axiomatic system Az; pops.~ was given in [3]
by Alechina. The main difference is that her rule was restricted to rasionals only.

A sound first order axiomatization (which is not complete) for a logic which
formalized probabilistic temporal reasoning was given in [39]. This system differs
from our LPPETY since time intervals and a branching structure of time were
considered there.

In [16, 17] Boricié¢ and Raskovié¢ extended Heyting propositional logic by prob-
abilistic operators. Since predicates “at lest r” and “at most v are not mutually
expressible in that context, both types of operators Py, and FPg, were present in
the correspending language. Marchioni and Godo presented in [73] a modal fuzzy
logic approach to model probabilistic reasoning in the sense of De Finetti. Also, in
that logic, Lukasiewicz implication can be used to express comparative statements.
Conditional probabilities were combined with default reasoning in-a semantically
based approach in [2, 70]. )

Uncertain reasoning is also interesting in the framework of economy. For ex-
ample, an axiomatization for so-called type spaces (a notion that plays the role of
probabilistic models in cur paper) within the framework of probabilistic logic was
given in [45]. The proposed axiomatization was simply complete with respect to
the introduced semantics. A strongly complete infinitary axicmatization for type
spaces is given in [77]. The main difference between that system and our approach
is that infinitary formulas are allowed in [77]. As a consequence, that logic is
undecidable, due to the cardinality argument. :

Finally, for more comprehensive list of the papers on probability logics the reader
could consult [94].



(1
[2i
3]
{4]
(]
(6]

(7]

(8]

(9]
(10!
(14}
(2]
(13]
(4]
[15]
(16]

{17]

(27]
[28]
[29)
[30]
[31]
[32]

[33]

PROBABILITY LOGICS 107

References

M. Abadi and J. Y. Halpern, Decidability end expressiveness for first-order logics of prob-
ability, Inform. Comput. 112 {1964), 1-36.

E. W. Adams, The logic of Conditional, Dordrecht: Reidel, 1975.

N. Alechina, Logic with probabilistic operators; in Proe. ACCOLADE ’84, 121-138, 1995.
K. }. Barwise, Admissible sets and structures, Springer-Verlag, Berlin, 1975.

T. Bayes, An essay towards solving a problem in the doctrine of chances, London, 1764.
5. Benferhat, A. Saffiotti, and P. Smets, Belief functions and default reasoning, Artif. Intell.
{122):1-69, 2000.

J. Bernoulli, Ars conjectandi, Basel, 1713.

S. Berstein, Versuch einer aziomatischen Begrindung der Waehrscheinlichkeitsrechnung,
Mitt. Math. Ges. Chrakow 209-274, (1917).

K.P. 5. Bhaskara Rao and M. Bhaskara Rao, Theory of charges, Academic Press, 1983.
G. Bohlmann, Fneykl. d. math. Wiss. vol. 1, part 2, D 4b:852-917, 1901.

B. Bolzano, Wissenschaftsiehre, 1837.

G. Boole, The Mathematical Analysis of Logic, 1847.

G. Boole, An Inuestigation into the Lows of Thought, on which are founded the Mathemat-
scal Theories of Logic and Probabilities, 1854. ‘
E. Borel, Traite du calcul des probabilites, 1924.

E. Berel, Principes et formules classiques du calcul des probabilites, 1925.

B. Borifié and M. Rakovic¢, A probabilistic velidity measure in infuilionistic propositional
logic, Math. Balkan. 10{4), 365-372, (1996).

B. Boric¢i¢, Validity measurement in seme propositional logics, Math. Log. Q. 43:4, 550558,
{1997).

R. Carnap, Logical Foundations of Probability, University of Chicago Press, 1950.

R. Carnap, The continuum of inductive methods, University of Chicago Press, 1952.

5. Coletii and R. Scozzafava Probabilistic logic in e coherent setting, Kluwer, Dordrecht,
2002.

A. De Morgan, Formal logic, London, 1847.

R. Dordevié, Barwise completeness theorems for logics with integrals, Publ. Inst. Math.,
Nouv. 5ér. 49{63):1-5, {1991},

R. Dordevié¢, Analytic completeness theorem for absoluiely continuous biprobability models,
Z. Math. Logik Grundlag. Math. 38 241-246, (1992).

R. Dordevié, Analytic completeness theorem for singular biprobability logic, Math. Log. Q.
39 228-230, (1993).

R. Dordevic, Logics with {wo types of integral operators, Publ. Inst. Math., Nouv. sér. 54(68)
18-24, (1993).

R. Dordevi¢,, M. Raskovi¢, and Z. Ognjanovié, Completeness theorem for propesitional
probobilistic models whose measures have only finite ranges, Arch. Math. Log. 43, 557-363,
2004.

R. Fagin, J. Halpern and N. Megiddo, A logic for reasoning about probabilities, Inform.
Comput. 87(1-2) 78-128, (1990).

R. Fagin and J. Halpern, Reasoning about knowledge and probability, J. ACM 41(2) 340-367,
(1994).

5. Fajarado, Probability logic with conditional ezpecatation, Ann. Pure Appl. Log. 28 137
161, (1985). )
M. Fattorosi-Barnaba and G. Amati, Medal operators with probabilistic interpretations I,
Stud. Log. 46{4), 383-393, (1989).

N. Friedman, and J. Halpern, Plausibility measures and default reasoning, J. ACM 48(8)
648-685, 2001.

A. Frish and P. Haddawy, Anytime deduction for probabilistic logic, Artif. Intell. 69, 93-122,
(1594).

H. Gaifman, Concerning measures in first order caleuli, Israel J. Math. 2 1-18, (1964).



108 ZORAN OGNJANOVIC, MIODRAG RASKOVIC AND ZORAN MARKOVIC

[34] H. Gaifman, M. Snir, Probabilities over rich languages, testing and randomness, J. Symb
Log. 47:3 495-548, (1982).

[35] H. Gaifman, A Theory of Higher Order Probobilities; in: J.Y. Halpern, editor, Proc. The-
oretical Aspects of Reasoming about Knowledge, Morgan-Kaufmann, San Mateo, California,
275-292, 1986.

[36] G. Georgakopoulos, D. Kavvadias, and C. Papadimitriou, Probabilistic satisfiebility, J. Com-
plex. 4(1) 1-11, (1988}.

(371 K. Godet, Uber die Vollstandigkeit des Logikkalkulus, PhD thesis, Unijversity of Viena, 1929,

(38] D.P. Guelev, A propositional dynemic logic with qualitative probabilitics, J. Phil. Log. 28(6)
575-605, (1999),

[39] P. Haddawy, A logic of time, chance and action for representing plons, Artif. Intell. 80
243-308 (1996).

j40] T. Hailperin, Probability Logic, Notre Dame J. Formal Log. 35:3 198-212, {1984).

[41] T. Hailperin, Boole’s logic and probability, North-Holland, 1986.

[42] T. Hailperin, Seniential Probability Logic, Origins, Development, Current Siatus, and Tech-
nical Applications, Lehigh University Press, 1996

{43] J.Y. Halpern, An analysis of first-order logics of probability, Artif. Intell. 46 311-350, (1990).

[44] J.Y. Halpern, Knowiedge, belief and certainty, Ann. Math. Artif. Intell. 4 301-322, (1991).

[45] A. Heifetz, P. Mongin, Probabilily logic for type spaces, Games and Economic Behavior 35
31-53, 2001.

[46] D.N. Hoover, Probebility logic, Ann. Math. Logic. 14 287-313, {1978).

[47] D.N. Heover, An analitic completeness theorem for logic with probability gquentifiers, J.
Symb. Log. 52 802-816, {1987}.

[48] G.E. Hughes, M. J. Cresswell, Moda!l logic, Methuen, 1968.

[49] N. Ikodinovié, Craig interpolation theorem for clossicel propositional logic with some prob-
ability operators, Publ. Inst. Math., Nouv. Sér. 69(83} 27-33, 2001.

[50] N. Tkodinovi¢ and Z. Ognjanovié, A logic with coherent conditionol probabilities, in: Liuis
Godo, editor, Proc. 8th European Conference Symbolic and Quantitetive Approaches to
Reasoning with Uncerfainiy FCSQARU 2005, Barcelona, Spain, July 6-8, 2005, Lect. Notes
Artif. Intell. 3571, Springer-Verlag, 2005, 726-736.

[51] D. Jovanovi¢, N. Mladenovi¢ and Z. Ognjanovi¢, Variable Neighborhood Search for the
Probabilistic Salisfiabiiify Problem; in: K.F. Doerner, M. Gendreau, P. Greistorfer, W
Gutjahr, R.F. Hartl, M. Relmann, editors, Metoheuristics: Progress in Compler Systems
Cptimizetion, Operations Research/Computer Science Inierfaces Series 39 Springer-Verlag,
Berlin—New York, 2007, 173-188.

[52] B. Jaumard, P. Hansen, and M. P. de Aragac, Column generation methods for probabilistic
logic, ORSA J. Comput. 3 135-147, (1991).

[33] H.J. Keisler, Mode! Theory For Infinitary Logic, North-Holland, Amsterdam, 1971.

f54] H.J. Keisler, Hyperfinite model theory; in: R.O. Gandy, J. M. E. Hyland, editors, Logic
Colioguim 76, North-Holland, 1977, 5-110.

[55] H.J. Keisler, Probabilily quentifiers; in: J. Barwise and S. Feferman, editors, Medel Theo-
retic Logics, Springer-Verlag, Berlin, 1985, 509-556.

[56] J. Keisler, Elementary colculus. An infinitesimal approack, 2nd ed. Prindle, Weber and
Schmidt, Boston, Massachusetts, 1986.

[57] J. Keisler, A completeness proof for adapted probability logic, Ann. Pure Appl. Logic 31
61-70, (1986).

[68] J. Keisler, Hyperfinite models of adapted probability logic, Ann. Pure Appl. Logic 31 71-86,
(1988).

[59] J. M. Keynes, Treatise on Probability, 1921.

[60) A. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer-Verlag, 1933,

[61] S. Kraus, D. Lehmann, and M. Magidor, Nonmonotenic reasoning, preferential models and
cumuletive logics, Artif. Intell. 44 167-207, (1990).



(62)
(63)
[64]
[65]
[66)
[67]
[68]
[69]
[70]
[71]

(2]
(73]

(74]
(73]

[76]

[77]
[78]

[79]
(80]
(81]
(82)
(83]
(84]

(85]

(86]

(87]

(88]

(#9]

PROBARILITY LOGICS 109

S. A. Kripke, The undecidability of menedic modal quenitification theory, Z. Math. Logik 8,
113-118, (1962). :
S. A. Kripke, Semantical analysis of intuitionistic logic I; in: Formal systems and recursive
functions, North-Holland, Amsterdam, 93-130, 19635.

A. Kron, Odnos polivaleninih logika ¢ teorije verovatnode, Naugna knjiga, Beograd, 1967.
J.H. Lamber, In Neues organon, Leipzig, 1764.

D. Lehmann, and M. Magidor, What does o conditional knowledge base entail?, Artif. Intell.
55 1-60, (1992).

G.W. Leibnitz, De conditionibus, 1665,

G.W. Leibnitz, Specimen juris, 1669.

G. W. Leibnitz, De Nouveaur essais, 1765.

T. Lukasiewicz, Probabilistic Default Reasoning with Conditional Constraints, Ann, Math.
Artif. Intell. 34, 35-88, 2002.

H. MacColl, The calculus of equivalent siatements and integration limits, Proc. London
Math. Sce. 9 9-20, 177186, 1877, 1878.

H. MacColl, Symbolic reasoning, Mind 6 5-60, 1897,

E. Marchioni and L. Godo, A Logic for Reasoning about Coherent Condittonal Probability:
A Modal Fuzzy Logic Approach, Lect. Notes Artif. Intell. 3229, 213-225, 2004.

Z. Markovié¢, Z. Ognjanovié, and M. Raskovié, A probabilistic extension of intuitionislic
logic, Math. Log. Q. 49 415-424, 2003.

Z. Markovi¢, Z. Ognjanovié, and M. Raskovi¢, An intuitionistic logic with probabilistic
operators, Publ. Inst. Math., Nouv. Sér. 73(87), 31-38, 2003.

Z. Markovi¢, Z. Ognjanovi¢ and M. Raskovié, Whai is the Froper FPropositional Base for
Probabilistic Logic?; in: L. A. Zadeh, editor, Proc. Information Processing end Management
of Uncertainty in Knowledge-Bosed Systems Conf. IPMU 2004, Perugia, Italy, July, 4-9,
2004, 443450, 2004.

M. Meier, An infinitery probability logic for type spaces, Israel J. Math., to appear

G.H. Moare, A house divided against itself: the emergence of first-order logic as the basis
for mathemetics; in: E. R. Phillips, editor, MAA Studies In Mothemaltics. Studies in the
history of mathemnatics, Mathematical Association of America, Wa,shingtan; 1987, 98-136,
N. Nilsson, Probabilistic logic, Artif. Intell. 28 71-87, (1986).

N. Nilsson, Probabilistic logic revisited, Artif. Intell. 59 39-42, {1993).

Z. Ognjanovié, M. Ragkovi¢, A logic with higher order probabilities, Publ. Inst. Math., Nouv.
Sér. 60(74), 1-4, (1996).

Z. Ognjanovié, A logic for temporal and probabilisiic reasoning, Workshop on Probabilistic
Logic and Randomised Computation BESSLLI 38, Saarbruecken, Germany, 1998,

Z. Ognjanovié, Neke verovetnosne logike i njthove primene u reéunarstvu, PhD thesis, PMF
Kragujevac, 1999.

7. Ognjanovi¢, and M. Raskovié, Some probability logics with new fypes of probability op-
erators, J. Log. Comput. 9(2) 181195, {1999).

Z. Qgnjanovi¢, and M. Raskovié, Seme first-order probability logics, Theor. Comput. Sci.
247(1-2) 191-212, 2000.

Z. Ognjanovié, J. Kratica and M. Milovanovié, A genetic algorithm for salisfiability problem
tn a probabilistic logic: A first report, Lect. Notes Comput. Sci. 2143, 805-816, Springer-
Verlag, 2601.

7. Ognjancvié, U. Midi¢ and J. Kratica, A genctic algorithm for probabilistic SAT problem,
in: L. Rutkowski, J. Siekmann, R. Tadeusiewicz, L. A. Zadeh, Artif. Intell. and Soft Com-~
puting [CAISC 2004, Zakopane, Poland, June 7-11, 2004, Lect. Notes Artif. Intell. 3070,
Springer-Verlag, 2004, 462-467.

Z. Ognjanovié, Z. Markovié and M. RaSkovié, Completeness theorem for a Logic with im-
precise and conditional probebilities, Publ. Inst. Math., Nouv. Sér. 78(92):35-49, 2005.

Z. Ognjanovié, UJ. Midi¢ and N. Miadenovié, A Hybrid Genetic end Variable Neighborhood
Descent for Probabilistic SAT Problem; in: M. J. Blesa, editor, Proc. Second Internai.



110

ZORAN OGNJANOVIC, MIODRAG RASKOVIC AND ZORAN MARKOVIC

Workshop on Hybrid Metcheuristics HM2005, Barcelona, Spain, August 29-31, 2005, Lect.
Notes Comput. Sci. 3636, Springer-Verlag, 2005, 42-53.

Z. Ognjanovié, N. Ikodinovié and Z. Markovié, A logic with Kolmogorov style conditional
probabilities; in: Proc. 5th Panhellenic logic symposium, Athens, Greece, July 25-28, 2005,
111-116, 2065.

Z. Ognjanovi¢, Discrete Linear-time Probabilistic Logics: Completeness, Decidability and
Complezily, J. Log. Comput. 16(2), 257-285, 2006.

Z. Ognjanovié, Z. Markovié, M. Raskovi¢, Completeness Theorem for a Logic with Imprecise
and Conditional Probabilities, in: Logic Colloguium 05, Athens, Greece, July 28-August 3,
2005, Bull. Symb. Log. 12(2), 357, 2006.

Z. Ognjanovié, A. Perovi¢, M. Raskovié, Logics with the Qualitative Probabililty Operator,
Logic J. IGPL 16(2) 105-120, 2008.

Z. Ognjancvié, T. Timotijevié, and A. Stanojevié, Detabase of papers about probabilily
logics, Mathematical institute, Belgrade, page http://problog.mi.sanu.ac.yu/, 2005.

C. 5. Pierce, On a improvement in Boole’s calculus of logic, 1867.

P. 8. Poreiskiy, Soluiion of the general problem of the theory of probability by using mathe-
matical logic, 1887.

M. Ragkovié, Model theory for Laas logic, Publ. Inst. Math., Nouv. Sér. 37(51) 17-22,
{1985},

M. Raskovié¢, Compieteness theorem for biprobability models, J. Symb. Log. 51(3) 586-590,
(1986),

M. Raskovié and. RZiva.ljevié, Barwise complefeness theorem for some biprobability logics,
Z. Math. Logik Grundlagen Math. 31 133-135, (1986).

M. Raskovié, Weak completeness theoremn for L apy, Zb. Rad. PMF Kragujevac 8 69-72,
{1987).

M. Raskovié, Completeness theorem for singular biprobability models, Proc. Am. Math. Soc.
102 389-392, (1988).

M. Raskovié, Completeness theorem for a monadic logic with both ordinary first-order and
probability quantifiers, Publ. Inst. Math., Nouv. Sér. 47(61):1-4, (1990).

M. Raskovi¢, A completeness theorem for an infinitary intuitionistic logic with both ordinary
and probobility quantifiers, Publ. Inst. Math., Nouv. Sér. 50{64):7-13, (1991).

M. Ragkovié and R. Dordevié, Finite completeness theorem for biprobability logics, Math.
Balkan. 5 12-14, (1991).

M. Raskovi¢ and R. Dordevi¢, Second order probebility logic, Math. Balkan. 6 105-108,
(1992).

M. Raskovié, Classical logic with some probability operators, Publ. Inst. Math., Nouv. Sér.
53(67), 1-3, (1993).

M. Raskovi¢ and R. Dordevi¢, Continuous time probabilify logic, Publ. Inst. Math., Nouv.
Sér. 57(71)143-146, (1995).

M. Raskovi¢ and R. Pordevié, Probability Quantifiers and Operators, VESTA, Beograd,
1996.

M. Raskovié, R. Dordevié and M. Bradié, Week cylindric probability algebras, Publ. Inst.
Math., Nouv. Sér. 61(75):6-16, {1997).

M. RaZkovi¢ and Z. Ognjanovit, A first order probability logic, LPg, Publ. Inst. Math.,
Nouv. $ér. 65(79), 1-7, (1999}

M. Ragkovi¢ and R.JDordevi¢, Cylindric probability elgebras, Publ. Inst. Math., Nouv. Sér.
68(82):20—-36, 2000.

M. Raskovi¢, Z. Ognjanovié, and Z. Markovié, A Probabilistic Approach fo Default Reason-
inig; in: Proc. NMRE 04, 335-341, 2004.

M. Ragkovié, Z. Ognjanovi¢, and Z. Markovi¢, A Lagic with Conditional Probabilities; in:
Proc. JELIA’04, Lect. Notes Comput. Sci. 3229, Springer-Verlag, 2004, 226-238.

M. Ragkovi¢, Z. Markovi¢ and Z. Ognjanavié, A logic with epprozimate conditional proba-
bilities thot con model defoult reasoning, Internat. J. Approx. Reason. 49(1) 52-66, 2008,



[115]
[L16]
[117]
{118
{119]
{120
[121)
(122)
{123}
[124)

[125]

PROBABILITY LOGICS 111

H. Reichenbach, Wahrschemnlichkeitslehre, 1935,

H. Reichenbach, The theory of probability, University of California Press, 1949.

A. Rebinson, Non-siondard analysts, North-Holland, Amsterdam, 1966.

H. Rodenhausen, The completeness theorem for adapted probobility logic, PhD thesis Hei-
delberg, 1982.

A. Sistla and E. Clarke, The complesity of propositional linear temporal logic, J. ACM 32(3)
733-749, (1985).

D. Scott and P. Krauss, Assigning probebilities to logical formulas; in: J. Hintikka, P.
Suppes, editors, Aspects of inductive logic, North-Helland, 1966, 219-264.

C. A. Smorynski, Applications of Kripke models; in: A.S. Troelstra, editor, Metomath-
emaotical Investigation of Intuitionistic Arithmelic and Analysis, Lect. Notes Math. 344,
Springer-Verlag, Berlin, 1973, [124].

N.I. Styazhkin, History of Mathematical Logic from Leibniz to Peano, MIT Press, 1969.
P. Suppes, Probabilistic inference and the concept of total evidence; in: J. Hintikka, P.
Suppes, editors, Aspects of inductive logic, North-Holland, 1966, 49-65.

A.S. Troelstra, editor, Metamathematical Investigation of Intuitionistic Arithmetic and
Analysis, Lect. Notes Math. 344, Springer-Verlag, Berlin, 1973.

W. van der Hoeck, Some consideration on the logics PpD, J. Appl. Non-Classical Log. 7(3),
287-307, (1997).



Milenko Mosurovic, Tatjana Stojanovic
and Ana Kaplarevi¢-MaliSic

REASONING IN BASIC DESCRIPTION LOGICS AND
DESCRIPTION LOGICS WITH MODAL OPERATORS

Abstract. Description logics are a family of knowledge represen-
tation languages constructed for a wide area of application domains.
They are based on the notion of concepts and roles, and are mainly
characterized by constructors that allow complex concepts and roles
to be built from atomic ones. Constructor selection depends on the
application domain the representation formalism is designed for. This
paper concerns a special type of DLs extended with temporal oper-
ators. After an overview of basic description logics, original results
related to the temporal extensions of DLs, precisely DLRys, which
has been modeled with an aim to cvercome problems of reasoning over
conceptual schemas and queries in temporal databases are given.

Mathematics Subject Classificetion (2000): 03B70, 68130, 68127,
68T35, 03B44, 03B45, 03B35, 03B60, 03B&0, 03F20



CONTENTS

1. Inmtroduction 114
2. Basic description logics 116
2.1. Definition of the basic formalism 117
2.2. Inferences 124
2.3. Reasoning algorithms 128
2.4. Language extensions 135
3. Description logics with modal operators 140
3.1. Preliminaries 140
3.2. The Temporal Description Logic 142
3.3. Temporal queries 144
3.4, Conceptual Schema and Query Examples 145
3.5. Decidability and complexity 147
4. Conclusion 154
References 155

1. Introduction

Description logics (DL) are a family of knowledge representation languages which
can be used to represent the terminological knowledge of an application domain in a
structured and formal way [StaStu04]. Besides representation enabling, they have
the task to provide tools for reasoning about the knowledge described by them.
They lie on the tracks of the research in the field of knowledge representation.

DL were established with a motivation of providing a formal foundation on
- network-based knowledge representation systems. In the 1970’ research in the field
of knowledge representation was very intensive. It gave a wide spectrum of ideas
and solutions which were more or less usabie or GENERAL. Roughly speaking,
there were two types of knowledge representation approaches [Baa et al. 02]: logic-
based formalisms as more general and formal and non-logic-based representations,
as specialized and, often, ad hoc approaches.

Among these specialized non-logic-based representations there were semantic
networks and frames, broadly used in practice. Although they were significantly
different, they could both be regarded as network structures, where the structure
of the network aims at representing domain knowledge as a set of individuals and
their relationships [Baa et al. 02]. Hence, they were often referred to as network-
based structures (see [Leh92])). Owing to their more human-centered origins, the
network-based systems were often considered as more usable in practice than the
logical systems. On the other hand, their less precise semantic characterization

14



REASONING IN BASIC DESCRIPTION LOGICS 115

[Baa et al. 02], i.e., concepts as general classes and individuals as instances of con-
cepts were mixed in one vocabulary, which resulted in the absence of general rea-
soning functionalities. ‘

Attempt on making the system better was representing basic elements of network-
based systems by relaying on the first-order logic. It turned out that some con-
straints were not describable. Moreover, in many cases first-order theorem provers
were a too big machinery. However, using only fragments of the first-crder logic,
depending on features of representation language, was good enough. These conclu-
sions were made in big part owing to development of KL-ONE system [BraSch85],
the first realized system of the so-called “structured inheritance networks” [Bra77,
Bra78, SchSmo%l1]. KL-ONE family of languages are considered as DI, ancestors.

The following three ideas, induced by work on KL-ONE systems, have largely
shaped the subsequent development of DLs [Baa et al. 02]:

o The basic syntactic building blocks are atomic concepts (unary predicates},
atomic roles (binary predicates), and individuals (constants).

+ The expressive power of the language is restricted in using a rather small set
of (epistemologically adequate) constructors for building complex concepts
and roles.

o Implicit knowledge about concepts and individuals can be inferred auto-
matically with help of inference procedures. In particular, subsumption
relationships between concepts and instance relationships between individ-
uals and concepts play an important role: unlike IS-A links in Semantic
Networks, which are explicitly introduced by the user, subsumption rela-
tionships and instance relationships are inferred from the definition of the
concepts and the properties of the individuals.

Having above in mind it is clear why the research in the area of Description Logics
began under the label of terminological systems. ” Later, the emphasis was on the
set of concept-forming constructs admitted in the language, giving rise to the name
concept languages. In more recent years, after attention was further moved towards
the properties of the underlying logical systems, the term Description Logics became
popular” [Baa et al. 02].

Major characteristics of description logics are:

emphasis on reasoning;

formal logic-based semantics;

inference patterns; |

subsumption relations between concepts of a terminotogy;
hierarchy of concepts derived from subsumption relations.

. & 2 @

Reasoning procedures in DL must be decidable and their complexity depends on
expressiveness.

All improvements that were brought by DL were the consequencés of the fact that
they were, in most cases, developed with formal background and with a concrete
area of application in mind. Today, there are various implemented systems based
on Description Logics which are used in various application domains. Depend-
ing on domains and system requirements necessary description formalisms differ



116 MILENKO MOSUROVIC, TATIANA STOJANOVIC, ANA KAPLAREVIC-MALISIC

by expressive power and, consequently, by formal and computational properties of
reasoning. With the same motivation different extensions of DL were investigated,
too. Although semantics of extensions could be interesting for studying, most of
the researches associated with language extensions are focused on finding reasoning
procedures for the extended languages. Within these, extensions depending on ap-
plication domain constructs for non-monotonic, epistemic, and temporal reasoning,
and constructs for representing belief and uncertain and vague knowledge could be
interesting.

The conventional description logics were designed to represent knowledge only
about static application domains. To capture various dynamic features, for in-
stance, intensional knowledge (in multi-agent systems), dependence on time or
actions (in distributed systems), description logics .are combined with suitable
“modal” {propositional) logics, say epistemic, temporal, or dynamic. Again, thereis
a variety of possible combinations {see e.g. {Sch93, Laux94, BaaLau95, BaaOhl93]).
Some of them are rather simple and do not increase substantially the complex-
ity of the combined logics (for example, the temporal description logic of Schild
[Sch93] is ExpTIME-complete), others are too expressive and undecidable (e.g. the
multi-dimensional description logic of Baader and Ohlbach [BaaOhl93)).

An optimal compromise between the expressive power and decidability was found
in the series of papers [WolZakh98, WolZakh99c, WolZakh99b, MosZakh99], where
various expressive and yet decidable description logics with epistemic, temporal,
and dynamic operators were constructed.

This paper gives an overview of basic description logics as well as original re-
sults, which concern the temporal extensions of Description Logics. The paper is
organized as follows. Section 2 is based on [Baa et al. 02] and gives an introduction
to description logics as a formal language for representing knowledge and reasoning
based on that knowledge. It gives bases of syntax and semantics, and the typical
reasoning tasks are described. At the end of the section some extensions of basic
language are given. Section 3 mainly refers to modal extensions of description log-
ics with emphasis on temporal extensions of description logics, precisely DL R s
as temporal extension of non-temporal description logic DLR. It also gives an
example of how the presented logics can be applied in temporal databases.

2. Basic description logics

Description logic (DL) is a common name' for a family of knowledge represen-
tation formalisms applied on a domain {the “world”) by defining relevant domain
terminology. They are based on a common family of languages, called description
languages, which provide a set of constructors to build class (concept) and prop-
erties (role) descriptions. Such description can be used in axioms and assertions
of DL knowledge bases and can be reasoned about with respect to DI knowledge
bases by DL systems:

Iprevicusly used names where terminological knowledge representation languages, concept lan-
guages, term subsumption languages, KL-ONE-based knowledge representaiion languceges



REASONING IN BASIC DESCRIPTION LOGICS 117

2.1. Definition of the basic formalism. Knowledge base generated from a knowl-
edge representation system based on DL has two components: TBox and ABox.
TBox introduces terminology, i.e., vocabulary of an application domain, while ABox
gives assertions about named individuals of concepts from introduced terminology.

The terminology consists of concepts and roles. Concepts denote sets of individ-
uals, while roles denote binary relations between individuals. Complex descriptions
of concepts and roles can be built by users in all DL systems. Description language
for building these descriptions has model-theoretic semantics. Statements in the
TBox and the ABox can be translated into first-order logic or an extension of it.

DL system also offers to reason about terminclogies, individuals and assertions.
Typical tasks for reasoning on a TBox level are

e determining satisfiability of terminology and
¢ subsumption relations of concepts.

Important reasoning problems an a ABox level are:

e determining consistency of sets of assertions (i.e., if ABox has a model) and
¢ whether a set of assertions entails that an individual is an instance of a
given concept.

These checks can help to determine whether a knowledge base is meaningful or to
organize concepts into a hierarchy according to their generality.

Knowledge representation {(KR) system is integrated into a wider environment
of an application. Other components interact with KR system by querying and
modifying the knowledge base by adding and retracting concepts, rcles and asser-
tions. Rules present unlimited mechanism for adding assertions. They represent
an extension of a logic core of formalism that can be logically interpreted.

TBox
Description Reasoning
Language
ABox ]
KB
Application Rules

Programs

F1cure 1. Architecture of KR system based on DL

2.1.1. The basic description language AL. Elementary descriptions are atomic
concepts and atomic roles. Complex descriptions can be built from them induc-
tively with concept constructors. In abstract notation, we use the letter A for



118  MILENKO MOSUROVIC, TATJANA STOJANOVIC, ANA KAPLAREVIC-MALISIC

atomic concepts, the letter R for atomic roles, and the letters € and D for concept
descriptions. We shall discuss various languages from the family of AL-languages®.
Concept descriptions in AL are formed according to the following syntax rule:

C,D — Aj (atomic concept)
T (universal concept)
1] (bottom concept)
A | (atomic negation)

€D (intersection)
VYR.C'| (value restriction)
AR.T (limited existential quantification)

In AL only the T is allowed in the scope in an existential quantification over a
role and negation can only be applied to atomic concept. The sublanguage of
AL obtained by disallowing atomic negation is F£~. The sublanguage of FL™
obtained by disallowing limited existential quantification is FLq.

Example 1. Let Person and Female he atomic concepts. Then Person M Female
and Person M —Female are AL-concepts describing those persons that are female
and those that are not. If hasChild is an atomic role, then the concept Person N
JhasChild. T denotes those persons that have a child, and the concept Person I
VYhasChifd Female denotes those persons all of whose children are female. Using
the bottom concept we describe persons without a child by the concept Person 1
VhasChild. L.

In order to define a formal semantics of AL-concepts, we introduce interpreta-
tions T that consist of a non-empty set AZ (the domain of the interpretation) and
an interpretation function, which assigns to every atomic concept A a set A7 C AT
and to every atomic role R a binary relation R* € A% x AT, The interpretation
function is extended to concept descriptions by the following inductive definitions:

T = a7
15=0
(—AY = A At
(cnp)yl =ctnp*
(VR.C)F = {a € AT | (Vb){a,b) € RT » be CT}
(BR.TY = {a e AT | (3b)(a,b) € R}

Two concepts C and D are equivalent (C = D) if C¥= D* for all interpretation Z.
For example, it is easy to verify that concepts YhasChild.FemaleM¥hasChild.Student
and YhasChild.{Female N Student) are equivalent.

2.1.2. The family of AL-languages. More expressive languages are obtained
by adding further constructors to AL.

2The language AL=(altributive language) has been introduced in [3chSmo9i] as a minimal
language that is of practical interest.



REASONING IN BASIC DESCRIPTION LOGICS 119

The union of concepts (indicated by the letter If) is written as ¢ U D, and
interpreted as (C U D)* = C* U DZ.

Fuli existential quantlﬁcatlon (indicated by the letter £) is written by 3R. G and
interpreted as (IR.CYT = {a € AT | (3)(a,b) € RT Ab € CT}. Note that IR.C
differs from 3E.T in tha.t arbitrary concepts are allowed to occur in the scope of
the existential quantifier.

Number restrictions {indicated by the letter A} are written as > nR(at-least
restriction) and as € nR (at-most restriction), where n represents a nonnegative
integer. They are interpreted as

(> nR)" = {ae AT|[{b](a,b) € B*}|

(€ nR)" = {ae AT ||{b] (a,b) € R"}|

respectively, where “|-|” denotes the cardinality of a set.
The negation of arbitrary concepts (indicated by the letter C, for “complement”)

is written by —~C, and interpreted as (=C)T = AT ~ CT.
With the additional constructors concept:

Person M (< 1hasChild U {> 3hasChild 1M ShasChild.Female))

=n},
<n}

describes those persons that have either not moere than one child or at least three
children, one of which is female.

By extension by AL any subset of the above constructors generates a particular
AL-language. Each AL-language is named by a string of the form AL [E]IN][C],
where each letter represents the corresponding constructor.

From the semantic point of view, not all of these languages are distinct. The
semantics enforces the equivalences (€1 D) = —=(-C' N ~D) and AR.C = ~-VR.~C
(union and full existential quantification can be expressed using negation). We
assume that union and full existential quantification are available in every language
that contains negation and vice versa {ALC is used instead of ALUE and ALCN
instead of ALUEN).

2.1.3. Description languages as fragments of predicate logic. Since an in-
terpretation Z assigns to every atomic concept (role} a unary {binary) relation over
AT we can view atomic concepts (roles) as unary (binary) predicates. Then:

e any concept ¢ can be translated into a predicate logic formula ¢ (z) with
one free variable z such that for every interpretation Z the set of elements
of AT satisfying ¢c{z) is exactly OF

s an atomic concept A is translated into the formula A(x)

o the constructors intersection, union, and negation are translated into logical
conjunction, disjunction, and negation, respectively

e if ' is already translated into ¢ (z) and R is an atomic role, then value
restriction and existential quantification are captured by the formulae

dvrcly) = (Vo)(R(y,z) - éc(z))
$ar.cly) = () (Rly, 2) A do(a))

where y is a new variable



120 MILENKO MOSUROVIC, TATJANA STOJANOVIC, ANA KAPLAREVIC-MALISIC

¢ number restrictions are expressed by the formulae

benr(@) = Bu1,.. ., yn) Bz, ) A AR@ya) A N\ vi # 5
i<j
benr(@) = Vyr, . Yar))R(E,0) A AR Ynr1) = Vi =y
. i<
2.1.4. Terminologies. In the sequel, we will introduce:

» terminological axioms, which make statements about relations between con-
cepts or roles,
+ definitions as specific axioms and
e terminologies as sets of definitions by which we introduce atomic concepts
as abbreviations or names for complex concepts.
Terminological axioms. In the most general case, terminological axioms have the
form
CCD (RCS) or C=D (R=9)
where €, I are concepts (and R, § are roles). Axioms of the first kind are called
inclusions, while axioms of the second kind are called equalities.

An interpretation 7 satisfies an inclusion C T D if CT C D7, and it satisfies
an equality C = D if CT = DT, If 7 is a set of axioms, then T satisfies 7 iff
satisfies each element of 7. If 7T satisfles an axiom (resp. a set of axioms), then it
is a model of this axiom (resp. set of axioms). Two axioms or two sets of axioms
are equivalent if they have the same models.

Definitions. An equality whose left-hand side is an atomic concept is a definition.
Definitions are used to introduce symbolic names for complex descriptions.

A set of definitions should be unequivocal. A finite set of definitions 7 is a
terminoclogy or TBox if no symbolic name is defined more than once, that is, if for
every atomic concept A there is at most one axiom in 7 whose left-hand side is A.

Example 2. A terminclogy (TBox) with concepts about family relationships can
be introduced as follows:
Woman = Person M Fermnale
Man = Person N —-Woman
Mother = Wornan M JhasChild.Person
Father = Man M JhasChitd.Person
Parent = Father U Mother
Grandmother = Mother M 3hasChild.Parent
MotherWithManyChildren = Motherl 2 3hasChild
MotherWithoutDaughter = Mother M YhasChild. -Woman
Wife = Woman M JhasHusband . Man O
Suppose, that 7 is a terminology. We divide the atomic concepts occurring in 7

into two sets, the name symbols M7 (defined concepts) that occur on the left-hand
side of some axiom and the base symbols B+ (primitive concepts) that accur only



REASONING IN BASIC DESCRIPTION LOGICS 121

on the right-hand side of axioms. Based on this, terminologies define name symbols
using base symbols.

A base interpretation for 7 is an interpretation that interprets only the base
symbols. Let J be a base interpretation. An interpretation I that interprets
also the name symbols is an extension of 7 if it has the same domain as 7, i.e.,
AL = A and if it agrees with 7 for the base symbols. We say that 7 is definitorial
if every base interpretation has exactly one extension that is a model of 7. In
other words, if we know what the base symbols stand for, and T is definitorial,
then the meaning of the name symbols is completely determined. If a terminology
is definitorial, then every equivalent terminology is also definitorial.

The question whether a terminology is definitorial or not is related to the ques-
tion whether or not its definitions are cyclic.

(1) Human' = Animal M hasParent.Human’

Let 4, B be atomic concepts oceurring in 7. We say that A directly uses B in 7
if B appears on the right-hand side of the definition of A. The transitive closure
of the relation “directly uses” is called “uses”. Then T contains a cycle iff there
exists an atomic concept in 7 that uses itself. Otherwise, T is called acyclic.

If a terminology 7 is acyclic, then it is definitorial. Definitions in terminology
T can be expanded by replacing each occurrence of a name on the right-hand side
of a definition with the concepts that it represents. If 7 is a acyclic this process
eventually stops giving a terminology 7' containing solely definitions of the form
A = C', where C' contains only base symbols and no name symbols. T' is the
expansion of 7. Size of the expansion can be exponential in the size of the original
terminology.

Example 3. The expansion of the Family TBox previously introduced is:
Woman = Person N Female
Man = Person N —(Person 1N Female)
Mother = (Person M Female) 7 ShasChild.Person
Father = (Person (1 ~(Person 1 Female)) M JhasChild.Person
Parent = ((Person N ~(Person M Female)) M JhasChild.Person)
U ({Person 1 Fernale) N 3hasChild.Person)
Grandmother = ((Person 1 Female) N ShasChild.Person)
1 3hasChild.(({Person N ={Person M Female))
M 3hasChild.Person)
Ll ((Person M Female) M ShasChild.Person))
MotherWithManyChildren == ({Person M Female) M 3hasChild.Person) 1 = 3hasChild
MotherWithoutDaughter = ({Person N Female} M JhasChild.Person)
M VhasChild.(—~(Person 1 Female))
Wife = (Person 1 Female)
M ShasHusband.(Person 1 —(Person M Female))



122 MILENKO MOSUROVIC, TATJANA STGJANOVIC, ANA KAPLAREVIC-MALISIC

Lemma 1. Let T be an acyclic terminelogy and T' be its expansion. Then

(1) T end T" have the same name and base symbols;
{2) T and T’ are equivalent;
(3) 7 and T are definitoriel.

Proof. Let 71 be a terminology. Suppose A = C and B = D are definitions in 75
such that B occurs in . ,.Let C" be the concept obtained from C by replacing each
occurrence of B in C with D, and let 73 be the terminology obtained from 7; by
replacing the definition A = ¢ with A = ¢’. Then both terminclogies have the
same name and base symbols. Moreover, since 75 has been obtained from 7; by
replacing equals by equals, both terminologies have the same models. Since 7' is
abtained from T by a sequence of replacement steps like the cnes above, this proves
statements (1) and (2). A

Suppose now that 7 is an interpretation of the base symbols. We extend it to
an interpretation Z that covers also the name symbols by setting A7 = ', if
A =" is the definition of 4 in 7. Clearly, Z is a model of T, and it is the only
extension of 7 that is a model of T'. This shows that 7 is definitorial. Moreover,
T is definitorial as well, since it is equivalent to 7. 0

Of course, there are also terminologies with cycles that are definitorial, but:

Theorem 1. Bvery definitorial ALC-terminology is equivalent to an acyclic ter-
minology.

The theorem is a reformulation of Beths Definability Theorem [Gab72] for the
modal propositional logic K.

2.1.5. Terminologies with inclusion axioms. In the case of concepts that can-
not be defined completely necessary conditions for concept membership are still
stated using an inclusion. Inclusion whose left-hand side is atomic is a specializa-
tion.

For example, concept “Women” from TBox in Example 2 can be described in
less detail with the specialization

(2) Woman C Person

If specialization is allowed in a terminology, then the terminology looses its defin-
itorial impact, even if it is acyclic. A set of axioms 7 is a generalized terminology if
the left-hand side of each axiom is an atomic concept and for every atomic concept
there is at most one axiom where it occurs on the lefi-hand side.

Generalized terminology 7 can be transformed into a regular terminology T,
containing definitions only, such that 7 is equivalent to 7 in a sense specified below.
T is obtained from 7 by choosing a new base symbol A for every specialization
A Z CinT and by replacing the specialization A C C with the definition 4 = ANC.
The terminology T is the normalization of 7.

If a TBox contains the specialization (2), then the normalization contains the
definition Woman = Woman N Person. The additional base symbol Woman stands
for the qualities that distinguish a woman among persons.




REASONING IN BASIC DESCRIPTION LOGICS ' 123

Lemma 2. Let T be a generalized terminology and T its normalization. Then

(1) Every model of T is a model of T o
{2) For every model T of T there is a model T of T that has the same domain
as I and agrees with T on the atomic concepts and roles in T .

Proof. The first statement holds because a model Z of 7 satisfies A7 = (ANCY =
AT 1 ¢, which implies AT C CT. Conversely, if 7 is a model of 7, then the
extension Z of T, defined by A = A%, is a model of 7, because AZ C C7 implies
AT = AT Nt = AT N C%, and therefore 7 satisfies A = AN C. O

In theory, inclusion axioms do not extend the expressivity of terminologies, while,
in practice, they are a convenient means to introduce terms into a terminotagy that
cannot be defined completely.

2.1.6. World Descriptions. The second compaonent of a knowledge base, in ad-
dition to the terminology or TBox, is the world description or ABox.

Assertions about individuals. In the ABox, individuals are introduced, by giving
them names, and properties of these individuals are asserted. We denote individual
names by a, b, ¢. Using concepts € and roles R, one can make assertions of the
following two kinds in an ABox: C(a), and R(b,c). The first kind are concept
assertions, and they state that a belongs to (the interpretation of) C. The second
kind are role assertions, and they state that ¢ is a filler of the role R for b. An
ABox, denoted as A, is a finite set of such assertions.

Example 4. If JOHN, PAUL, and MARY are individual narmes, then Father(JOHN)
means that John is a father, and hasChild(MARY, PAUL) means that Paul is a child
of Mary. An example of an ABox for TBox from Example 2:

MotherwithoutDaughter(MARY) Father(JOHN)
hasChild{MARY, JOHN) hasChild(JOHN, HARRY)
hasChild{MARY, PAUL)

In a simplified view, an ABox can be seen as an instance of a relational database
with only unary and binary relations. Contrary to the “closed-world semantics” of
classical databases, the semantics of ABoxes is an “open-world semantics”, since
normally knowledge representation systems can be applied in situations where it
cannot be assumed that the knowledge in the KB is complete. The TBox also
imposes semantic relations between the concepts and roles in the ABox that do not
have counterparts in database semantics.

ABoxes are given semantics by extending interpretations to individual names.
From this point on, an interpretation T = (A%, 1) not only maps atomic concepts
and roles to sets and relations, but also maps each individual name a to an element
a® € AT, This mapping is constructed with respect to the unique name assumption
(UNA), that is, if a, b are distinct names, then a® # 7. The interpretation T
satisfies the concept assertion C{a) if a* € CZ, and it satisfies the role assertion
R(a,b) if {a*,b*) € R*. An interpretation satisfies the ABox A if it satisfies each
assertion in 4. In this case we say that 7 is a model of the assertion or of the



124  MILENKO MOSUROVIC, TATJANA STOJANOVIC, ANA KAPLAREVIC-MALISIC

ABox. Finally, T satisfies an assertion e or an ABox A with respect to a TBox T
if in addition to being a model of a or of A, it is 2 model of 7. Thus, a model of A4
and T is an abstraction of a concrete world where the concepts are interpreted as
subsets of the domain as required by the TBox and where the membership of the
individuals to concepts and their relationships with one another in terms of roles’
respect the assertions in the ABox.

Individual names in the description language. Sometimes, it is convenient to allow
individual names (also called nominals) not only in the ABox, but in the description
language as well. The most basic constructor employing individual is the “set™ (or

one-of), written by {aj,...,a.}, where a1,...,a, are individual names. As one
could expect, such a set concept is interpreted as
(3) {ar,--.,an}" = {af,...,al}

With sets in the description language one can, for instance, define the concept of
permanent members of the UN security council as { CHINA, FRANCE, RUSSIA, UK, US}.

Another constructor involving individual names is the “fills” constructor R : a
for a role R. The semantics of this constructor is:

(4) (R : o) ={de AT |(d,a*) € R}
that is, R : a stands for the set of those objects that have o as a filler of the role R.

2.2, Inferences. A knowledge representation system can perform specific types of
reasoning. Knowledge base, containing TBox and ABox has semantics that makes
it equivalent to a set of axioms in first-order predicate logic. Like any other set of
axioms, it contains implicit knowledge that can be made explicit through inferences.

Further discussion shows that the main problem with inference is consistency
check for ABox, to which all other inferences can be reduced.

2.2.1. Reasoning tasks for concepts. During the modeling of a domain termi-
nology 7 is constructed by defining new concepts. It is important to check if new
concepts are contradictory or not. A concept is meaningful if there is an interpre-
taticn that satisfies the axioms of 7, such that the concept denotes a nonempty set
in that interpretation. Such a concept is satisfiable with respect to 7, otherwise it
is unsatisfiable.

To check whether a domain model is contradictory or not, or to optimize queries
that are formulated as concepts, it might be needed to know whether a concept
is more general than another one {the subsumption problem). A concept C is
subsumed by a concept D if in every model of 7 the set denoted by C is a subset
of the set denoted by D. The algorithizs that check the subsumption may also be
used for organizing concepts of a TBox in a taxonomy according to their generality.

Two more relationships between concepts are equivalence and disjointness. These
properties are formally defined as follows. Let 7 be a TBox.

Satisfiability: A concept C is satisfiable with respect to T if there exists a
model T of 7 such that C7 is nonempty — 7 is a model of C.

Subsumption: A concept €' is subsumed by a concept D with respect to T
if C2 C DT for every model Zof T -CCr Do TECLC D.



REASONING IN BASIC DESCRIPTION LOGICS 125

Equivalence: Two concepts ¢ and D are equivalent with respect to T if
CT=Df foreverymodel Zof T -C=rDor TEC =D.

Disjeintness: Two concepts € and D are disjoint with respect to 7 if CT N
DT = § for every model Z of 7.

If the TBox is empty, we simply write E C' C D if (' is subsumed by 1), and
EC =Dif ¢ and D are equivalent.

Lemma 3 (Reduction to Subsumption). For concepts ', D we have

(1) C is unsatisfichle < C is subsumed by L;
(2) C and D are equivalent & C is subsumed by D and D is subsumed by C;
(3) C and D are disjoint & CND is subsumed by L.

The statements also hold with respect to o TBox.

Most DL systems that can check subsumption can perform all four inferences
defined above, because almost all of description languages implemented in actual
DL systems contain an unsatisfiable concept and all of them include the intersection
aperator “17.

Subsumption, equivalence, and disjointness of concepts can be reduced to the
satisfiability problem if in addition to intersection, a system allows forming of the
negation of a description [Smo88§].

Lemma 4 {Reduction to Unsatisfiability). For concepts C, D we have

(1} O s subsumed by D < CN =D s unsaofisfiable;
(2) C and D are equivalent & both (C 1 =D) and {~C N D) are unsatisfiable;
(3) C and D are disjoint <> C' 1D is unsatisfiable.

The statements also hold with respect to a TBox.

Since, for sets Af, N we have M C N iff M « N =1}, then the reduction of sub-
sumption becomes apparent and easy to understand. The reduction of equivalence
ts correct because ¢ and [J are equivalent, if and only if ' is subsumed by D and
D is subsumed by C. Finally, the reduction of disjointness is just a rephrasing of
the definition.

In an AL-language without full negation, subsumption and equivalence cannot
be reduced to unsatisfiability in the way shown in Lemma 4. The complexity of
such inferences is somewhat different.

As seen in Lemma 3, from the viewpoint of worst-case complexity, subsumption
is the most general inference for any AL-language. Lemma 5 shows that unsatisfi-
ability is a special case of each of the other problems. Lemma 3 and 5 show that,
in order to obtain complexity bounds for inferences on concepts in AL-languages
{more precisely, for the complexity of the unsatisfiability, the equivalence, and the
disjointness problem), it suffices to assess lower bounds for unsatisfiability and up-
per hounds for subsumption.

Lemma 5 (Reducing Unsatisfiability). Lef C be a concept. Then the following
statements are equivalent:

(1) C 1s unsotisfiable; (3) C and L are equivalent;



126 MILENKO MOSUROVIC, TATIJANA STOJANOVIC, ANA KAPLAREVIG-MALISIC

(2) C s subsumed by L; (4) C and T are disjoint.
The staternents also hold with respect to a TBoz.

2.2.2. Eliminating the TBox. This section shows that, if 7 is an acyclic TBox,
it is always possible to reduce reasoning problems with respect to 7 to problems
with respect to the empiy TBox. As seen in Lemma 1, 7 is equivalent to its
expansion 7'. Recall that in the expansion every definition is of the form 4 = D
such that I contains only base symbols, but no name symbeols. For each concept '
we define the expansion of ' with respect to 7 as the concept €’ that is obtained
from C' by replacing each occurrence of a name symbol 4 in C by the concept D,
where A = D is the definition of A in 77, the expansion of T.

Since the expansion € is derived from C by replacing names with descriptions
in such a way that both are interpreted in the same way In any model of 77, it
follows that

o =T .

Thus, € is satisfiable with respect to 7 iff C' is satisfiable with respect to 7.
However, C' contains no defined names, and thus C” is satisfiable with respect to
T iff it is satisfiable. This yields that

« (' is satisflable with respect to 7 iff C' is satisfiable.
If D is another concept, then D = D', and this vields that C T+ Diff &' T4 D'
and ¢ =+ D iff C' =+ D', Since " and D’ contain only base symbaols, this implies
« TECCDIffEC C D
e TEC=DiITEC =D
With similar arguments we can show that
e (' and D are disjoint with respect to 7 iff C' and D’ are disjoint.

Expanding concepts with respect to an acyclic TBox allows removing the TBox
from reasoning probiems,

Expanding concepts may substantially increase computational complexity, since
in the worst case the size of 7' is exponential in the size of T. A complexity analysis
of the difficulty of reasoning with respect to TBoxes shows that the expansion of
definitions is a source of complexity that cannot always be avoided.

2.2.3. Reasoning tasks for ABoxes. After designed a terminology and using
the reasoning services of DL system to check that all concepts are satisfiable and
that the expected subsumption relations hold, the ABox can be filled with assertions
about individuals. An ABox contains two types of assertions: concept assertions
of the form C(a) and role assertions of the form R(a,b). It is understandable that
the representation of such knowledge has to be consistent.

An ABox A is consistent with respect to a TBox 7, if there is an interpretation
that is a moedel of both A4 and 7. It is simply said that A is consistent if it is
consistent with respect to the empty TBox.

For example, the set of assertions {Mother(MERY), Father(MERY)} is consistent
with respect to the empty TBox, however, the assertions are not consistent with
respect to the Family TBox.



REASONING IN BASIC DESCRIPTION LOGICS 127

Similarly as for concepts, checking the consistency of an ABox with respect to
an acyclic TBox can be reduced to checking an expanded ABox. The expansion of
A with respect to 7T is defined as the ABox A’ that is obtained from A by replacing
each concept assertion C{a) in A with the assertion C'(a}, where C7 is the expansion
of C' with respect to 7. In every model of 7, a concept C and its expansicn C' are
interpreted in the same way. Therefore, A" is consistent with respect to 7 iff 4 is
consistent with respect to 7. However, since A’ does not contain a name symbol
defined in 7 it is consistent with respect to 7 iff it is consistent. The conclusion is:

¢ 4 is consistent with respect to 7 iff its expansion 4’ is consistent.

Other inferences that are going to be introduced can also he defined with respect
to a TBox or for an ABox alone. As in the case of consistency, reasoning tasks for
ABoxes with respect to acyclic TBoxes can be reduced to reasoning on expanded
ABoxes.

Owver an ABox A, queries can be posed about the relationships between concepts,
roles and individuals. The prototypical ABox inference on which such queries are
based is the instance check, or the check whether an assertion is entailed by an
ABox. An assertion « is entailed by A and we write 4 F « if every interpretation
that satisfies 4, that is, every model of A, also satisfies a. If « is a role assertion,
the instance check is easy, since description language does not contain constructors
to form complex roles. If o is of the form C{a), the instance check can be reduced
to the consistency problem for ABoxes because there is the following connection:

e AF Cla) ff AU{-C(a)} is inconsistent.

Reasoning about concepts can also be reduced to consistency checking. We
have seen in Lemma 4 that the important reasoning problems for concepts can
be reduced to the one to decide whether a concept is satisfiable or not. Similarly,
concept satisfiability can be reduced to ABoex consistency because for every concept
it holds:

e ' is satisfiable ill {C'(a)} is consistent,

where a is an arbitrarily chosen individual name.

Conversely, in [Sch94] it has been shown that ABox consistency can be reduced
to the concept satisfiability in langnages with the “set” and the “fills” constructors.

If knowledge bases are considered as means to store information about individu-
als, it may be needed to know all individuals that are instances of a given concept
deseription €, that is, the description language is used to formulate queries. Given
an ABox A and a concept O, the retrieval problemm is to find all individuals a such
that A E C(a). A non-optimized algorithm for a retrieval query can be realized by
testing whether each individual occurring in the ABox is an instance of the query
concept .

The dual inference to retrieval is the realization problem: given an individual
a and a set of concepts, find the most specific concepts C from the set such that
AE C{a). Here, the most specific concepts are those that are minimal with respect
to the subsumption ordering C.



128  MILENKO MOSUROVIC, TATJANA STOJANGOVIC, ANA KAPLAREVIC-MALISIC

2.3. Reasoning algorithms. As it was shown in the previous section, if conjunc-
tion and negation are allowed in certain DL, then all relevant inference problems
can be reduced to consistency problem for ABoxes. If negation is not allowed,
then subsumption of concepts can be computed by so-called structural subsump-
tion algorithms, i.e., algorithms that compare the syntactic structure of (possibly
normalized) concept descriptions. Such algorithms are, usually, very efficient, but
they are only complete for rather simple languages with little expressivity. In par-
ticular, DLs with (full) negation and disjunction cannot be handled by structural
subsumption algorithms. For such languages, tableau-based algorithms are often
used.

Designing new algorithms for reasoning in DLs can be unnecessary in many
cases. Trying to reduce the problem to a known inference problem in logics is a
good way. For example, decidability of the inference problems for AL and many
other DLs can be obtained as a consequence of the known decidability result for the
two variable fragment of the first-order predicate logic. The language £2 consists
of all formulae of the first-order predicate logic that can be built with the help of
predicate symbols {including equality) and constant symbols (but without function
symbols) using only the variables ©, ¥ [Mor75]. By appropriately reusing variable
names, any concept description of the language ALC can be translated into an £3-
formula with one free variable [Bor96]. This connection between ALC and £2 shows
that any extension of 4LC by constructors that can be expressed with the help of
only two variables yields a decidable DL. Number restrictions and composition of
roles are examples of constructors that cannot be expressed within £2, but number
restrictions can be expressed in €2, the extension of £2 by counting quantifiers,
which has recently been shown to be decidable [Gréa et al. 97, Pac97}. However, the
complexity of the decision procedures obtained in this way is usually higher than
necessary: for example, the satisflability problem for £? is NExpTIME-complete,
whereas satisfiability of ALC-concept descriptions is “only” PSPACE-complete.

Lower complexity decision procedures can be obtained by using the connection
between DLs and propositional modal logics. ALC is a syntactic variant of the
propositional multi-modal logic K [Sch91] and the extension of ALC by transitive
closure of roles corresponds te Propositional Dynamic Logic (PDL) [Baa91]. Some
of the algorithms used in propositional modal logics for deciding satisfiability are
very similar to the tableau-based algorithms newly developed for DLs. Instead of
using tableau-based algorithms, decidability of certain propositional medal logics
{and thus of the corresponding DLs), can also be shown by establishing the fi-
nite model property [Fit93] of the logic (i.e., showing that a formula/concept is
satisfiable iff it is satisfiable in a finite interpretation) or by using tree automata
[VarWol86).

2.3.1. Structural subsumption algorithms. These algorithms usually proceed
in two phases. First, the descriptions to be tested for subsumption are normalized,
and then the syntactic structure of the normal forms is compared. Ideas underlying
this approach will be shown for the language FLq, which allows for conjunction (€1
D) and value restrictions (VR.C). Then the bottom concept (1), atomic negation
{=A) and number restrictions (£ nR and > nR) handling will be presented.



REASONING IN BASIC DESCRIPTION LOGICS 129

An FLy-concept description is in a normal form iff it is of the form
Ain . NALNVR,.C 0. .NVR,.C,

where A4;,..., A, are distinct concept names, Hy, ..., R, are distinct role names,
and 1, ..., Ch are FLg-concept descriptions in normal form. Using associativity,
commutativity and idempotence of M, and the fact that the descriptions VR.(C'N.D)
and (VR.C) N (VR.D) are equivalent, it is easy tc see that any description can be
transformed into an equivalent one in the normal form.

Lemma 6. Let A1 0. . NA,NVE.CL...00VE,.Cy be the normal form of the
FLo-concept description C, and BiN. . N5 VS DN...NVS,.D; the normql form
of the FLo-concept description D. Then C T D iff the following two conditions
hold:

(1) for alli, 1 <t < k there exists j, 1 < j < m such that By = A;
(2) foralls, 1 €1 <1 there exists §, 1 < j < n such that S; = R; and C; C D;

Having this lemma in mind, it is easy to construct recursive algorithm for com-
puting subsumption. That algorithm has a polynomial time complexity [LevBra87).

If F Lo is extended by language constructors that can express unsatisfiable con-
cepts, then the definition of the normal form must be changed. On the other hand,
the structural comparison of the normal forms must take into account that an
unsatisfiable concept is subsumed by every concept. The simplest DL where this
occurs 18 F L the extension of F Ly by the bottom concept L.

An F L) -conecept description is of the normal form iff it is L or of the form

A0 . NA,OVR.C1 N ... NYR,.Cp

where A;,..., A, are distinct concept names different from L, R,,..., R, are
distinct role names, and C4,...,C, and FL, -concept descriptions in the normal
form. Such a normal form can easily be computed. In principle, one just computes
the FLg-normal form of the description (where L is treated as an ordinary concept
name): By N.. . NB,NVYR).DyN...NYR,.D,. If one of the B;s is L then replace
the whole description by L. Otherwise, apply the same procedure recursively to
the D;s. The structural subsumption algorithm for F£; works just like the one
for FLq with the only difference that | is subsumed by any description.

Extension of FL£, by atomic negation can be treated similarly. During the
computation of the normal form, negated concept names are treated like concept
names. If a name and its negation occur on the same level of the normal form,
then L is added, which can then be treated as described above. The structural
comparison of the normal forms treats negated concept names just like concept
names. ‘ ‘

Finally, if we consider the language ALA, the additional presence of aumber
restrictions leads to a new type of conflict. On one hand, as in the case of atomic
negation, number restrictions may be conflicting with each other (e.g. » 2R and
< 1R). On the other hand, at-least restrictions > nR for n 2 1 are in conflict with
value restrictions VR.L. When computing the normal form, number restrictions
can be treated like concept names. The next step is taking care of the new types of



130 MILENKO MOSUROVES, TATJANA STOJANOVIC, ANA KAPLAREVIC-MALISIC

conflicts by introducing L and using it for normalization as described above. Dur-
ing the structural comparison of normal forms, inherent subsumption relationships
between number restrictions (e.g. 2 nR T2 mAR iff n 2 m) must also be taken into
account [BorPat94].

Structural subsumption algorithms, like described above, usually fail to be com-
plete for larger DLs. In particular, they cannot treat disjunction, full negation, and
full existential restriction 3R.C. These constructors can be more efficiently treated
in subsumption algorithms that are constructed in a tableau-based style.

2.3.2. Tableau algorithins. Tableau algorithms use another idea to examine
subsumption of concept descriptions. Precisely, as it was shown in Subsection 2.2,
they use negation to reduce subsumption to (un)satisfiability of concept descriptions
using: C' C D iff ¢'M =D is unsatisfiable.

Before describing a tableau-based satisfiability algorithm for ALCA in more
detail, we illustrate the underlying ideas using a few basic rules:

s For any existential restriction the algorithm introduces a new individual as
role filler, and this individual must satisfy the constraints expressed by the
restriction.

s The algorithm uses value restrictions in interaction with already defined
role relations to impose new constraints on individuals.

¢ For disjunctive constraints, the algorithm tries both possibilities in succes-
sive attempts. [t must backtrack if it reaches an obvious contradiction, i.e.,
if the same individual must satisfy constraints that are obviously conflict-
ing.

e If an at-most number restriction is violated, then the algorithm must iden-
tify different role fillers.

2.3.3. A tableau-based satisfiability algorithm for ALCN. Describing the
algorithm needs introducing an appropriate data structure which will be used for
representing constraints like ”a belongs to {(the interpretation of) C” and “bis an R-
filler of ”. Although many papers on tableau algorithms for DLs introduce the new
notion of a constraint system for this purpose, considering the types of constraints
that must be expressed, ABox assertions can be used for their representations.
Since the presence of at-most number restrictions may lead to the identification of
different individual names, the unigue name assumption (UNA) will not be imposed
on the ABoxes considered by the algerithm. Instead, expiicit inequality assertions
of the form z # y for individual names z, y, with the obvious semantics that an
interpretation 7 satisfies z # y iff 27 # 3% will be allowed. These assertions are
assumed to be symmetric, i.e., saying that ¢ # v belongs to an ABox A4 is the same
as saying that y # z belongs to A.

Let Cy be an ALCA -concept. In order to test satisfiability of Cy, the algo-
rithm starts with the ABox Ag = {Cp(zo)}, and applies consistency preserving
transformation rules (see Figure 2) to do ABox until no more rules apply. If the
“complete” ABox obtained in this way does not contain an obvious contradiction
(called clash}, then 4 is consistent {and thus Cj is satisfiable), and inconsistent



REASONING IN BASIC DESCRIPTION LOGICS 131

{unsatisfiable) otherwise. The transformation rules that handle disjunction and
at-most restrictions are non-deterministic in the sense that a given ABox is trans-
formed into finitely many new ABoxes such that the original ABox is consistent iff
one of the new ABoxes is so. For this reason instead of single ABoxes finite sets of
ABoxes & = {4, ..., A} are considered. Such a set is consistent iff there is some
i, 1 €1 € k such that A4; is consistent. A rule in Figure 2 is applied to a given
finite set of ABoxes & as follows: it takes an element A of S and replaces it by one
ABox A', by two ABoxes A" and A", or by finitely many ABoxes A4; ;.

The —p-rule

Condition: A contains (€7 N Cy)(x), but it does not contain both ¢ (x) and
Ca(z)

Action: A" = AU {Cy(z}, Ca(z)}.

The —,-rule
Condition: A contains (C; U C2)(z), but neither C(x} nor Cy(z)
Action: A' = AU {Ci(z)}, A" = Au{Ca(z)}.

The —3-rule

Condition: A contains (38.C)(z), but there is no individual name z such that
C(z) and R(z,z) are in A

Action: A' = AU {C{y), R(z,y)} where y is an individual name not accurring
in A,

The —y-rule ‘
Condition: A contains (VR.C)(z) and R(z,y), but it does not contain C(y)
Action: A" = AU {C{y)}.

The —-rule

Condition: .4 contains (> nf)(z) and there are no individual names z,..., 2,
such that R{z,z;) (1<i<n)and z; # 2 (1 €1 < j < n) are contained in A
Action: A'= AU{R(z,y) |1 <i<nfu{y #v|1<i<j<€n} where
Y1 - - -, Un are distinct individual names not occurring in A.

The —¢-rule

Condition: A contains distinct individual names yy,...,yn41 such that
(€ nR)(z) and R{z,11),..., R(z,ynt1) are in A and y; # y; is not in A for
some i £ §

Action: For each pair y;, y; such that ¢ > j and y; # y; is not in A4, the ABox
A = [wi/y;]A is obtained from A by replacing each occurrence of y; by y;.

FigUre 2. Transformation rules of the satisfiability algorithm.
Consequent to the definition of the transformation rules the following lemma is
valid:

Lemma 7 (Scundness}. Assume that &' is obtained from the finite set of ABowes
S by application of a transformation rule. Then & is consistent iff &' is consistent.



132 MILENKO MOSUROVIC, TATJANA STOJANOVIC, ANA KAPLAREVIC-MALISIC

The second important property of the set of transformation rules is that the
transformation process always terminates:

Lemma 8 (Termination [BaaSat99, Don et al. 97]). Let Cy be an ALCN -concept
description. There cannot be an infinite sequence of rule applications

{Colzo)})} = &1 = S2 = ...

Lemma 9. Let A4 be an ABox contained in S; for some i 2 1. Then:

o For every individual © # xo occurring in A, there is a unique sequence
Ri,..., B (I 2 1) of role names and a unique sequence Ti,...,Z—1 of
individuol names such that {By(zo, 21 ), Ra(z1,22), ..., Bi(m—1,2)} C A
In this case, we say that x occurs on level | in A.

o If C(z) € A for an individual name z on level 1, then the mazimal role
depth of € {i.e., the mazimal nesting of constructors invelving roles) is
bounded by the mazimal role depth of Co minus l. Consequently, the level
of any individual in A is bounded by the mazimal role depth of Cy.

o If C{z) € A, then C i3 a subdescription of Cy. Consequently, the number
of different concept assertions on z 15 bounded by the size of Cy.

e The number of different role successors of © in A (i.e., individuals y such
that R(z,y) € A for a role name R) is bounded by the sum of the num-
bers occurring in at-least restrictions in Cy plus the number of different
existential restrictions in Cy.

Starting with {{Cu(zo)}}, we thus obtain after a finite number of rule appli-
cations a set of ABoxes &, to which no more rules apply. An ABox A is called
coraplete if none of the transformation rules applies to it. Consistency of a set of
complete ABoxes can be determined by looking for clashes. The ABox A contains
a clash iff one of the {ollowing three situations occurs:

(1) {L{x)} C A for some individual name z;
(1) {A(z),~A(z)} C A for some individual name x and some concept name A;

(i) (< RN U{R(z,5) |1 <i <nt1}0lys #y; | 1<i<i<nt1)C A

for individual names x,7,...,¥n+1, 8 noOnnegative integer n, and a role
name R. '

Obviously, an ABox that contains a clash cannot be consistent. Hence, if all
the ABoxes in & contain a clash, then S is inconsistent, and thus by the soundness
lemma {Co(zo)} is inconsistent as well. Consequently, Co is unsatisfiable. If,
however, one of the complete ABoxes in § is clash-free, then S is consistent. By
soundness of the rules, this implies consistency of {Cy(z0)}, and thus satisfiability
of CQ.

Lemma 10 (Completeness}. Any complete and clash-free ABox A has a model.

This lemma can be proved by defining the canonical interpretation T4 induced
by A:
(i) the domain AZ4 of 74 consists of all the individual names occurring in A;
(i) for all atomic concepts A we define AT+ = {z | A(z) € A};



REASONING IN BASIC DESCRIPTICN LOGICS 133

(i) for all atomic roles It we define R%4 = {(z,y) | R(z,y) € A}.

7 4 satisfies all the role assertions in .4, by definition, and, by induction on the
structure of concept descriptions, it is easy to show that it satisfies the concept
assertions as well. The inequality assertions are satisfied since z # v € A4 only if z,
y are different individual names.

The facts stated in Lemma 9 imply that the canonical interpretation has the
shape of a finite tree whose depth is linearly bounded by the size of C; and whose
branching factor is bounded by the sum of the numbers occurring in at-least restric-
tions in Cy plus the number of different existential restrictions in Cy. Consequently,
ALCN has the finite tree model property, i.e., any satisfiable concept Cy is satisfi-
able in a finite interpretation I that has the shape of a tree whose root belongs to
Cy.

Theorem 2. It is decidable whether or not an ACCN -concept is satisfiable.
Theorem 3. Satisfiability of ALCN -concept descriptions is PSPACE-complete.

2.3.4. Extension to the consistency problem for ABoxes. Algorithin that
decides consistency of ALCN -ABoxes can be constructed as an extension of de-
scribed tableau-based satisfiability algorithm. Let .4 be an ALCA-ABox. To test
A for consistency, we first add inequality assertions a # b for every pair of distinct
individual names a,b occurring in 4. Let 4y be the ABox obtained in this way.
The consistency algorithm applies the rules of Figure 2 to the singleton set {Ag}.
Soundness and completeness of the rule set can be shown as before. '

Termination can be enabled by requiring that generating rules —3 and =3 may
only be applied if none of the other rules are applicable.

Following a similar idea, the consistency problem for ALCA-ABoxes can be re-
duced to satisfiability of ALCN -concept descriptions [Hol96]. Roughly speaking,
this reduction works as follows: In a preprocessing step, one applies the transfor-
mation rules only to old individuals (i.e., individuals present in the original ABox).
Subsequently, one can forget about the role assertions, i.e., for each individual name
in the preprocessed ABox, the satisfiability algorithm is applied to the conjunction
of its concept assertions.

Theorem 4. Consistency of ALCN -ABozes is PSPACE-complete.

2.3.5. Extension to general inclusion axioms. In the above subsections, we
have considered the satisfiability problem for concept descriptions and the consis-
tency problem for ABoxes without an underlying TBox. In fact, for acyclic TBoxes
one can simply expand the definitions. Expansion is, however, no longer possible
if general inclusion axioms of the form C C D, where ¢ and D may be com-
plex descriptions, are allowed. Instead of considering fnitely many su(/:‘}} axioms
Cy C Dy,...,Ch £ Dy, it is sufficient to consider the single axiom T C €, where

-~

C=(-CruD)n---N{=C, uD,).

The axiom T C c simply claims that any individual must belong to the concept a.
The tableau algorithm introduced above can easily be modified in such a manner



134 MILENKO MOSUROVIC, TATJANA STOIANOVIC, ANA KAPLAREVIC-MALISIC

that it takes the following axiom into account: all individuals {both the original
individuals and the ones newly generated by the —3- and —3-rule) are simply
asserted to belong to C. However, this may produce nonterminating algorithm.

Termination can be regained by detecting cyclic computations, and then blocking
the application of generating rules: the application of the rules —3 to an individual
7 is blocked by an individual y in an ABox Aiff {D | D(z)e A} C{D' | D'(y) € A}.
The main idea underlying blocking is that the blocked individual x can use the role
successors of ¢ instead of generating new ones.

To avoid cyclic blocking (of = by y and vice versa), we consider an enumeration
of all individual names, and define that an individua! £ may only be blocked by
individuals y that occur before « in this enumeration. This notion of blocking,
together with some other technical assumptions, enables soundness, completeness
as well as termination of algorithm [Buc et al. 93, Baa96]. Thus, consistency of
ALCN-ABoxes with respect to general inclusion axioms is decidable. Since an
algorithm may generate role paths of exponential length before blocking, it is no
longer in PSpacE. In fact, even for the language ALC, satisfiability with respect
to a single general inclusion axicm is known to be EXPTIME [DonMas00]. The
tableau-based algorithin sketched above is a NExpTIME algorithm. However, us-
ing the translation technique menticned at the beginning of this section, it can
be shown [DeG95] that ALCA -ABoxes and general inclusion axioms can be trans-
lated into PDL(Propositional Dynamic Logic), which satisfiability can be decided
in exponential time.

Theorem 5. Consistency of ALCN -ABoxes with respect to general inclusion az-
ioms is EXPTIME-complete. ‘

2.3.6. Extension to other language constructors. The tableau-based algo-
rithms for checking concept satisfiability and ABox consistency can also be em-
ployed for languages with other concept and/or role constructors. Each new con-
structor requires a new rule, and this rule can usually be obtained by simply con-
sidering the semantics of the constructor. Soundness of such a rule is often very
easy to show. Completeness and termination are more difficult to control, since
they must also take into account interactions between different rules. As it was
shown above, termination can sometimes only be obtained if the application of

rules is restricted by an appropriate strategy. Of course, one may only impose such

a strategy if one can show that it does not perturb completeness.

2.3.7. Reasoning with respect to terminclogies. As it was said before, ter-
minologies (TBoxes) are sets of concept definitions (i.e., equalities of the form
A = C where A is atomic) such that every atomic concept occurs at most once as
a left-hand side.

Acyclic terminologies. As shown in Section 2.2, reasoning with respect to acyclic
terminologies can be reduced to reasoning without terminoclogies by expanding the
TBox, followed by replacing name symbols by their definitions in the terminology.
Unfortunately, this increases the complexity of reasoning, since the expanded TBox
may be exponentially larger than the original one [Neb90].



REASONING IN BASIC DESCRIPTION LOGICS 135

For more expressive languages, the presence of acyclic TBoxes does not necessar-
ily increase the complexity of the subsumption problem. For example, subsumption
of concept descriptions in the language ALC is PSPACE-complete, and so is sub-
sumption with respect to acyclic terminologies. Of coutse, in order to obtain a
PSeace-algorithm for subsumption in ALC with respect to acyclic TBoxes, one
cannot first expand the TBox completely since this might need exponential space.
The main idea is that one uses a tableau-based algorithm like the one described,
with the difference that it receives concept descriptions containing name symbols
as input. Expansion is then done by the following rule: if the tahleau-based algo-
rithm encounters an assertion of the form A{z), where A is a name occurring on the
left-hand side of a definition A = € in the TBox, then it adds the assertion C{x).
However, it does not further expand C at this stage. It is not difficult to show that
this yields a PSpace-algorithm for satisfiability {and thus also for subsumption) of
concepts with respect to acyclic TBoxes in ALC [Lut99).

There are, however, extensions of ALC for which this technique is not proper.

One such example is the language ALCF, i.e., ALC extended by functional roles as
well as agreements and disagreements on chains of functional roles (see Section 2.4
below). Satisfiability of concepts is PSPAGE-complete for this language [HolNut90j,
-but satisfiability of concepts with respect to acyclic terminologies is NExpTIME-
complete [Lut99].
Cyclic terminologies. For cyclic terminologies, expansion would not terminate. If
we use deseriptive semantics, then cyclic terminologies are a special case of ter-
minologies with general inclusion axioms. Thus, the tableau-based algorithm for
handling general inclusion axioms previously introduced can also be used for cyclic
ALCN-TBoxes with descriptive sernantics.

For less expressive DLs, more efficient algorithms can, however, be obtained with
the help of techniques based on finite automata.

2.4. Language extensions. In Section 2.1 we have introduced the language ALCA
as a Description Logic proto{ype. For many applications, the expressive power of
ALCN is not sufficient. For this reason, various other language constructors have
been introduced in the literature and are employed by systems. In [Baa et al. 02]
these language extensions were roughly classified into two categories, “classical”
and “nonclassical” extensions. Intuitively, a classical extension is one whose se-
mantics can easily be defined within the model-theoretic framework introduced in
Section 2.1, whereas defining the semantics of a nonclagsical constructor is more
problematic and requires an extension of the model-theoretic framework. Here-
after, the most important classical extensions of Description Logics will be briefly
introduced.

2.4.1. Role constructors. Since roles are interpreted as binary relations, it is
quuite natural to employ the usual operations en binary relations (such as Boolean
operators, composition, inverse, and transitive closure) as role forming constructors.

Definition 1 (Role constructors). Every role name is a role description (atomic
role), and if R, § are role descriptions, then RM.S (intersection), RUS (union), ~R



136 MILENKO MOSUROVIC, TATJANA STOJANOVIC, ANA KAPLAREVIC-MALISIC

(complement), R o S (composition), R (transitive closure), R~ (inverse), id(C)
(role identity) are also role descriptions.

Given an interpretation 7 is extended to (complex) role descriptions as follows:
() (RNSYE=RIns%T, (RuS =RTUST, (R =nTx A* < RE;
(it) (RoS)F = {(a,c) € AT x AT | (3b)(a,b) € R* A (b,¢) € ST}
(iit) (RH)T = U@l(RI)i, ie., (RT)T is the transitive closure of {(R%);
(iv) (R™)E = {(b,a) € AT x AT | (a,b) € R*}
(v) id(CYF = {(a,a) € AT x AT | a € €T}, ie., each instance of concept to
itself.
For example, the union of the roles hasSon and hasDaughter can be used to
define the role hasChild, and the transitive closure of hasChild expresses the role
hasOffspring. The inverse of hasChild yields the role hasParent.

Example 5. The following ALCT,.; TBox Tyy. models a file-system constituted
by file-system elements:

FSetem C dname.String
FSelem = Directory U File
Directory C —File
Directory T Vchild.FSelem
File € Vchitd. L
Root T Directory
Root L Vcehild™. L

The axioms in Trye imply that in a model every object connected by a chain of
role child to an instance of Root is an instancé of FSelem. Formally,

TFie & (child™)".Root C FSelem

It is shown that the complexity of satisfiability and subsumption of concepts
in the language ALCN" (also called ALCAN'R in the literature and which extends
ALCAN by intersection of roles) are still PSpACE-complete [Don et al. 97, Tob01].
Decidability of the extension of ALCA by the three Boolean coperators and the
inverse operator is a direct consequence of the fact that concepts of the extended
language can be expressed in €2, ie., first-order predicate logic with two vari-
ables and counting quantifiers, which is known to be decidable in NExPTIME
[Gré et al. 97, Pac97]. It is also shown [LutSat00] that ALC extended by role com-
plement 1s ExpTIME-complete, whereas ALC extended by role intersection and
atomic role complement 1s NExpTIME-complete.

For ALC¢rqns {(which extends ALC by transitive-closure, composition, and union
of roles) subsumption and satisfiability problem have been shown to be decid-
able [Baa9l] and ExpTime-complete [FisLad79, Pra79, Pra80]. The extension
of ALC;rqns by the inverse constructor corresponds to converse PDL [FisLad79),
which can also be shown to be decidable in deterministic exponential time [Var85].
ALC trons extended by inverse and number restrictions does not have the finite



REASONING IN BASIC DESCRIPTION LOGICS 137

model property. Nevertheless, this DL still has an ExpTiMe-compiete subsump-
tion and satisflability problem.

2.4.2. Expressive number restrictions. First, we will consider the so-called
qualified number restrictions, where the number restrictions are concerned with
role-fillers helonging to a certain concept.

Example 6. Given the role hasChild, the simple number restrictions introduced
above can only state that the number of all children is within certain limits, such
as in the concept > 2ZhasChildM € ShasChild. Qualified number restrictions can also
express that there are at least 2 sons and at most 5 daughters:

2 2hasChild.Malen < 5ShasChild.Female

Adding qualified number restrictions to ALC leaves the important inference prob-
lems (like subsumption and satisfiability of concepts, and consistency of ABoxes)
decidable: the worst-case complexity is still PSPACE-complete. The language is
decidable if general sets of inclusion axioms are allowed [Buc et al. 93].

The second group of extensions are those which allow for complex role expressions
inside number restrictions. The extension of ALCA by number restrictions involv-
ing composition has a decidable satisfiability and subsumption problem. On the
other hand, if any number restrictions involving composition, union and inverse, or
number restrictions involving composition and intersection are added, then satisfi-
ability and subsumption become undecidable {BaaSai96, BaaSat99]. For ALCans
the extension by number restrictions invelving compositionis already undecidable
[Baa3at99].

Third, if the explicit numbers n in number restrictions are replaced by variables o
that stand for arbitrary nonnegative integers, the expressive power of language can
further be increased by introducing explicit quantification of the numeric variables.

1t is shown that ALCAN extended by such symbolic number restrictions with
universal and existential quantification of numerical variables has an undecidable
satisfiability and subsumption problem. If one restricts this language to existen-
tial quantification of numerical variables and negation on atomic concepts, then
satisfiability becomes decidable, but subsumption remains undecidable.

2.4.3. Role-value-maps. Role-value-maps are a family of very expressive con-
cept constructors, which were, however, available in the original KL-One-system.

Definition 2 (Role-value-maps). A role chain is a composition Ry o -0 R, of role
names. If K, S are role chains, then B C 5 and E = 5 are concepts.
A given interpretation T is extended to role-value-maps as follows:

i) (RC 9 ={aeAT|()((a,b) € BT — (a,b) € 5T)}
(i) (R=8)"= {ae AT (¥b)((a,b) € BT ¢ (a,b) € ST)}
Example 7. The concept
Person 1M {hasChild o hasFriend C knows)



138 MILENKO MOSUROVIC, TATJANA STCJANOVIC, ANA KAPLAREVIG-MALISIC

describes the persons knowing all friends of their children, and
Person M (married To o likesToEat = likesToEat)

describes persons having the same favorite foods as their spouse.

Unfortunately, in the presence of role-value-maps, the subsumption problem is
undecidable, even if the language allows only for conjunction and value restriction
as additional constructors.

Solution to this problem is restricting the attention to role chains of functional
roles, also called attributes or features in the literature. An interpretation T inter-
prets the role R as a functional role iff {(a,b), (a,c)} € R? implies b = ¢. In the
following, it will be assumed that the set of role names is partitioned into the set
of functional roles and the set of ordinary roles. Any interpretation must interpret
the functional roles as such. Functional roles will be denoted with small letters f,
g, possibly with index.

Definition 3 (Agreements). If f, g are role chains of functional roles, then f =g¢
and f # g are concepts {agreement and disagreement).
A given interpretation 7 is extended to agreements and disagreements as follows:

M) (f=9)" = {ac 67| (E0)((ab) € fFA(a,b) € 7))
() (F#9)7 = {o € AT| @, b) by # b Ala,hy) € 7 A (a,b) € ¢7))

In the literature, the agreement constructor is sometimes also called the “same-
as” constructor. Since f, g are the role chains between the functional roles, there
can be at most one role filler for o with respect to the respective role chain. The
semantics of agreements and disagreements requires these role fillers to exist (and
be equal or distinct) for a to belong to the concept.

Example 8. Roles such as hasMother, hasFather and hasLastName with their usual
interpretation are functional roles, whereas hasParent and hasChild are not. The
concept

Person M {hasLastName = hasMother o hasLastName)
N (hasLastName # hasFather ¢ hasLastName)

describes persons whose last name coincides with the last name of their mother,
but not with the last name of their father.

The restriction to functional roles makes reasoning in ALC extended by agree-
ments and disagreements decidable [HolNut90]. However, if general inclusion ax-
ioms {or transitive closure of functional roles or cyclic definitions) are allowed,
then agreements and disagreements between chains of functional roles again cause
subsumption to become undecidable.

2.4.4. Functional restrictions (F). Functional restrictions are the simplest form
of number restrictions considered in description logics, and allow for specifying local
functionality of roles, i.e., that instances of certain concepts have unique role-fillers
for a given role. By adding functional restrictions on atomic roles and their inverse



REASONING IN BASIC DESCRIPTION LOGICS 139

to ALCL,.q we obtain the description logic ACCFT,.s. Functional restrictions has
a form € 1@, where () is a basic role, i.e., either an atoric role or the inverse of
an atomic role. Such a functional restriction ig interpreted as foliows:

(£1Q)F ={ae AT |[{be AT |(a,b) e @7} <1}

Reasoning in ALCF T, is EXPTiME-complete. Also, ALCFT,., has the tree
model property, which states that if a ALCFT,4-concept C is satisflable then it
is satisfied in an interpretation which has the structure of a (possibly infinite) tree
with bounded branching degree. This makes the space for using of techniques based
on automata on infinite trees.

2.4.5. Qualified numnber restrictions (£)). Qualified number restrictions is the
most general form of number restrictions, and allow for specifying arbitrary car-
dinality constraints on roles with role-fillers belonging to a certain concept. In
particular we will consider qualified number restrictions on basic roles, i.e., atomic
roles and their inverse. By adding such constructs to ALCT,., we obtain the de-
seription logic ALCQT eq.

Qualified number restrictions has a form € nQ.C' and 2 n@Q.C, where n is
& nonnegative integer, () is a basic role, and C is an ALCQZ,.,~concept. Such
constructs are interpreted as follows: ‘

(<nQC ={ae AT ||{be Y| (a,b) € QF Abe CT} <n}
(= nQ.C)* ={acoT||{be AT |(a,b) e Q" Abe CTY 2 n}
Reasoning in ALCQT,., is still ExPTIME-complete.

2.4.6. Relations of arbitrary arity. A limitation of traditional description log-
ics is that only binary relationships between instances of concepts can be repre-
sented, which is a quite limitation in a process of modeling relationships among
more than two objects in some real world situations. Such relaticnships can be
described by making use of relations of arbitrary arity instead of (binary) roles.
Let us consider the description logic DLR, which represents a natural generaliza-
tion of traditional description logics towards n-ary relations. The basic elements of
DLR are atomic relations and atomic concepts, denoted by P and A, respectively.
Arbitrary relations, of given arity between 2 and ny,,,, and arbitrary concepts are -
formed according to the following syntax

R— Ta|P|(i/n:C)| R|RyNRy
C T | A|-C|CNCs | IR <K[R

where ¢ denotes a component of a relation, i.e., an integer between 1 and 7y sy, 7
denotes the arity of a relation, i.e., an integer between 2 and np,y, and k& denotes
a nonnegative integer.
For DLR interpretation T = (A%, 7) is introduced as follows:
I
TLC )"
I T
PICTE



140 MILENKO MOSUROVIC, TATJANA STOJANOVIC, ANA KAPLAREVIC-MALISIC

-R)T = TZ R?
(R NRy)Y =RINRZ
(i/n:CVY ={(d,...,dn) € T |d, € CF}
T =7
AI g AI
(-CYr = atct
(Crne)t =cinct
AHR)E = {d € AT | (3d,,...,dn) € RT)d; = d}
(SKER)YT = {de AT | [{(dr,-.,dn) € BT | ds = d}| < &
Theorem 6. Logical implication in DLR is EXpTIME-complete.

DLR can be extended to include regular expressions built over projections of
relations on two of their components, thus obtaining DLR ., (decidability is also
ExpTiMmE-complete).

DLR and DLR,., are generalizations of ALCQT and ALCQL, .y, and they can
be extended by Boolean constructs on roles and role inclusion axioms. Obtained
languages have ExpTIME-complete logical implication.

Reasoning in SHZEQ, which is ALCQT extended with roles that are transitive,
and with role inclusion axioms on arbitrary roles {direct, inverse, and transitive),
is still EXPTIME-complete.

3. Description logics with modal operators

3.1. Preliminaries. We begin by defining the modal concept description language
ALC pq and its semantics.
The primitive symbols of ALC ot are:

o concept names Cy, O, ...,

s role names Hy, H, ..., and

* object names agp,a1,. ...
Starting from these we can form compound concepts and formulas using the follow-
ing constructs. Suppose R is a role name and €, D are concepts (for the basis of
our inductive definition we assume concept names to be atomic concepts). Then T,
CnND,=C, AR.C, and OC (or CUD, CSD for a strict linear order) are concepts.

Atomic formulas are expressions of the form T; C = D, a: C, and o Rb, where
@, b are object names. If ¢ and ¢ are formulas then so are ¢ A ¢, —y, and Qp (or
lip, Y8 for a strict linear order).

The pure description part of this language is ALC. By adding the constructs for
the formation of the union R U .S, composition R o §, transitive reflexive closure
R* and test C?, we can extend it to £, and to CI (CI()) by adding still inversion
R~ (inversion R~ and number restrictions 3" B.C, where B is a role name or its
converse). The corresponding modal description language is denoted then by Cag,
CTp: and CZO .



" REASONING IN BASIC DESCRIPTION LOGICS 141

A model of ALC x4 based on a frame § = (W, <) is a pair M = (F,I) in which
I is a function associating with each w € W a structure

I{w) = <AI’“’-,R£"‘”,...,Cé’w,...,aé””, . >

where AT¥ is a nonempty set of objects, the domain of w, Rf’w are binary relations
on Al CT* subsets of AT¥, and a]™ are objects in AT such that o] = o
for any v,w € W.

One can distinguish between three types of models: those with constent, ezpand-
ing, and varying domains. In models with constant domains ALY = AL for all
v,w € W. In models with expanding domains A/ C AL¥ whenever v < w. And
models with varying domains are just arbitrary models.

Given a model 97 and a world w in it, we define the walue C7% of a concept C
in w and the truth-relation (MM, w) E ¢ (or simply w E ¢, if M is understood) by
taking:

b

Th¥ =4, and CTY = ()Y, for € =Cy
(Cnpybw =clenphe, Oy =a~Ch
z € (0C)" iff Jvewze Ol
x € (BRO)™iff 3y e ChY zRIwy;

wEC=D iff Ch¥ =D,
wEa:C if ¥ egiv,
wkaRb i ol YR,
wE Qp ift v wuke;
wEeAy i wFyand wF Y,
wF g it wke .
If § = (W, <) is a strict linear order with modal operators If and &, than we have
x € (CU D) iff there is w > w such that z € DI% and z € CT¥ for all v € (w,u);
z € (CS DY iff there is uw < w such that z € DY® and z € C¥ for all v € (u, w);
w i x iff there is u > w such that v F y and v F ¥ for all v € {w,u); and
w E ) Sy iff there is u < w such that ©F x and v £ for all v € (u, w).
A formula ¢ 18 satisfiable in a class of models M if there is a model 3T € A and
a world w in 1 such that w F ¢. We will use special names for certain classes of
models with one accessibility relation. Namely,
K the class of all models;
&5 the class of models based on frames with the universal relations,
ie., u<awv for all « and v
KD45 the class of transitive, serial (Vu3v v < v) and Euclidean
(u<gvAu<w -» v <w) models;

S4 the class of all quasi-ordered models;
K4 the class of transitive models;



BF

142 MILENKO MOSUROVIC, TATJANA STOJANOVIS, ANA KAPLAREVIC-MALISIC

GL the class of transitive Noetherian models
(i.e., containing no infinite ascending chains); and
N the class of models based on (N, <).

We are in a position now to present known decidability and complexity results
concerning formula-satisfiability problems [MosZakh99, Mos2000)].

Theorem 7. (1) The formula-satisfiability problem, when we adopt expanding do-
main essumption, for the language ALC oq in each of the classes K, N, GL, 84,
and K4 is NEXPTIME-hard.

(2) The formulo-satisfiability problem for the language ALC i and CIpq in the
classe K is NEXPTIME-complete (no matter whether the models have constant or
expanding domains).

(3) The formula-satisfiobility problem for the language ALC pq and CTQaq in the
elasse 55 is NExPTIME-complete.

(4) The formula-satisfiability problem for the language ALC g and CZQaq in the
class N is EXPSPACE-complete.

For these logics, tableau algorithms were developed [Lutz et al. 01, Lutz et al. 02].
Further on, we will continue with presenting of one temporal extension of descrip-
tion logics [Arta et al. 01, Arta et al. 02], as a special case of modal extension of
description logics.

3.2. The Temporal Description Logic. Here, we adopt the snapshot represen-
tation of abstract temporal databases (and temporal conceptual models); see for
example [ChoSaa98]. The flow of time 7 = (7, <}, where 7}, is a set of time points
(or chronons) and < a binary precedence relation on 75, is assumed to be isomor-
phic to {Z,<). Thus, a temporal database can be regarded as a map from time
points in 7 to standard (relational) databases with the same domain of attributes
and the same interpretation of constants.

As a language of temporal database conceptual schemas we use a natural com-
bination of the propositional linear temporal logic with Since and Until [SisCI85,
Gab et al. 94] and the (non-temporal) description logic PLR [Cal et al. 98]. The
resulting temporal description logic will be denoted by DLRys.

The basic syntactical types of DLRys are entities {i.e., unary predicates, also
known as concepts) and nary relotions of arity 2 2. Starting from a set EN of
atomic entities and a set RN of atomic relations we define inductively (complex)
entity and relation expressions as is shown in the upper part of Fig. 3, where the
binary constructs (M, 4,2, 8) are applied to relations of the same arity, i, 7, k, n are
natural numbers, i € n, and § does not exceed the arity of R.

A temporal conceptual datebase schema {or a knowledge base) is a finite set ¥ of
DLRys-formulas. Atomic formulas are formulas of the form By C Fy and Ry C Ra,
with Ry and R» being relations of the same arity. If ¢ and ¢ are DLRysformulas,
then so are -, @ AW, @lip, Sy, FE = E2 is used as an abbreviation for
(B1 T E») A(Ey C Ey), for both entities and relations. Temporal conceptual
database schemas will serve as constraints for temporal databases.



REASONING IN BASIC DESCRIPTION LOGICS 143

R -~ Tu|BN|-R|Ry M Ry|Ri U Ryli/n: E|
O+ R|O~R|O* RO~ R| @ R| & R|R{UR,|R SR,

E = TIEN|~EIE 0 Ey|By U Ey|324[j]R|
O+E|Q—E|D+E||:I'E| @ El 6 E|E;UE;|E1SFy

(To)f C {ahe
RN C (T
(__,R)I(t) — (Tn)l(t) kI
(R, M BRI = Ri’(t) n RQI(t)
(ifn:EY® = {{d,...,dn) € (T,)/ | d; € B9}
(RiURY D = ({dy,--odn) € (To) [ 30> t.({d1,. ... dn) € Rg(‘*’” )
AVw € (t,'()).(dl,.. : :d'n> €R ¥ )}

(RSO = {(dy,.o,da) € (T |30 < 0.((ds, . d) € BL)

1 2 1;---14n i v - 1y---3Un € 2 I()

AYw € (v,y)Ads, ..., dny € B

(OTR)'® = {{d,--rdn) € (To) W | F0 > 3(:~(d17- : .I,dn) € 1)%”“)}1 )
(®R)" = {{d1,-- . dn) € (TR} | {dy,...,dn) € RV}
(O~ RY® = di,...,dn) € (T} [ v < tldy,...,dn) € RIW))
(er)® = {{di,-.dn) € (TR)'V | (dr, ..., dn) € RIG-1)
Tf(i) — AI
ENI{) - T8
(-E)1® = T EI®
(EiN B = plnpl®
FGIRY = (de T [ {{{di,...,ds) € RFD|d; = d} 2 k}
(BUEY W = {deTH |3 >t(de BiY Avw e (t,v).d e E{™)}
(BrSE)® = {de T |3 <t(de By Avwe (v,t).d e B™)}

FIGURE 3. Syntax and semantics of DLRys.

The language of DLRy s is interpreted in temporal models over T, which are
triples of the form I = {7,A7, .1} where A7 is nonempty set of objects (the
domain of T) and /%) an interpretation function such that, for every t € T, every
entity E, and every n-ary relation R, we have B/ C Af and R1®) C (AT)*. The
semantics of entity and relation expressions is defined in the lower part of Fig. 3,
where (u,v) = {w € 7 | u < w < v} and the operators O% (always in the future)
and (1~ (always in the past) are the duals of ¢ (some time in the future) and ¢~
(some time in the past), respectively, i.e.,, OYE = ~0T=F and O~ F = -~ ~E, for
both entities and relations. For entities, the temporal operators O, & (at the next
moment), and their past counterparts can be defined via i and §: T F = TUE,
®F = LUE, etc. However, this is not possible for relations of arity > 1, since
Ta—the top nary relation—can be interpreted by different subsets of the n-ary -



144 MILENKO MOSUROVIS, TATJANA STOJANCVIC, ANA KAPLAREVIC-MALISIC

cross product T x -+ x T at different time points.®* The operators ¢* (at some
moment) and its dual 0% (at all moments) can be defined for both entities and
relations as ¢*E = EUGTE U Q™ E and O*E = EuCT EU O E, respectively.

The nontemporal fragment of DLRys coincides with DLR. For both entity
and relation expressions all the Boolean constructs are available. The selection
expression ¢/n : E denotes an nary relation whose ¢-th argument (z € n) is of type
E; if it is clear from the context, we omit n and write (¢ : E). The projection
expression 32*[{]R is a generalization with cardinalities of the projection operator
over the ith argument of the relation B (which coincides with 3#1[i]R). It is also
possible to use the named attribute version of the model by replacing argument
position numbers with role names.

Given a formula ¢, an interpretation I, and a time point £ € 7, the truthrelation
I,t E @ (v holds in 7 at moment t) is defined inductively as follows:

LiFE CE it E/®WcE®

ItER CRy, if RI™cRIW

Ltkony  iff ItFgandI,tE ¢

ItE -y it LtF e

I,tE liy iff Juv>it(lvE¢AVYwe tv)L,wE )
1,tE @S if 3 < t(lvE Y AVwE (8,0).0,wE Q)

A formula ¢ is called satisfiable if there is a temporal model I such that It F ¢,
for some time point ¢. A conceptual schema ¥ is satisfiable if the conjunction A Z
of all formulas in ¥ is satisfiable (we write I,¢t F ¥ instead of I, F A £); in this
case [ 13 called a model of £. We say that ¥ is globally satisfiable if there is [
such that I, F X for every t (I,£ F I, in symbols). An entity E (or relation R) is
satisfiable if there is T such that E/() £ @ (respectively, RI(®) 3£ ), for some time
point t. Finally, we say that T (glebally) implies © and write & F ¢ if we have
I E ¢ whenever [ F Z.

Note that an entity F is satisfiable iff (' C L) is satisfiable. An n-ary relation
R is satisfiable iff ~(3%![1]R C L} is satisfiable for some i < n. A conceptual schema
L is globally satisfiable it O*(A ) is satisfiable. And £ F ¢ iff O*(A ) A—¢ is not
satisfiable. Thus, all reasoning tasks connected with the notions introduced above
reduce to satisfiability of formulas.

The logic DLRys can be regarded as a rather expressive fragment of the first
~order temporal logic Lisizceuntilts of (ChoSaad8, Hod et al. 2000].

3.3. Temporal queries. One more important reasoning task is known as the prob-
lem of query containment (see, e.g., [ChoSaa98, Cho94, Abi et al. 96] for a survey
and a discussion about temporal queries). A non-recursive Datolog query (i.e., a
disjunction of conjunctive queries or SPJqueries) over a DLRys schema T is an

3For instance, we may have (di,d2) € (OFR)¥) because {d;,dy) € {OFRY(+2) but
{d1,da) & (T2) CH1. '



REASONING IN BASIC DESCRIPTION LOGICS 145

expression of the form

= =

- VQJ(?J yJ: Cj):

where each @; is a conjunction of atoms

- = =

= ;
Q(Z,5,%) = \ Pz}, v, ¢5),
i

. - = -
P! are DLRys entity or relation expressions, z;, ¥, and ¢ are sequences of dis-

tinguished variables, existential variables, and constants, respectively, the number
of which is in agreement with the arity of P; The variables @ in the head are
the union of all the distinguished variables in each (J;; the existential variables are
used to make coreferences in the query, and constants are fixed values. The arity
of () is the number of variables in z

It is to be noted that we allow entities and relations in the query to occur in
the conceptual schema . This approach is similar to that of [Cal et al. 98], where
atoms in a query can be constrained by means of schema formulas.

The semantics of queries is defined as follows. Let I be a temporal model and
t a time point in 7 such that [ satisfies © at ¢, ie., I,£ 8 . The snapshot
interpretation

1(9) = (Al (B9 | Ec EN}, (R™Y | Re RN}>

can be regarded as a usual firstorder structure {i.e., a snapshot nontemporal data-
base at time ¢ conforming in a sense to the conceptual schema), and so the whole
I as a first-order temporal model (with constant domain A in which some values
of the query constants are specified). The eveluation of a query ¢ of ar1ty n under
the constraints ¥ in the model I at moment ¢ is the set

ans(@, 1(8)) = { T € (A" | 1t \/ 370,03, 5,8 |

Given two queries (of the same arity) (J1 and Q3 over &, we say that (1 is contained
in ()2 under the constraints ¥ and write £ F ¢J3 € @ if; for every temporal model
I and every time point ¢, we have ans(@Q1,I(t}) C ans(@Q2, I (¢}) whenever I,t F Z.
Naote that the query satisfiability problem—given a query () over a schema I, to
determine whether there are I and ¢ such that 7,¢ F % and ans(Q, I(t)) # 0—is
reducible to query containment: ) is satisfiable iff £ ¥ Q(Z) C P(Z) A ~P(7),
where P is a DLRysrelation of the same arity as Q.

3.4. Conceptual Schema and Query Examples. As an example, let us consider
the following conceptual schema X, where we introduce a shortcut for global atomic
formulas £ C* By = O*(E), C Es), for both entities and relations:

Works-for C* emp/2 : Employee M act/2 : Project
Manages C* man/2 : TopManager M prj/2 : Project
Employee C* 3~ from|PaySlipNumber
F7from](PaySlipNumber Mto/2 : Integer)



146  MILENKO MOSUROVIC, TATJANA STOJANQVIE, ANA KAPLAREVIG-MALISIC

N 3=} [from]Salary 1 I7[from)(Salary M to/2 : Integer)
T £~ 35H[to](PaySlipNumber M from /2 : Employee)

Managerv * Employee M (AreaManager U TopManager)
AreaManager Z° Manager N - TopManager
TopManager ©* Manager M 37! [man|Manages

Project T* 3% [act]Works-for 1137} [prj]Manages
Employee M =(3%![emp]Works-for) £* Manager
Managerv * =(3%[emp]Works-for) M (Qualified S (Employee N ~Manager))

The theory introduces Works-for as a binary relation between Projects and employ-
ees, and Manages as a binary relation between managers and projects. Employees
have exactly one pay slip number and one salary each, which are represented as
binary relations (with from and to roles) with an integer domain; moreover, a pay
slip number uniquely identifies an employee (it acts as a key). It is stated that
managers are employees, and are partitioned into area managers and top man-
agers. Top Managers participate exactly once in the relation Manages, i.e., every
top manager manages exactly one project. Projects participate at least once to the
relation Works-for and exactly once in the relation Manages. Finally, employees not
working for a project are exactly the managers, and managers should be qualified,
i.e., should have passed a period of being employees. The meaning of the above
conceptual schema {with the exception of the last two formulas) is illustrated by
the left-hand part of the diagram in Fig. 4.

PaySlipNumber(Integer)
Salaroy(lnteger)
emp

Employee

Manager
i

ProjectCode(String)

879 |OrganisationalUnit h

iy

‘ AreaManager ‘hopManager ‘ Depaxtmeﬁt 'hnterestGroup [

FiGure 4. The example EER diagram.

The conceptual schema T globally logically implies that, for every project, there
is at least one employee who is not a manager, and that a top manager worked in
a project before managing some {possibly different) project:

S F Project * 3% [act](Works-for Memp : =“Manage)
¥ F TopManager £ ¢~ 37 [emp](Works-for M act : Project)



REASONING IN BASIC DESCRIPTION LOGICS 147

Note also that if we add to £ the formula
Employee C* 32 [emp]Works-for

saying that every employee should work for at least one project, then all the entities
and the relations mentioned in the conceptual schema are interpreted as the empty
set in every model of 2, i.e., they are not satisfiable relative to I.

The expressivity of the query language can be understood with the following
examples:

“Find all people who have worked for only one project”

Q) : — (37 [emp)(O*Works-for})(z)
“Find all managers whose terminal project has code prj342”
Q(z) : — Manager(x) A Manages(x, prj342) A (O =Manages)(z, y)

“Find all projecthoppers—people who never spent more than two consecutive
vears In a project”

Q(x) : — ([3*~3%!{emp](Works-for N &Works-for 1 & & Worksfor)) (x)
“Find all people who did not work between two projects”
Q(z) = — (0732 [emp]Works-for) (x) A {: 3**[emp]Works-for) (x}
A (T3 [emp]Works-for) (x)

We now consider the problem of query contalnment under constraints, where
the constraints are expressed by the above exemplified schema 3. Consider the
following queries

@1(z,y) :— —AreaManager{z) A Manages(z, z) A Project(z}A
Resp-for(y, ) A Department{y)
Qa(z,y) 1~ (O~ 3IZ[1]Works-for)(x) A Manages(z, z)A

Resp-for{y, z) A —InterestGroup(y)

It is not difficult to see that these two queries are equivalent under the constraints
nZ,ie, 2FQy C@rand LE Qs C ¢.

3.5. Decidability and complexity. In this section we only summarise the com-
putational behaviour of DLRys and its fragments over the flow of time (Z, <}.
Unfortunately, full DLRys, even restricted to atomic formulas, turns out to be
undecidable.

Theorem 8. The global satisfiability problem for DLRus conceptual schemas con-
taining only atomic formulas is undecidable.

Proof. The proof is by reduction of the well-known undecidable tiling problem
[Rob71]: given a finite set of square tiles of fixed orientation and with coloured
edges, decide whether it can tile the grid Z x N. Suppose " = {T},...,T%} is a



148  MILENKO MQSUROVIC, TATIANA STOJANCVIC, ANA KAPLAREVIC-MALISIC
set of tiles with colours left(T}), right(T;), up(Ty), and down(T;). Consider the
following schema I, where [, ..., Dy are concepts and R is a binary relation:

R=C*R, R=0tR, T=3RT,
D,;E—iDj, \TiDl\J"'UDk, for:i;éj,

D:C | | VR.D;, for i <k,
right(T:)=left{T;)
D; C || @D;, fori < k.

up(Ti)=down(Ty)

{(Here AR.C = 3Z[1|(RM2/2: C), VR.C = =3R.~C.) It is readily checked that
% is globally satisfiable iff T tiles Z x M. O

The main technical reason for undecidability is the possibility of temporalising
binary relations. The proof uses a very small fragment of DLRys: even ALC with
Ot or one global role is enough to get undecidability. This gives us some grounds to
conjecture that already the basic temporal EER model with just snapshot relations
is undecidable.

The fragment DLR ¢, in which the temporal operators can be applied only to
entities and formulas, exhibits a much better computational behavicur. In this case
we have the following hierarchy:

Theorem 8. Let the flow of time be (Z,<). Then

(1) the problem of logical implication in DLR ¢ involving only atomic formulas
15 EXPTIME-complete;

(2) the formula satisfiability problem (and so the problem of logical implication)
in DLR;, ¢ ts EXPSPACE-complete; '

(3) the querycomtainment problem for nonrecursive Datalog queries under
DLR, 5-consiraints is decideble in 2EXPTiME and is EXPSPACEhard.

In the remainder of the section we sketch a proof of this theorem. To make
it more transparent, we confine ourselves to considering®nly the future fragment
DLRY; of DLRys. (From now on O stands for OF and O for &.) The main
technical tool in the proof is the method of quasimodels developed in [WolZakh98,
WolZakh99b). The idea behind the notion of a quasimodel is to represent the state
of the (in general, infinite) domain of a temporal model at a each moment of time
by finitely many types of the domain objects at this moment (modulo a given finite
set of formulas); the evolution of types in time is described by special functions
called runs.

Suppose that I" consists of a finite set f(I') of PLR-formulas and a finite set
c{T") of concepts, f(T) is closed under sub-formulas, ¢(I') under subconcepts, both
are closed under (single) negation, and each concept occurring in f(T") belongs ¢(I').
A concept type for T is a subset ¢ of ¢(I") such that

CnbDetiff C\Det, forall CND €T
~C e tiff ¢ ¢ ¢, forall C € ¢(I).



REASONING IN BASIC DESCRIPTION LOGICS ’ 149

A formula type for T is a subset @ of f{I") such that
YA EC BT,y e d, forall Ay e F(T);
€D iff Y ¢, for all v € F(I).

A pair {T', ®}, where T is a set of concept types and ® a formula type for T, is called
a quasistate candidete for I'. We say that the quasistate candidate € = {T,®) is a
quasistete for T if the following (non-temporal) DLR-formula o

(|_| e(t) iT) ANl =L)AND
teT teT
is satisfiable. Here ¢(f) denotes the conjunction of all concepts in t, concepts of the
form CUD are regarded as atomic concepts Acwp, and formulas of the form pliy
in ¢ are regarded as atomic formulas Ay = 7.
Consider now a sequence of quasistates @ = (Q(nr) : n € Z), where Q{n) =
{T,,®,). A runin @ is a sequence r = {(r(n) : n € Z) such that
1. r(n) € T, for every n € Z;
2. for every CUD € ¢(T') and every n € Z, we have CUD € r(n) iff there is
[ > nsuch that D € r(I) and C € r{k) for all & € (n,I).
Finally, @ is called a gquasimodel! for T if the following conditions hold:
3. for every n € Z and every { € T, there is a run r in @ such that r(n) = t;
4. for every 4l{x € f{I') and every n € Z, we have ¢i{y € &, iff thereis! > n
such that x € ®; and ¢ € & for all k € (n,{}.
Given a DLRy;-formula , we denote by ¢l{y) the closure under (single) negation
of the set of subformulas and subconcepts of ¢.

Theorem 10. DLR]-formula ¢ is satisfiable iff there is a quasimodel for cl(p)
such that ¢ € Oy

Proof. Suppose  is satisfied in a model I with domain A. For every n € Z, define
Qn) = (T, ®n) by taking 75, = {t%(z) 1z € A}, &, = {¥ € l{p) : Ln F 4},
where t*{z) = {C € cl{p) : z € CTM}. Tt is easy to see that (Q(n) :n € Z) is a
quasimodel for . (Note that the sequence {i"(z) : n € Z) is a run through ¢*(z),
for every n € Z and every z € A). To show the converse we require the following
lemma.

Lemma 11. For any cardinal x = ¥y and any guasistate € for ¢, the formule ae
is satisfied in a (non-temporal) DLR-model J in which |[z)’| = & for all z in the
domain A of J, where [z]) = {y € A VO € cl(p)(z € CT &y e C)}.

Proof. As DLR is a {ragment of first-order logic, we have a countable DLR-model
I satisfying ae. Define J as the disjoint union of & copies of I, more precisely, let

AT = {{z,6 z e Al g <k},
P = {{{z0,6),. .. {zn, ) : (z0,...,2,) € PLLE< K},
(Tn)J = {((wmﬁ),- . w(%,ﬁ)) : (mU:---zmn) € (Tﬂ)fzg < "i}'

It is easy to see that J is as required. d



150  MILENKO MOSUROVIC, TATJANA STOJANOVIS, ANA KAPLAREVIC-MALISIC

Suppose now that ¢ € &g, for a quasimodel ¢). Let x be a cardinal exceeding the
cardinality of the set I of all runs in Q and Ro, and let A = {{r,§) : 7 € 0, £ < &}.

Note that |{{r,£) € A :r(n) =t} =&, foreveryn € Z and every ¢ € T,,. By
Lemma 11, for every n € Z there is a DE’R—model J(n) with domain A satisfying
ag(n) and such that {C € cl(p) : (r,&) € CYM} = r(n), for all r € Q and € < &.
It is easy to see that the temporal DLR-model T = (Z,A,-/™) defined by taking
I(n) = J(n), for every n € Z, satisfies v at moment 0. |

Thus, the satisfiability problem for DLR,, -formulas reduces to checking satisfi-
ability in quasimodels. Consider now a DLR,,-schema ¥ and two queries

Q{7 : \/Q“(? yi,wg), i=1,2.

Denote by el(Z,Q1,Q2) the c}osure under (single) negation of the set of all
formulas and concepts occurring in %, ¢ and J2. Given a formula or a concept
¥, denote by ¥ the result of replacing all subformulas (subconcepts) in x of the
form x1Ux2 with Ay 25, = T (respectively, A, 1y,). Thus, ¥ is a DLR formula
or ¢concept, and the @; are non-temporal DLR-queries.

Theorem 11. {1 45 not contained in Qs relative to & iff there is a quasimodel Q
for (2,01, Q2) such that Q1 is not contained in Qq relative to T U {@g)}-

Proof. (=) Without loss of generality we may assume that we have a model I such
that I(0) F ¥ and ans(Qy, [{0)) € ans(@2,I(0)). Construct a quasimodel @ for
cl(E (Q1,Q2) as in the proof of Theorem 10. To show that @, is not contained in
@1 relative to LU {Gg (0} }, it is enough to extend the (non-temporal) model 7(0) to
the new surrogate atoms of the form Ag,uc, and Ay, 1y, in accordance with their
behaviour in I at time point 0:

T, if I{0) E xaldxa

AC'( UCy — (Glz’{cﬂ) and A 1”“ . {_1_ otherwise

- («=) is also proved similarly to Theorem 10. The only difference is that now we
select J(0) such that J(0) & X A {Ggoy} and ans(Q1, J(0)) & ans(Q2, J(0)). 0

5o, the query-containment problem for DLR 7 reduces to satisfiability in quasi-
models and the query-containment problem for (non-temparal) DLR. The latter
problem was shown to be decidable in 2EXPTIME time in [Cal et al. 98]. But
how to check satisfiability in quasimodels? First of all, we need a procedure de-
ciding whether a quasistate candidate is a quasistate for a given set of formulas
and concepts. The following proposition can be proved using the reduction in
[Cal et al. 98].

Proposition 1. (i) Given o DLR -formula o, it 45 decidable in NExPTIME
whether a quasistate candidate for cl(y) is ¢ quasisiate.

(ii) Given a DLR,-scheme T ond queries @1, @z, it is decidable in 2ExpTIME
whether @ is contained in Qs relative to U {@c} for o quasistate candidate € for

CZ(El Ql: QZ)



REASONING IN BASIC DESCRIPTION LOGICS 151

Now, given a set [" as defined above, we have at most O(sz) distinct quasistates
for I’ The problem then is whether they can be properly arranged to form a
quasimodel for I'. As we have no past temporal operators, it is encugh to consider
the flow of time (N, <} and quasimodels of the form @ = (Q(r) : n € N}.

Let @ be a sequence of guasistates Qi) = (T}, ®;), 4 € N, and 7 a sequence of
elements from T; such that v{i) € T;. Say that r realises CUUD € r(n) in m steps
if there 1s { € m such that D € r(n +1) and C € r(n+ k) for all k € (0,1). A
formula ¢y € ®,, is realised in m steps if there is I € m such that x¥ € ¥4 and
P € @y for all k € (0,1). We also say that a pair £, ¢’ of concept types is suitable
if for every CUD € T, CUUD € tiffecither De# or O €t and CUD € t'.

Suppose 1 and (2 are finite sequences of quasistates for I' of length I; and
I, tespectively, and let @ = @1 * Q% {le, @ = Q1 * Q2% Q% x...) with
Q(n) = {Tn,®,). One can check that @ is a quasimodel for I" if the following
conditions hold:

(a) for every i < {1 + [ and every t' € Ty, there is t € T; such that the pair
t, ¢’ is suitable; .

(b) for every i € {3 + 1 and every t; € T3, all concepts of the form CUD € #;
are realised in [} 43 — ¢ steps in some sequence &;, £543, - - -, £, 11, N which
tirj € Tip; and every pair of adjacent elements is suitable;

(c) for every ¢ € 11 + 2, and every YUy € T, Yldy € ®; iff either y € $;44 or
¥ € ;41 and Yidy € P54,

{d) for every ¢ € I3 + 1, all formulas of the form ¥ify € ®; are realised in
Ii + 15 — i steps.

Moereover, given a quasimodel for I, one can always extract from it a subquasi-
model @ = @, * Q% which satisfies (a)-(d) above, all quasistates in @ are distinct
and |Qq| = 0(22™).

Using this observation together with Proposition 1 one can construct an Ex-
PSPACE formula-satisfiability checking algorithm and a 2EXPTIME query-contain-
ment checking algorithm.

A proof of ExpSpace-hardness of the formula-satisfiability problem we show for
a much weaker logic ALCy,.

The primitive symbols of ALy are: concept names Cy, C, ... and role names
Rg, Ri,.... Starting from these we can form compeound concepts and formulas
using the following constructs. Suppose R is a role name and €, D are concepts
(for the basis of our inductive definition we assume concept names to be atomic
concepts). Then T, CN D, =C, 3R.C, and CUD are concepts. Atomic formulas
are expressions of the form T, and ¢ = D. If ¢ and v are formulas then so are

P AP, —p, and YUp.t

Lemma 12. Let the flow of time be N = (N, <}®. Then the formula satisfiability
problem in ALCy is EXPSPACE-hard.

4Language ALCy is a fragment of DLR,, since IR.C is abbreviation for IZ1J(RN2/2: C).
5The class of models based on (N, <)



152 MILENKO MOSUROVIC, TATJANA STOJANOVIC, ANA KAPLAREVICG-MALISIC

In the proof we will use abbreviations (having in mind that we do not use S)
(o = A, O™ = 9 v Oy for formula 4, and for a concept C abbreviations
O*C =Cn0C, O*C=CueC; VR.C = -3R.~C.

Proof. We will show here the lower bound for the satisfaction problem in A by
reducing to it the n-CORIDOR. tiling problem, n given i binary, which is known
to be EXPSPACE-complete [Boas96]. Namely, for a set 7 = {#1,...,¢,} of tiles
and n < w, we construct an ALCy~-formula ¢ of length O(n? + s?) such that ¢ is
satisfied iff 7 tiles 27 x m rectangle, for some m < w in such a way that sides of
this rectangle are, say, white.

To encode the 2™ column, we define 2™ concepts B;, 0 € j < 2", using n concept
names Cy, ..., Ch—1 and a role name R. Let ¢ be the conjunction of the following
formulas:

dR.T =T, ﬂ((—!COI_I---I_I—' ﬂ_i)zJ_),

n—1 ,i—1
N (H Ci = (C: = YR-Cy) N (~C; = YR.C,) = T) ,

i=0 “7=0

n—1 ,i—1
A (|_| -5 = (C; = YR.C;) N (=C; = VR.~C;) = T).
i=0 “j=0 .
For any j € {0,...,2" — 1} written in binary as (dn_1,...,dp), we put B; =
Cén...m Off"_;‘, where C% is C' if d = 1 and —~C otherwise. If ¢, is satisfied in
an ALC-model, then the sets B; in this model are nonempty, pairwise disjoint and
cover the domain of the model.

Let B,&o,.-.,G@n-1 be (n + 1) new concept names. We use them to encode
2" sets ] of worlds containing all w; for which w; F Q2 n-.-n Qi":ll =T and
(dn-1,.--,dg) is binary representations of j. B will coincide with B; in the all
warlds from [f]. This is ensured by the formula @,:

n—1 : n—1

(O"C, =0°CH A (B = H ((C@, ne)u=C:n ﬂQ,))) AOGTB=T)
i=0 i=0
n—1

’\“*(/\ ((Qi=T)V (@ =l))) AZ=T)AD(Z = Qo N=Qno).

i=0

Let w < wj < --- be the ordering of worlds in [0]. Worlds w € [] such that
wh < w < wy't will be denoted by wi. For example, we may have:

w <l <w) <wd <wd <wl<w; <wb<wl <wi<wl<uwi<wl<wi< .

To encode the 2™ x m grid, we will use new concept names D, F, F'* A A% to
construct the conjunction 3 of the formulas

O (~{D =L)A(DNGD = 1))
O (F = 0(Z 10" D)N=0(Z N 0(Z 110" D))
O'(F* = 0(ZNO*F) M =0(ZN0(ZN0*F)))



REASONING IN BASIC DESCRIPTION LOGICS 153

O((A=BNF)A(A*=BNFY)YA-(A=1))
O ((ZnF CO*A) A(ZNF* C O AY).

Let
F=F'®0= || D' and 4;=FnB5;

w6+1 £w<wé+2

Then (F#)/05) = Fypy, AT = Ay and (A% = A5 Ty Ay A is

satisfied in a model A, then for every w € N, there is a unique pair (¢,5), i € N,

j§ < 2" such that w = w}. Conversely, for any such pair (i, j), there is a w € N such

that w = w. ‘
Let 144 be the conjunction of the following formulas

O(P=T)VP=L)NA0ZnP=T)A0{(P=T)=0F = 1)),
OS5 =0P)N{(ZO¢P) = 1), |
UK =TVEK=1)A0ZNK=T)AD"((K=T) - 0O(K = 1)),
ONE=¢(ZNK)N-0(ZNno(ZNnK)), OYW=¢0KnN-E).
For each tile f; € 7 we take a concept name 7;. Tts intended meaning is as
follows: we say that t; covers an element (4, 7) in the grid iff A;; C T;. We are now

in position to guarantee that every element of the grid is covered by precisely one
tile and that the colours on adjacent edge of adjacent tiles match.

g5 = NOT; =D0"T) A (|_|Tz- = T) ANTRT; = 1)
=1 i=1 igtd
AT A\ [(ANT = 1) V(ANT, = A)),
i=1
n—1 k=1 E—1
’1,[)625*/\ ((_'ril]:[@j) =TﬁAr=FﬂHﬂCiHCk
=0

k=0 i=0

n—1
n H ((Cin Q) u(=C;n “Qz’))) ,
i=k+1
(If A = A;; in some world, then A"™ = A, ;1 in this world.)

%:D*(ZHAQ | | I})AD*((ﬁQi}ﬂAg | Ta)

left{l)=white =0 right{{)=white

v,bg:D*(Sl‘lAg | | ﬂ)AD*(EnAg || '1})

down{!}=white up(i)=white

wro({(e) )= Abrmaen-maee 1y o)

right{)=left{l)



154 MILENKO MOSUROVIC, TATJANA STOJANOVIC, ANA KAPLAREVIC-MALISIC

8
¢10=|:|*(/\ (WI‘IAgTjAWﬂA”g | | z}))
i=1 up{j)=dawn(l)
One can show that ¢ =t A--- Ao iS 88 required. |

It follows, in particular, that the query-containment problem is EXPSPACE-hard
as well. It is an open problem, however, whether there exists an KXPSPACE algo-
rithm deciding this problem.

Finally, we show ExpTmME-completeness of the logical implication for atomic
formulas in DLR,, by means of a polynomial reduction of DLR,, to the logic
DLR ey of [Cal et al. 98]). For our purposes, it is enough to know that DLR .,
allows one to form the transitive closure B* of every binary relation R, and that
the satisfiability problem in DLR,.4 is in ExPTIME. To simplify the presentation,
we reduce here the fragment DL’RE,O of DLR,, with the temporal operators O
and ) only (the reader should not have problems to extend this reduction to the
language with I{).

Fix a binary relation It and define a translation * from DLRBO t0 DLR ey as
follows: P* = P for every atom P of DLR, (OC)* = VR.C* and (OC)* =VR*.C*;
# commutes with the remaining constructs, and (P C Fp)* = P C Py

Lemma 13. Suppose that T'U {yp} is a set of atomic DLR - -formulas and that
R does not occur in T U {p}. Then [' F o iff ¢~ is a logical consequence of the

following set = of DLR e, -formulas
I, FRT=T,F'R-.T=T,
where 37'R-.C = 37 2)(RN 1/2: C).

Proof. Suppose ' ¥ . Then there is a model [ such that I,0F ¢, but I,n E [ for
all n € Z. Define a DLR-model J = (A, B/, ..., R’} by taking A’ = Al x Z,

(zr,mad, - (m )y € PP iffng = my, for 4,5 <1, and {z1,...,2,) € Pir("l)

13
{{zy,m1),{z2,m2)) € B iff £; = 25 and ny = my + 1.
It is readily checked that J E = and J K "

Conversely, suppose that J = (A, P{,... R’} is a model such that J F = but
JE@* Let B = {cd{x): x e TU{p}} and, for every z € A,

tz) ={C €c(T): z€(C*)}.

Then the pair (T, ®), where T' = {t(z) : z € A} and & = {x € f(¥}: J E x*},
is a quasistate for . Define a map ¢ by taking (}{n) = (T, ®) foralln € Z. It
ts easy to see that (J is a quasimodel. Hence, by Theorem 10, we have a model T
such that I =T but I,0E . O

4. Conclusion

DLs are a family of knowledge representation languages constructed for a wide
area of application domains. This paper presents one type of expressive descrip-
tion logic DLRus, which has been modeled with an aim to overcome problems



REASONING IN BASIC DESCRIPTION LOGICS 155

of reasoning over conceptual schemas and queries in temporal databases. It is a
special type of description logic extended with modal operators. DLRys isa DLR
description logic with a temporal dimension.

DLR have been used in the area of non-temporal databases to characterize in
a uniform way both conceptual modeling and queries [LevRous98, Cal et al. 98].
Some of interesting properties of DLR logic are [ArtaFra0l):

¢ allows the logical reconstruction and the extension of data and knowledge
representational tools,

e has an ability to completely define entities and relations as DLR views over
other entities and relation over conceptual schemas

¢ can express a large class of integrity constraints

¢ enables a view-based query answering.

Its combination with the propositional temporal logic, enabled with operators Since
and Until [SisCI85, Gab et al. 94] resulted in a DLRys. PLRys allowed using
temporal operators to all syntactical terms of DLR: entities, relations and schemas.

In this paper we presented the syntax and the semantics of DLRys as well as
the solution of the query containment task problem. An example of conceptual
schema and query is given. At the end we summarize the computational behavior
of DLR s and its fragments over the flow of time.

References

[Abi et al. 96] 5. Abiteboul, L. Herr, J. Van den Bussche, Temporal versus firstorder logic to query
temporal databases; in: Proc. 15th ACM SIGACT SIGMOD SIGART Symp. on Principles
of Database Systems (PODS96), 1996, pp 49-57 .

[ArtaFra0l] A. Artale, E. Franceni, A survey of temporal extensions of description logics, Ann.
Math. Art. Intell. 30{14) (2001).

[Arta et al. 01] A. Artale, E. Franconi, M. Mosurovi¢, F. Wolter, M. Zakharyaschev, The
DLR{US) temporal description logic; in: Stanford, D. McGuinness, P. Patel-Schoeider, C.
Goble, R. Moeller (eds), Proc. Internat. Workshop on Description Logic (DL 2001), pp. 96—
105.

[Arta et al. 02] A. Artale, E. Franconi, F. Wolter, M. Zakharyaschev, A temporal description logic
for reasoning over conceptual schemaes and gueries; in: S. Flesca, 8. Greco, N. Leone, G. Ianni
(eds), Proc. JELIA 02, Lect. Notes Comput. Sci. 2424, Springer-Verlag, 2002, pp. 98-110.

[Baadl] F. Baader, Augmeniing concept languages by transitive closure of roles: An olternative
to terminologicel cycles; in: Proc. 12th Int. Joint Conf. Artif. Intell. (JJCAT91), 1991.

[BaaLau®3] F. Baader, A. Laux, Terminological logics with model operators; in: Proc. L{th Ini.
Joint Conf. Artif. Intell., Montreal, Canada (1995), Morgan Kaufman, 808-814,

[{Baa et al. 02] F. Baader, D.L. McGuinness, D. N. Peter, F. Patel-Schneider, The Description
Logic Handbook: Theory, Implementation, And Applicotions, Cambridge Univ. Press, 2002.

[Baa96] F. Baader, M. Buchheit, B. Hollunder, Cardinolity restrictions on concepts, Artif. Intell.
88(12) (1996), 195-213. ‘

[BaaQhl93] F. Baader and H. Ohlbach. A multi-dimensional terminclogical knowledge represen-
tation language; in: Proc. 13th Int. Joint Conf. Artif. Intell., 1993, pp. 650-695.

[BaaSat96] F. Baader, U. Saitler, Number restrictions en compler roles in description logics: A
preliminary report; in: Proc. 5th int. Conf. Principles of Knowledge Representation ond
Reasoning (KR96), 1996, pp. 328-338.

[BaaSat99] F. Baader, U. Sattler, Ezpressive number restrictions in description logics, J. Logic
Comput. 9(3) (1999}, 319-350.



156 MILENKO MOSUROVIC, TATJANA STOJANOVIC, ANA KAPLAREVIC-MALISIC

[Boas96] van Emde Boas, The convenience of tilings, Tehnical Report CT-96-01, Institute for
Logic, Language and Computation, University of Amsterdam.

[BorPat94] R.J. Brachman, H.J. Levesque, The tractabilily of subsumption in frame-based de-
scription languages; in: Proc. 4th Nat. Conf. Ariif. Intell. (AAAIS4), 1984, pp. 34-37.
[Bor96] A. Borgida, On the relative expressiveness of description logics and predicate logics, Artif.

Intell. 82(12) {1996), 353-367.

[Bra77] R.J. Brachman, Whats in a concept: Structural foundations for semantic networks, Int.
J. Man-Machine Studies 9(2) (1977), 127-152.

[Bra78] R.J. Brachman, Structured inheritance networks; in: W. A, Woods and R. J. Brachman,
editors, Research in Naoturel Language Understanding, Quarterly Progress Report No. 1,
BBN Report No. 3742, pp. 36-78. Bolt, Beranek and Newman, Cambridge, Masssachussets,
1978.

[BraSch8s] R.J. Brachman, J. G. Schmolze, An overview of the KL-ONE knowledge representa-
tion system, Cognitive Sci. 9(2) (1985), 171-216.

[Buc et al. 93] M. Buchheit, F. M. Donini, A. Schaerf, Decidable reasoning in terminological
knowledge representation systems, J. Artif. Intell. Research 1 (1993), 109-138.

[Cal et al. 98] D. Calvanese, G. De Giacomo, M. Lenzerini, On the decidability of query con-
toinment under constraints; in: Proc. 17th ACM SIGACT SIGMQOD SIGART Symp. on
Principles of Database Systems (PODS’98), pp. 149-158,

[Cho94] J. Chomicki, Temporal query lenguages: a survey; in: Proc. 1st Internat. Conf. Temporal
Logic (ICTL’94), pp. 506-534 (1994).

[ChoSaa98] J. Chomicki, G. Saake, editors, Logics for Dolabases and Information Systems,
Kluwer, 1998.

[DeG95] G. De Giacomo, Decidability of Class-Based Knowledge Represeniation Formalisms,
PhD thesis, Dipartimento di Informatica e Sistemistica, Universitd di Roma “La Sapienza”
{1995).

[Don et al. 97) F. M. Donpini, M. Lenzerini, D. Nardi, W. Nutt, The complerity of concept lan-
guages, Inform. Comput. 134 (1997), 1-58.

[DonMas00] F.M. Donini, F. Massacci, EXPtime tobleauz for ALC, Artif. Inteli. 124(1) (2000),
R7-138. :

[FisLad79) M. J. Fischer, R. E. Ladner, Propositional dynamic logic of regular progrems, J. Com-
put. System Sci. 18 (1979}, 194-211. , )

[Fit93] M. Fitting, Basic model logic; in: Handbook of Logic in Artificial Intelligence and Logic
Programming, volume 1, pp. 365-448, Oxford Science Publications (1993).

[Gab72] D. M. Gabbay, Craigs interpolation theorem for modal logics; in: Conference in Mathe-
matical Logic, London 70, Lect. Notes Math. 255, Springer-Verlag, 1972.

[Gab et al. 94] D. M. Gabbay, 1. Hodkinson, M. Reynolds, Temporal Logic: mathematical Foun-
dations and Computational Aspects, Oxford University Press, 1994.

[Gré et al. 97] E. Griadel, M. Otto, E. Rosen, Two-variable logic with counting is decidable; in:
Proc. 12th IEEE Symp. Logic in Computer Science (LICS97), pp. 306-317, IEEE Computer
Society Press, 1997.

[Hod et al. 2000] I. Hodkinson, F. Wotter, M. Zakharyaschev, Decidable fragments of firstorder
temporal logics, Ann. Pure Appl. Log. 106 {(2000), 85-134.

[Hol96] B. Hollunder, Consistency checking reduced to satisfiability of concepts in terminological
systems, Ann. Math. Artif. Intell. 18(24) {1996), 133-157.

[HolNut90] B. Hollunder, W. Nutt, Subsumption elgorithms for concept languages, Technical
Report RR-90-04, Deutsches Forschungszentrum fiir Kinstliche Intelligenz (DFKI), Kaiser-
slautern, Germany, 1990.

[Laux94] A.Laux. Beliefs in multi-agent worlds: a terminological approach; in: Proc. 11th Europ,
Conf. Artificial Intelligence, pp. 299-303, Amsterdam, 1994.

[Leh92] F.Lehmann, Semantic Networks in Artificial Inteiligence, Pergamon Press, Oxford, 1992.

[LevBrag7] H.J. Levesque, R.J. Brachman, Ezpressiveness and tractability in knowledge repre-
sentation end reasoning, Comput. Intell. 3 (1987), 78-93.



REASONING IN BASIC DESCRIPTION LOGICS 157

{LevRous98] A.Y. Levy, M-C. Rousset, Combining horn rules and description logics in CARIN,
Artif. Intell, 104(1-2) (1998), 165-209.

[Lutg9] C. Lutz, Complexity of terminologicel reasoning rewvisited; in: Proc. 6th Int. Conf. on
Logic for Programming and Automated Reasoning (LPAR99), Lect. Notes Artif. Intell. 1705,
pp- 181-200, Springer-Verlag, 1999,

[LutSat00] C. Lutz, U. Sattler, The complezily of reasoning with boolean modal logic; in: Proc.
Advances in Model Logic (AiML 2000).

[Lutz et al. 01) C. Lutz, H. Sturm, F. Wolter, M. Zakharyaschev, Tablenuz for temporal descrip-
tion logic with constant domains; in: Automated Reasoning, Lect. Notes. Artif. Intell. 2083,
Springer-Verlag, 121-136 (2001).

[Lutz et al. 02] C.Lutz, H. Sturm, F. Wolter, and M. Zakharyaschev, A tableau decision algorithm
Jor modalized ALC with constant domains, Studia Logica 72 (2002}, 1990-232.

[Mor75] M. Mortimer, On languages with two variebles, Z. Math. Logik Grundlagen Math. 21
(1975), 135-140.

[Mos2000] M. Mosurovié, Slefenost opisnih logika s modalnim operatorime, Doktorska disertacija,
Univerzitet u Beogradu {2000).

{MosZakh99] M. Mosurovié, M. Zakharyaschev. On the complexity of description logics with
modal operators; in: P. Kolaitos and G. Koletos, editors, Proc. 2nd Panhellenic Logic Symp.,
pp. 166-171, Delphi (1999).

[Neb30] B. Nebel, Terminological reasoning is inhervently intractable, Artif. Intell. 43 (1990}, 235-
245,

[Pac97] L. Pacholski, W. Szwast, L. Tendera, Complexity of two-variable logic with counting; in:
Proc. 12th IEEE Symp. Logic in Computer Science (LICS97), pp. 318-327. IEEE Computer
Society Press {1997). )

[Pra79] V.R. Pratt, Models of program logic; in: Proc. 20th Annual Symp. Foundations of Com-
puter Seience (FOCSTY), pp. 115-122 (1979).

[Pra80] V.R. Pratt, A near-optimal method for reasoning about action, J. Comput. System Sci.
20 (1980), 231-2535.

[Reb71] R. Robinson, Undecidability and non-periodicity for tilings of the plan, Invent. Math. 12
(1971), 177-206.

[Sch91] K. Schild, A correspondence theory for terminologicel logics: Preliminary report; in:
Proc. 12th Int. Joint Conf. on Avtif. Intell. (IJCAIO), pp. 466-471 (1991).

[Sch93] K. Schild, Combining terminological logics with tense logic; in: Proc. 6th Portug. Conf.
Artif. Intell., pp. 105-120, Porto (1993).

[SchSmo81] M. Schmidt-Schaull, G. Smolka, Attributive concept descriptions with complements,
Artif. Intell, 48(1) {1991), 1-26.

{Sch94] A. Schaerf, Reasoning with individuals in concept languages, Data and Knowledge Engi-
neering 13(2) (1994), 141-176.

{SisCI85] A.8. Sistla, E. M. Clarke. The complezity of propesitional linear temporal logics, J.
Assoc. Comput. Mach, 32(3) (1985), 733-749.

[Smo88] G. Smolka, A feature logic with subsorts, LILOG report 33, IBM Deutschland, Stuttgart,
West Germany (1988).

{StaStu0d] 8. Staab, R. Studer, Handbook on Ontelogies, International Handbooks on Information
Systems, Springer-Verlag (2004).

[Tob01j S. Tobies, PSPACE reasoning for graded modal logics, J. Logic Comput. 11(1) {2001},
85-106.

[varg8s] M.Y. Vardi, The taming of converse: Reasoning aboul two-wey computations; in: R.
Parikh, editor, Proc. fth Workshop on Logics of Programs, Lect. Notes Comput. Sci. 193,
pp. 413-424, Springer-Verlag (1985}.

[vVarWwol86] M.Y. Vardi, P. Wolper, Automata-theoretic techniques for modal logics of programs,
J. Comput. System Sci. 32 (1986), 183-221; a preliminary version appeared in Proc. 16th
ACM SIGACT Symp. on Theory of Computing (STQCS84).



158 MILENKO MOSUROVIC, TATIANA STOJANOVIC, ANA KAPLAREVIC-MALISIC

[WolZakh98]) F. Welter, M. Zakharyaschev, Satisfiabilily problem in description logics with modal
operators; in: Proc. 6th Internat. Conf. Principles of Knowledge Represeniation and Rea-
soning (KR’98), pp. 512-523, Trento, lialy (June 1998).

[WolZakh99a] F. Wolter, M. Zakharyaschev. Modal description logics: Modalizing roles, Fundam.
Inform. 39(4) (1999), 411-438.

[WolZakh99b] F. Wolter, M. Zakharyaschev, Multidimensional description logics; in: Proc. Ll-
CAI'99, pp. 104-109 (1999).

[WolZakh99c] F. Wolter, M. Zakharyaschev. Temporalizing description logics; in: D. Gabbay and
M. de Rijke, editors, Frontiers of Combining Systems, Studies Press-Wiley (1999).



Silvia Ghilezan and Silvia Likavec

COMPUTATIONAL INTERPRETATIONS OF LOGICS

Abstract. The fundamental connection between logic and compu-
tation, known as the Curry—Howard correspondence or formulae-as-
types and proofs-as-programs paradigm, relates logical and computa-
tional systems. We present an overview of computational interpreta-
tions of intuitionistic and classical logic:

intuitionistic natural deduction - A-calculus
intuitionistic sequent calculus - A®*%-calculus
classical natural deduction - Ap-calculus
classical sequent caleulus - Aufi-calculus.

s & 0 »

In this work we summarise the authors’ contributions in this field.
Fundamental properties of these calculi, such as confluence, normali-
sation properties, reduction strategies call-by-value and call-by-name,
separability, reducibility method, A-models are in focus. These fun-
damental properties and their counterparts in logics, via the Curry-
Howard correspondence, are discussed.



CONTENTS

Introduction
Part 1 - Background
1. Natural deduetion and sequent calculus
1.1. Natural deduction: intuitionistic logic NJ and classical logic NK
1.2, Sequent calculus: intuitionistic logic LJ and classical logic LK
2. A-caleulus
2.1. Untyped A-calculus
2.2. Typed A-calculus
2.3. Intersection types for A-calculus
3. A%%_calculus
3.1. Syntax and reduction rules
3.2 Simply typed A®%-calculus
4. Ap-calculus
4.1. Syntax and reduction rules
4.2, Simply typed Ap-calculus
5. Aup-calculus
5.1. Syntax and reduction rules
5.2, Simply typed Auf-calculus
6. Curry—Howard correspondence
Part 2 — Contributions
7. Intuitionistic natural deduction and A-calcilus
7.1. Terms for natural deduction and sequent calculus intuitionistic logic
7.2. Logical interpretation of intersection types
7.3. Intersection types and topologies in A-calculus
7.4. Reducikility method
7.5. Behavioural inverse limit models
8. Intuitionistic sequent calcuius and )\%2-calculus
8.1. Intersection types for AZ-calculus
8.2. Subject reduction and strong normalisation
9. (Classical natural deduction and Ag-calculus
9.1. Terms for natural deduction and sequent calculus classical logic
9.2. Separability in Au-calculus
9.3. Simple types for extended Ap-calculus
10. Classical sequent calculus and dugi-caleulus
10.1. Confluence of call-by-name and call-hy-value disciplines
10.2.  Strong normalisation in unrestricted Auji-calculus
160

161
162
162
163
164
165
165
167
168
170
170
171
171
171
172
172
172
174
175
175
176
176
177
179
180
182
185
185
186
188
188
189
191
192
192
193



COMPUTATIONAL INTERPRETATIONS OF LOGICS 161

10.3.  Dual calculus 197
10.4. Symmetric calculus 200
11.  Application in programming language theory 203
11.1.  Functional languages 203
11.2.  Object-oriented languages 205
Part 3 — Related work 206
Related work on computational interpretation of logic 206
Related work on strong normalisation 207
Related work on continuation semantics 208
References 208
Introduction

Gentzen’s natural deduction is a well established formalism for expressing proofs.
The simply typed A-calculus of Church is a core formalism for writing programs. Ac-
cording to Curry-Howard correspondence, first formulated in 1969 by Howard [101],
simply typed A-calculus represents a computational interpretation of intuitionistic
logic in natural deduction style and simplifying a proof corresponds to executing a
Prograin.

Griffin extended the Curry-Howard correspondence fo classical logic in his sem-
inal 1990 paper [94], by observing that classical tautologies suggest typings for
certain control operators. The Ap-calculus of Parigot [121] expresses the content
of classical natural deduction and has been the basis of a number of investiga-
tions into the relationship between classical logic and theories of control in pro-
gramming languages [122, 40, 120, 19, 3]. At the same time proof-term calculi
expressing a computational interpretation of classical legic serve as tools for ex-
tracting the constructive content of classical proofs [118, 6]. The recent interest
in the Curry—Howard correspondence for sequent calculus [96, 12, 60, 56] made it
clear that the computational content of sequent derivations and cut-elimination can
be expressed through various extensions of the A-calculus. There are several term
calculi based on sequent calculus, in which reduction corresponds to cuf elimina-~ -
tion [97, 147, 34, 151, 107]. In contrast to natural deduction proof systems, sequent
caleuli exhibit inherent symmetries in proof structures which create technical diffi-
culties in analyzing the reduction properties of these calculi.

In this work we summarise the authors’ contributions ir this field.

e Part 1 — Background gives a brief account on different formulations
of intuitionistic and classical propositional logic as well as on A-calculus
and other proof-term calculi which express computational interpretations
of logics.

— Section 1 presents natural deduction and sequent calculus formulations
of intuitionistic and classical propesitional logic;

— Section 2-5 present different term calculi that embody proofs in logics:
the well-known A-calculus of Church, Au-caleulus of Parigot [121], A-



162 SILVIA GHILEZAN AND SILVIA LIKAVEC

calculus of Herbelin [96], A®**-calculus of Espirito Santo [56] and Augi-
calculus of Curien and Herbelin [34];

— Section 6 presents the fundamental relation between logic and compu-
tation, the Curry—Howard correspondence, which links formulae with
types and proofs with terms and programs.

¢ Part 2 — Contributions has five sections and is the main part of this
work, concentrating on the authors’ contributions in each of the following
fields:

— Section 7 — Intuitionistic natural deduction and A-calculus: summarises
the results of Barendregt and Ghilezan [12], Ghilezan [73, 75, 74, 76,
78, 77, 79, 80, 81], Dezani, Ghilezan and Venneri [45), Ghilezan and
Likavec [88, 89}, Ghilezan and KunZak [84, 85], Ghilezan, Kunéak
and Likavec [86], Likavec [109], Dezani and Ghilezan [41, 43, 42], and
Dezani, Ghilezan and Likavec [44];

— Section 8 — Intuitionistic sequent calculus ond A%-celculus: sum-
marises the results of Espirito Santo, Ghilezan and Ivetié¢ [57], and
Ghilezan and Ivetié [B3];

— Section 9 — Classical natural deduction and Au-coleulus: summarises
the results of Herbelin and Ghilezan [98)];

-~ Section 10 — Classical sequent calculus and dufi-calewlus: summarises
the results of Dougherty, Ghilezan and Lescanne [48, 49, 50, 51],
Dougherty, Ghilezan, Lescanne and Likavec [52], and Likavec and Les-
canne [111];

— Section 11 - Application to functional and object-erienied program-
ming languages: summarises the results of Herbelin and Ghilezan [9§],
Likavec [110], and Bettini, Bono and Likavec [13, 14, 15, 16, 17, 18].

e Part 3 — Related work gives some pointers to the related work in the
literature.

Part 1 — Background
I. Natural deduction and sequent calculus

In 1879 Gottloh Frege wrote his Begriffsschrift [68] paving a path for modern
logic. Frege wanted to show that logic gave birth to mathematics. He invented
axiomatic predicate logic, including quantified variables, adding iterations to the
previous world of the logical constants and, or, if... then..., nof, some and all.
With Frege's “conceptual notation” inferences invelving very complex mathemati-
cal statements could be represented. He formalised the rule of modus ponens using
two kinds of judgements: premises and conclusions. Over time, Frege’s pictorial
notation (see [151] for an example of the original notation} evolved into the nota-
tion similar to the one we use today, namely A — B meaning “A implies B” and
F A asserting “A is true”. Here is the modus ponens rule using this notation

H A-—-B A
F B




COMPUTATIONAL INTERPRETATIONS OF LOGICS 163

Axiomatic systems in the Hilbert tradition consist of axioms, modus ponens, and
a few other inference rules. Another perspective to capture mathematical reasoning
was to describe deduction through inference rules which explain the meaning of the
logical connectives and quantifiers.

This giant step in formalizing logic was Gerhard Gentzen's Unterschungen dber
das logische Schliessen [T1] written in 1935. In this work, Gentzen introduced the
systems of natural deduction and sequent caleulus for propositional and predicate
logic, in both infuitionistic and classical variants. These two systems have the
same set of derivable statements. In his work, Gentzen introduced assumptions, so
his judgement had the following form:

Al,..., A B

meaning “Under the assumption that A;, ..., A, are true we can conclude that B
is true”. Using this notation, the modus ponens rule is written as follows

' A—=2£B A A
A+ B

where I" and A denocte sequences of formulae.

1.1. Natural deduction: intuitionistic logic NJ and classical logic NK. We now
present the iwo systems of Gentzen: natural deduction for intuitionistic logic, de-
noted by NJ, and classical logic, denoted by NK, as well as sequent caleulus for
intuitionistic logic, denoted by LJ, and classical logic, denoted by LK. For compre-
hensive account of the subject we refer the reader to [12§].

The set of formulae of propositional logic is given by the following abstract
syntax:

AB =X|A—-B|AAB|AVB]|-4

where X denotes an atomic formula and capital Latin letters A, B, C, ... denote
formulae or single propositions. We will mostly deal with implicational formulae
only and sometimes comment on other connectives. Hence, a formula can be one
of the following: atomic formula X or implication A — B. Capital Greek letters

I, A, ... are used to denote sequences of formulae called antecedents and succedents.
[, A stands for T U {A}.

Ael
(axiom)
' A
''FA—-B T A r,A- B
(— elim) ——  {— intro)
'+ B ' A= B

Fieure 1. NJ: intuitionistic natural deduction

The rules of Gentzen’s natural deduction intuitionistic logic NJ and classical
logic NK are given in Figures 1 and 2, respectively. Gentzen’s system consists of
structural and logical rules. The only structural rule is the axiom, whereas each of



164 SILVIA GHILEZAN AND SILVIA LIKAVEC

———— (axiom)
A AA

't A=B,A I'F AA T, A4+ B A
(- elim) —————"— (= intzo)
T+ BA '+ A BA

Fi1cURE 2. NK: classical natural deduction

the connectives has introduction and elimination logical rules. Each introduction
rule has the connective in the conclusion but not in the premises, whereas each
elimination rule has the connective in the premises but not in the conclusion.

The following formulae are provable in classical logic, but not in intuitionistic:

e Pierce’s law: (A =B} > A - A
s Excluded middle: AV —A
¢ Double negation; -—A — A.

The connection between logical connectives in classical logic and their depen-
dencies is well known. As opposed to classical logic, connectives in intuitionistic
logic are independent.

1.2. Sequent calculus: intuitionistic logic L) and classical logic LK. Gentzen
introduced the sequent calculus primarily as a tool to prove the consistency of
predicate logic. In sequent calculus, a sequent has the form

Ay, A FBy,..., By orshorter I'FA
which corresponds to the formula
ALA .. AA, — Bi V...V By,

For each connective, there are left and right logical rules, depending on whether the
connective is introduced in antecedent or succedent. The rules of Gentzen’s sequent
calculus intuitionistic logic L) and classical logic LK are given in Figures 3 and 4,
respectively. Right rules in sequent calculus correspend to introduction rules in
natural deduction, whereas leff rules correspond to elimination rules. Both natural
deduction and sequent calculus can be extended to incorporate other connectives,
as well as quantifiers.

The cut rule simplifies and shortens deducticns, but at the same time makes
it impossible to reconstruct the proofs, since we cannot know which formula was
eliminated using the cut rule. Therefore, it is of uttermost importance to know
that it is possible to leave out the cut rule and still obtain the system with the
same set of derivable statements. This s exactly what Gentzen’s Cut elimination
property (Hauptsatz) proves.

Gentzen also formulated the subformula property: given a judgement I' - A,
its proof can be simplified in such a way that only the propositions appearing in I
and A and their subformulae appear in the proof of I' F A.



COMPUTATIONAL INTERPRETATIONS OF LOGICS 185

AecT
(axiom)
I' A
P A P,BI—C‘( ) A+ B
— left _ ight
TA-BFC oy A g o Te

I'FA T,AFB
T+ B

{cut)

F1GURE 3. LJ: intuiticnistic sequent calculus

—— (axiom)
TNAE AA
T AA IBFA I AF BA
(—left) ———— {— right)
I'N'A—BF A ' A= B A

TFAA T,AF A
TkA

(cut)

FIGURE 4. LK: classical sequent calculus

Theorem (Equivalence).
A formula is derivable in NJ if and only if it is derivable in LJ.
A formula is derivable in NK if and only if it 15 dertvable in LK.

2. x-calculus

2.1. Untyped A-calculus. The M-calculus was originally formalised by Alonzo
Church in 1932 {27) as a part of a general theory of functions and logic, in or-
der to establish the limits of what was computable. Later on, it was shown that
the full systern was inconsistent. But the subsystem dealing with functions only
proved to be a successful model for the computable functions and is called the
A-calculus,

The M-calculus is a formal system that is meant to deal with functions and
constructions of new functions. Expressions in this theory are called A-terms and
each such expression denotes a function. We denote the set of A-terms by A.

Church developed a formalism for defining computable functions using three
basic constructions: variables, A-abstraction, and application, with one reduction
rule. The formal syntax of A-calculus is given by the following:

tu=o |zttt
where x is a variable, Az.t is a A-abstraction (which represents a mapping =+ ¢},

and ¢¢ is the application (which represents application of a function to its argument).
For comprehensive account of the subject we refer the reader to [10].



166 SILVIA GRILEZAN AND SILVIA LIKAVEC

The set. Fu{t) of free variables of a A-term ¢ is defined inductively.

1. Fu(z) = {z} 2. Fu(titz) = Fe(t)) U Fo(ls) 3. Fe(zt) = Fe@)\{z}.
The set A® of closed lambda terms is the set of lambda terms with no free variables
AP ={te A| Fe(t) =0}

The following reduction rule is called the a-reduct'éo'n-
Azt — dyt[z =y,

where all the free occurrences of the variable x in ¢ are replaced with a fresh variable

y not occurring in t. The substitution ¢;[z := i3] is not part of the syntax and it

is defined so that all the free occurrences of the variable x in #; are replaced by ta,

taking into account that the free variables in €3 remain free in the term obtained.
The main reduction rule of the A-calculus is the F-reduction

(Az.t1 )tz —p bz = ta).

A J-term of the form (Az.ty)és is called a redez. The transitive reflexive con-
textual closure of — 4 is denoted by —3. The f-equality =(g; ((-conversion) is the
symmetric transitive closure of —g.

The n-reduction is given by

Avte —q t, z & Folt),

where Az.fz is called an n-redex, provided that = ¢ Fu(t}. The transitive reflexive
closure of —, is denoted by —,. The n-equality =, is the symmetric transitive
closure of —,. The reductions 3 and 5 together generate a reduction denoted by
—,

This simple syntax equipped with simple reduction rules gives rise to a powerful
formal system which is Turing complete. The functions representable in A-calculus
coincide with Turing computable functions and recursive functions.

We give now some of the basic notjons that we will use later.

o Ift=Mz; ...z (Aztolty .. b, n = 0, m = 1, then {(Az.to)#; is called the
head-redex of ¢ {Barendregt [10, p. 173]). We write ¢ —, ¢’ if ¢’ is obtained
from ¢ by reducing the head redex of ¢ {head reduction). We write t —,; ¢’ if
t’ is cbtained from ¢ by reducing a redex other than the head redex (internal
reduction). We also use the transitive closures of these relations, notation
—»p, and —, respectively.

e A term is a normal form if it does not confain any redex. A term is
normalising (has a normal form) if it reduces to a normal form. The set
of all A-terms that have a normal form will be denoted by A, All normal
forms are of the form:

AYr . Yne2t ot

where ¢;, 1 £ i < &, 0 € k, are again normal forms, and z can be one of
yi, 1€7<€<n, 0€n



COMPUTATIONAL INTERPRETATIONS OF LOGICS 167

e A term is strongly normalising if all its reduction paths end in a normal
form (are finite). SA will denote the set of strongly normalising terms, i.e.,

SN = {t€A|ﬁ(3t1,t2,... EA)i —sgt1 —g itz —p }
e A head normol form is a term of the form
Aﬂ?l . -wn»ytl e ~tl7

where y can beoneof z;, 1 <isn,0<nandt; €A, 1 <7001

s A term i is solvable (has a head normal form) if there exists t' € A such
that t — ¢/ and t' is a head normal form. The set of all solvable A-terms is
denoted by HA. A term is unsolvable if it is not solvable.

o A term is a weak head normal form if it starts with an abstraction, or with
a variable. A term is weakly head normalising (has a weak head normal
form) if it reduces to a weak head normal form. The set of al} A-terms that
have a weak head normal form will be denoted by WA

WA = {t € A| (' th,. .t € A) t—ig Azt Or t—vg 2ty . tn).

o Church-Rosser theorem {Confluence): If §1«—t—»la, then there exists a -
term 3 € A such that #; —»tz«—ts.

2.2. Typed X-calculus. In 1840 Church formulated typed A-calculus [28) as a way
to avoid the paradoxes existing in other logica. Types are syntactical objects as-
signed to A-terms in order to specify the properties of these A-terms.

The basic type assignment system is the simply typed A-calculus A —, or Curry’s
type inference system. The types in this system are formed using only the arrow
operator -». The application of A-terms yields the arrow elimination on types,
while the abstraction yields the arrow introduction.

The set Type of types is defined as follows.

AB:=X|A—-B

where X ranges over a denumerable set T'Var of type atoms.
The following notions will be used in our work:

o A type assignment 15 an expression of the form £ . A, where ¢t € A and
A € Type.

e A contert (hasis) ['is aset {z) : A1, ...,z : An} of type assignments with
different term variables, DomT = {z1,..., %z} and U~ x = {A4),..., 4n}.
We use capital Greek letters I', A, I'1, . .. to denote contexts.

o A context extension I,z : A denotes the set TU{x : A}, where z ¢ DomI.

The type assignment ¢ : B is derivable from the context T" in the type system
A —, notation I' - ¢ : B, if ' Ht: B can be generated by the axiom and rules given
in Figure 5. '

We list some of the most important properties of A —. The property of preser-
vation of types under reduction is referred to as Subject reduction.

Theorem (Subject reduction). If 't t: A and t—u, then 'k w @ A.



168 - SILVIA GHILEZAN AND SILVIA LIKAVEC

— (ax
I‘,a::AI—;n:A( )
't A—B T'riz A Tx:AFL:B
(— E) — {1
Fl‘tltziB T'FMt: A— B

FIGURE 5. A —: simply typed A-calculus

An important property, which might be a reason for introducing types in A-
calculus, is the strong normalisation of all typeable terms.

Theorem (Strong normalisation). If a term is typeable in A —, then it is strongly
normalising.

The correspondence between formulae of intuitionistic logic NJ and types of A —,
together with the correspondence of proofs in N4 and terms of A —, was given by
Howard [101] based on earlier work of Curry. It is nowadays referred to as the
Curry—Howard correspondence between logic and computation.

Theorem (Curry—Howard correspondence). T F¢: A if and only f I~ x - A is
deriveble in NJ.

There are many known extensions of A —. Extensions with polymorphic types
and dependent types fit perfectly in the so called Barendregt’s cube. For compre-
hensive account of the subject we refer the reader to [9].

2.3. Intersection types for A-calculus. The extension of A — which charac-
terises exactly the strongly normalising terms is with intersection types, which
are also suitable for analysing A models and various normalisation properties of A-
terms. The intersection type assignment systems are originated by Coppo and
Dezani [20, 30|, Barendregt et al. [11], Copo et al. [31], Pottinger [127], and
Sallé [134]. In this system, the new type-forming operator is introduced, the inter-
section M, whose properties are in accordance with its interpretation as intersection
of types. Consequently, it is possible to assign two types A and B to a certain A-
term at the same time. Another outstanding feature of this system is the universal
type @ which can be assigned to all A-terms. Therefore the question of typability
is trivial in these systems.

We focus on the intersection type assignment system AN with the type €. The
set. Type of types in AN® is defined as follows

AB = X|Q|A—-B|ANB

where X ranges over a denumerable set TVar of type atoms. A type assignment,
a context, and a context extension are defined as usual.
The preorder on Type is defined in the following way:

(1) The relation < is defined on Type by the following axioms and rules:

LACA ' 5. A< B, A<SC=A<BNC



COMPUTATIONAL INTERPRETATIONS OF LOGICS 169

— {ax — (O

I",x:AI—:r:A( ) I‘F—t:ﬂ()
'ty :A—=B Tkt A Ca:AF¢t: B

{(— E) — (=1
ThHta: B izt A— B
't¢t:AT+H¢:RB I'~t:A A<B
(1) <
I'ti:ANB I'+t: B

FIGURE 6. A intersection type assignment system

/

2A<B BSC =2A<C 6. A< A,
3.ANB <A ANB<B T.ASA,
L{A-BN(A-C)<A—=BNC 8. A<Q

9.4-0K0—-0

"= AnNB<gLANE

B<B
BEB =A-BgA-PB

(ii) The induced equivalence relation is defined by:
A~Bes AL B&B<A

The usual axiom of the preorder on intersection typesis & € € — 2 (Barendregt
et al. [11]). Having this axiom one can distinguish head normalising terms from un-
solvable terms by their typeability, but cannot distinguish weakly head normalising
terms from unsolvable terms. Instead we adopt the axiom A — Q € 0 — Q, which
allows us to distinguish weakly head normalising from unsolvable terms (Dezani et
al. [47]).

The type assignment ¢ : B is derivable from the context I in the type system
AT notation T F ¢+ B, if T - ¢ : B can be generated by the axioms and rules
given in Figure 6.

The following rule is derivable from the rules given in Figure 6:

T'Hét:ANB
—(NE).
I'-¢t: A(B)

Some of the type assignment systems that can be obtained by combining the
rules above and can be regarded as restrictions of AN are given by the following
axioms and rules:

o 3 (a2), (= B), (= D), (NE), (1), and (<).
e D: (az), (— E)}, (— I), (NE), and (NI}
e D (ax), (— E), (= I}, (NE), ("), and (£2).

All the eight typed calculi of Barendregt’s cube satisfy the strong normalisation
property, meaning that typeability in the system implies strong normalisation. A
unique property of the two intersection type systems without £2, namely AN and
D, is the inverse of strong normalisation property. In these systems all strongly
normalising terms are typeable. Thus terms typeable in these systems coincide
with strongly normalising terms. This outstanding property of intersection type



179 SILVIA GHILEZAN AND SILVIA LIKAVEQC

systems has merited a lot of attention and has been proven by different authors
and different means in [127, 31, 149, 75, 1], the list is not complete.

Theorem {Strong normalisation). The calculi AN and D satisfy the following

t is typable & ¢ is strongly normalising.

There are many known extensions of the A-calculus with intersection types:
Lengrand’s et al. calculus with explicit substitutions [108], Matthes's calculus with
generalised applications {113], Dougherty’s et al. calculus for classical logic [51],
Carlier and Wells’s and Kfoury and Wells’s calculi with expansion variables for
type inference [26, 103], Dunfield and Pfenning’s calculus with intersection, union,
indexed, and universal and existential dependent types [54], to name just a few.

3. AG=_calculus

3.1. Syntax and reduction rules. There were several attempts, over the years, to
design a term calculus which would embody the Curry—Heoward correspondence for
intuitionistic sequent calculus. The first calculus accomplishing this task is Herbe-
lin’s A-caiculus given in [96]. Recent interest in the Curry—Howard correspondence
for sequent calculus [96, 12, 60, 56] made it clear that the computational content of
sequent derivations and cut-elimination can be expressed through an extension of
the A-calculus. The A%“-calculus was proposed by Espirito Santo [56] as a modifi-
cation of Herbelin’s A-calculus. Tts simply typed version corresponds to the sequent
calculus for implicational fragment of intuitionistic logic.
The abstract syntax of A% is given by:

(Terms) tu, v = x|Axd|tk
(Contexts) k o= Zt|unk

Terms are either variables, abstractions or cuts k. A context is either a selection
or a context cons(tructor). According to the form of k, a cut may be an explicit

substitution {(Z.v) or a multiary generalised application t(u1 = - um @ ZTov),
m 2 1. In the last case, if m = 1, we get a generalised application $(u = ZT.v); if
v = x, we get a multiary application t[uy, - ,um] (F.z can be seen as the empty

list of arguments).
In Az.t and Z.t, t is the scope of the binders Az and Z, respectively. The scope
_of binders extends to the right as much as possible.

Reduction rules of A% are the following:
(3 (Cabuszk) — u(fik)
() (th)k" — (k@K
{=) Ty — vzi=1
{r) Fxk — k ifzdk

where vz := {] denotes meta-substitution defined as usual, and k@’ is defined by
(v k)@ = u = (kQK") (Z.)Ok" = Tk

The rules 3, w, and o reduce cuts to the trivial form y(uy = - wy o Tu), for
some m = 1, which represents a sequence of left introductions. Rule # generates



COMPUTATIONAL INTERPRETATIONS OF LOGICS 171

a substitution, and rule o executes a substitution on the meta-level. Rule = gen-
eralises the permutative conversion of the A-calculus with generalised applications.
Rule p has a structural character, and it either performs a trivial substitution in
the reduction ¢(Z.zk) — tk, or it minimises the use of the generality feature in the
reduction t{u) - - - U, = Txk) — £{uy - um 2 k).

3.2. Simply typed 1%2-calculus. The set Type of types, ranged over by A, B, C,
.., A1, ..., is defined inductively:

AB = X|A—B
where X ranges over a denumerable set TVar of type atoms.
There are two kinds of type assignment:
— [k t: A for typing terms;
— I'; BR kA for typing conbexts. .
The special place between the symbols ; and F is called the stoup and was
proposed by Girard [93]. Stoup contains a selected formula, the one with which we

continue computation.
The type assignment system A®? — is given in Figure 7.

Px:Abz:A (Az)

Fe:AF¢: B ] I'Hi:A I;BrE:C
Troei Ao B (" TASDri k. 8

Fri:A AV KB Cut) I'z: A+t B
Trtk:B (Cu T A-%t:B

{Sel)

FIGURE 7. AS% o simply typed AS2-calculus

4. xu-calculus

4.1. Syntax and reduction rules. The original version of the typed Au-calculus
was formulated by Parigot [121] as the extension of A-calculus with certain sequen-
tial operators and was meant to provide a proof term assignment for classical logic
in natural deduction style. As said in [19], “Ap-calculus is a typed A-calculus which
is able to save and restore the runtime environment.”

The Au-calculus was introduced as a call-by-name language, but it received a
call-by-value interpretation by Ong and Stewart in [120].

The syntax of the Ay-caleulus is given by the following:

unnamed terms: ¢ = x| Azd | tu] pfe
named terms: c == |alt.

We distinguish two kinds of variables: A-variables (z,y,...%1,...) and p-variables
(v, 8,... 1,...). We also distinguish two kinds of terms: named and unnamed



172 SILVIA GHILEZAN AND SILVIA LIKAVEC

terms. Named terms enable us to name arbitrary subterms by u-variables and
refer to them later.
The reduction rules of the Au-calculus are:

(Azult — ulz:={
(phct —  pp.cl[Blw = [B](wt}]
[J{ub.c) — cB:=oal.

In the second rule, every subterm of ¢ of the form [B]w is replaced by a term [3](wt).

4.2. Simply typed )u-calculus. The original version of the Ap-calculus is typed.
A type assignment £ : A is derivable from the contexts [' and A in the system
A, notation ‘
I'Hi:4A

ifT' ¢ A, A can be generated by the following axiom and rules given in Figure 8.

{axiom)
Fy:Aky: A A
F'Fu:-A—-BA THE:AA Ty:Aru:B A
{— elim) (= intro)
F'Fut: B A 'FAiyu:A— B A

F!—u:A,A,,ﬁ':A,a:B( )
TFpaBlu: B,AB: A :

FIGURE 8. Simply typed Au-calculus

The typed calculus is both, strongly normalising and confluent and the types
are preserved by the reduction. )

5. Augi-calculus

5.1. Syntax and reduction rules. The Apji-calculus was introduced by Curien
and Herbelin in [34].

The untyped version of the calculus can be seen as the foundation of a functional
programming language with explicit notion of control and was further studied by
Dougherty, Ghilezan, and Lescanne in [87, 48, 49, 51].

The syntax of X,uIZ is given by the following, where v ranges over the set Term of
terms, e ranges over the set Coterm of coterms and ¢ ranges over the set Command
of commands: ’

tru=z | Az.t| po.c en=altee| fiz.c cu={t| e

There are two kinds of variables in the calculus: the set Var, of variables (de-
noted by Latin letters z,¥,...) and the set Ver, of covariables {denoted by Greek
letters a, 3,...). The variables can be bound by A-abstraction or by g-abstraction,
whereas the covariables can be bound by p-abstraction. The sets of free variables



COMPUTATIONAL INTERPRETATIONS OF LOGICS 173

and covariables, Fv, and Fu,, are defined as usual, respecting Barendregt’s con-

vention [10] that no variable can be both, bound and free, in the expression.
Terms yield values, while ¢oterms consume values. A command js a cut of a

term against a coterm. Commands are the place where terms and coterms interact.

The components can he nested and more processes can be active at the same time.
There are only three rules that characterise the reduction in Apfz:

(= e tilitaee) — (2] pz.ltl]e))
W fpacle — da=d
(1) | px.ey — =1

The above substitutions are defined as to avoid variable capture [10].

As a rewriting calculus Auj has a critical pair (o ¢y || iz . c2) where both, {u)
and (fZ) rule can be applied non-deterministically, producing two differeat results.
For example,

{poy | ) Nl ez | 9)) = w1l ) and {paey | B) 1l Bz 1l 4)) —5 (2 D),

where o and 3 denote syntactically different covariables.

Hence, the calculus is not confluent. But if the priority is given either to (u)
or to (f) rule, we obtain two confluent subcaleuli Aufir and Aufig. There are
two possible reduction strategies in the calculus that depend on the orientation
of the critical pair. If the priority is given to {1} redexes, call-by-value reduction
is obtained (Aufig-caleulus), whereas giving the priority to (ji) redexes, simulates
call-by-name reduction (Aufir-calculus). :

This is more than simply a reflection of the well-known fact that the equational
theories of call-by-name and call-by-value differ. It is a reflection of the great ex-
pressive power of the langnage: a single expression containing several commands
can encompass several complete computational processes, and the p and [ reduc-
ttons allow free transfer of control between them.

We first give the syntactic constructs of Aufiy and X,LLEQ, respectively:

At Apfiq

cu= it e cu= {t|e

ti= x| Ax.t| po.e Vo= x|zt

Ei= a|teFE o= pa.c|V

en= fiz.c|FE en= al|jz.c|Vee.

In dufiy the new syntactic subcategory E of coterms, called applicative conterts, is
introduced, in order to model call-by-name reduction. In Apjig, notice the presence
of the new syntactic construct V" that models the values.



174 SILVIA GHILEZAN AND SILVIA LIKAVEC

The reduction rules for Aufir and Aufig are the following:

Nuiz

(=) Ozt e E) — (hlz—i] || E)
{42) {po ¢ | E) — cla:=E]

(#2) {tlpz.c) — clz:=1

Xufig

(=1 et Vase) — (Blpzt|e)
(1) (pa.clle) — cla:=¢

(&) Vipz.qp — ca:=V]

Notice that in [34] only the rule (—’) is considered for both subcalculi. In [87,
48, 49, 51] only the rule (—) is used. In [L11, 110] (—) reduction is used rather
than (—’) reduction in the case of Aufir, since the application of the (—') rule
will always be immediately followed by the application of the (f} rule and that is
exactly the rule (—). This choice makes explicit the priorities of the rules in each
subcalculus,

In their original work on the Aufi-calculus [34], Curien and Herbelin defined
a call-by-name and a call-by-value cps-translations of the complete typed Aufi-
calculus into simply typed A-calculus. The important point to notice is that they
also interpret the types of the form A— B, which are dual to the arrow types A — B.
The translations validate call-by-name and call-by-value discipline, respectively.

In addition, as described in [34], the sequent calculus basis for Auji supports
the interpretation of the reduction rules of the system as operations of an abstract
machine. In particular, the right- and left-hand sides of a sequent directly represent
the code and environment components of the machine. This perspective is elabo-
rated more fully in [32}. See [33] for a discussion of the importance of symmetries
in computation,

5.2. Simply typed Auzi-calculus. The set Type of types for the Aufi-caleulus is
obtained by closing a set of base types X under implication
AB = X|A—= B

~ Type bases have two components, the antecedent a set of bindings of the form
IU'=1x;: A1,...,Zn : An, and the succedent of the form A =y @ By, ..., a1 By,

where x;, cr; are distinet for all 4 = 1,...,m and 7 = 1,... k. The judgements of
the type system are given by the following:
' r A A Ple:AF A e: (T FA)

where I' is the antecedent and A is the succedent. The first judgement is a typing
for a term, the second one is a typing for a coberm and the third one is a typing for
a command. The box denotes a distinguished output or input, i.e., a place where
the computation will continue or where it happened before. The type assignment
system for the Ayji-calculus, introduced by Curien and Herbelin in [34], is given in
Figure 9.



COMPUTATIONAL INTERPRETATIONS OF LOGICS 175

{azR) (azL)
ex:AFz:A| A 'l a:AF a:AA
PFvr:Aj A F'|e:BF A De:AFr:B | A
(= 1) (— B
['|ree:A=-BF A ' Axr:A—=B | A
e: (T F a:AA) c: T,z AF A)

b poe: A | A (k)

I |fwe:AF A
F'kr-A] A F'le:AF A

{r|led : (T + A)

{cut)

FIGURE 9. Simply typed Aufi-calculus

6. Curry-Howard correspondence

The fundamental connection between logic and computation is given by Curry-
Howard correspondence or formulae-as-types, proofs-as-terms, proofs-as-programs
interpretation. It relates many computational and logical systems and can be ap-
plied to intuitionistic and classical logic, to sequent calculus and natural deduction.

Under the traditional Curry—Howard correspondence formulae provable in in-
tuitionistic natural deduction coincide with types inhabited in simply typed A-
calculus. This was observed already by Curry, first formulated by Howard in
1969 [101], used extensively by de Bruijin in the Automath project and by Lambek
in category theory. This correspondence extends to all eight calculi of Barendregt’s
cube and corresponding logical systems. We refer the reader to [139] for an exten-
sive account of this topic.

Only in 1990 Griffin [94] showed that this correspondence can be extended to
classical logic, pointing out that classical tautologies suggest typings for certain
control operators: the Pierce’s Law corresponds to the type of call-cc operator in
Scheme (introduced by Sussman and Steele [143]) and the Law of Double Negation
corresponds to the type of C operator {introduced by Felleisen et al. [63, 64]).

FExtensive research in both natural deduction and sequent calculus formulations
of classical logic followed. One of the cornerstones is the hu-~calculus of Parigot [121]
which corresponds to classical natural deduction. It was foliowed by term calculi
designed to incorporate classical sequent calculus: the Symmetric Lambda Calculus
of Barabanera and Berardi (6], the Apji-calculus of Curien and Herbelin [34], and
the Dual calculus of Wadler [151, 152].

Part 2 — Contributions

In this part we give an overview of the work done by the authors in the field
of computational interpretations of logics. In Section 7 we focus on intuitionistic



176 SILVIA GHILEZAN AND SILVIA LIKAVEC

natural deduction and the A-calculus. In Section 8 we deal with intuitionistic
sequent calculus and the A*%-calculus of {56]. In Sections 9 and 10 we concentrate
on classical logic: the Au-calculus [121], proof term assignment for classical natural
deduction; and three proof term calculi for classical sequent calculus: the Xuji-
calculus [34], the dual calculus {151, 152 and the Symmetric Lambda Calculus [6].
Finally, in Section 11 we turn to application to programming language theory.

7. Intuitionistic natural deduction and A-calculus

7.1. Terms for natural deduction and sequent calculus intuitionistic logic.
The correspondence between sequent calculus derivations and natural deduction
derivations is not a one-to-one map: several cut-free derivations correspond to
one normal derivation. In Barendregt and Ghilezan [12] this is explained by two
extensionally equivalent type assignment systems for untyped A-terms, namely AN
and AL, one corresponding to intuitionistic natural deduction NJ and the other to
intuitionistic sequent calculus L. These two systems constitute different grammars
for generating the same {type assignment relation for untyped) A-terms. Moreover,
the second bype assignment system has a ‘cut-free’ fragment (AL°f) which generates
exactly the typeable A-terms in normal form. The cut elimination theorem becomes
a simple consequence of the fact that typed A-terms posses a normal form.
There are three type systems that assign types to untyped A-terms:

e AN is the simply typed A-calculus, A —, given in Figure 5,

e ML given in Figure 10;

o ML the cut-free fragment of AL (rules of Figure 10 without the (cut)

rule).

The last two systems have been described by Gallier [70], Barbanera et al. [8],
and Mints [114]. The three systems AN, AL, and AL correspond exactly to the
intuitionistic natural deduction NJ {Figure 1), the intuitionistic sequent calculus
LJ (Figure 3), and the cut-free fragment of LJ. We denote NJ, LJ, and cut-free LJ
by N, L and L respectively.

(x: A)el
—— (axiom)
Tz A4
I'ts: A Tho:BFE:C T'z:A-t: B
(- left) (- right)
My:A— Briz:=ys]:C TrHAxt:A— B

'Fs:A Tz: At B
PFtlz:=s]: B

{cut)

FIGURE 10. MAL-calculus

First we show the known relation between derivation in N and L: for all T’ and
A the following holds
Py A=TH A



COMPUTATIONAL INTERPRETATIONS OF LOGICS 177

The following result was observed for N and AN by Curry, Howard, de Bruijn
and Lambek. It is referred to as the Curry-Howard, formulae-as-types, proofs-as-
terms and proofs-as-programs correspondence {interpretation, paradigm).

Theorem (Curry-Howard correspondence). Let S be one of the logical systems N,
L or LY and let AS be the corresponding type assignment system. Then

Psxbsg A == SteA°(x) Thyst: A
where A°(x) = {t € A | Fo{t) € x}.

The proof of the equivalence between systems N and L can be ‘lifted’ to that of
AN and AL, ie.,
Thypt: A= THrunt: A

Finally, using the cut-free system we get as bonus the Hauptsatz of [71] for
minimal implicational sequent calculus, i.e.,

Ibp A e Tl A

The main contribution of this work is expository, since it deals with well known
results. In this work, the emphasis is on A-terms rather than on derivations, since
A-terms are easier to reason about than two dimensional derivations.

7.2. Logical interpretation of intersection types. In Ghilezan [72] we consider
the inhabitation in intersection and union type assighment system versus prov-
ability in intuitionistic (Heyting’s) natural deduction propositional logic NJ with
conjunction and disjunction (as given in Section 1.1, where the language of NJ
contains also the constant T).

Dz At 4, :C Tyo:Br4;:C T'kHta: AURB
Fktlll‘::fg]lc

(UE)

FF¢: 4 I'+t: B
'e=t: AURB 't AuUB

w1

Ficure 11. ANU: intersection and union type assignment system

The intersection and union type assignment system AMU is obtained by extending
the system AN® with the rules given in Figure 11 where a pre-order € on ANU is
the extension of the pre-order < on AN® obtained by adding the following rules:
(JASAUB,BSAUB () AUASA () ASCBSC=AUB<(, and
(iv) AN(BUC) K (AnNBYU{ANC). :

The Curry-Howard correspondence between types inhabited in the intersection
and union type assignment system and formulae provable in intuitionistic propo-
sitional logic with implication, conjunction, disjunction, and truth dees not hold.
Inhabitation implies provability, but there are provable formulae which are not in-
habited. This is shown in Hindley [99] in a syntactical way. We give a semantical
proof of this fact by giving the appropriate type interpretations in P{D), starting



178 SILVIA GHILEZAN AND SILVIA LIKAVEC

from any lambda modet M = (D, [ ]} (see [11]) and by mapping the set of inter-
section and union types into the set of propositional formulae that replaces each
occurrence of M, U, and € In a type by A, V, and T respectively.

The fact that types inhabited in A% do not correspend to the provable formulae
in intuitionistic propositional logic with — and A, was shown in Hindley [99] by
showing that the type

(A= A)N((A—>B>C) = (A= B) = A—C)

is not inhabited in A" although it is provable in intuitionistic logic.

To show that some provable formulae are not inhabited we construct a model of
AN which is not a model of some provable formula, i.e., its interpretation in this
model is empty.

In order to obtain the Curry—Howard correspondence for intuitionistic proposi-
tional logic L) with conjunction and disjunction, we consider the extension of the
simply typed tambda calculus with conjunction and disjunction types and the cor-
responding elimination and introduction rules, given in Figure 12. For this purpose,
the set Type of types is given by the following

AB=X|A—B|AAB|AVB

and the set of lambda terms A is obtained by expanding the set A with new
constants ¢, ¢;, and ¢z for conjunction and d, dy, and da for disjunction. A7 denotes
the type assignment system obtained from A — by adding the rules considering
conjunction and A, denotes the type assignment system obtained from A — by
adding the rules considering conjunction and disjunction.

CHt:AAB CHt: AAB

(AE)
That: A Thet: B

TrH:A T B
Fl‘Ct;ﬂfg:A/\B

Tz:A+t,:C T,z:Bbtty:C Tritz:AUB

(VE)
Tk dwtltgtg C

CkHt: A I'-t:B
I-dyt: AV EB I'bdot: AV EB

(V1)

FIGURE 12. A type assignment system with conjunction and disjunction

We link the inhabitation in the intersection and union type assignment system
with the inhabitation in this extension of the simply typed lambda calculus. We
prove that inhabitation is decidable in A7 and A; by linking them to the question
of decidability of provability in logics.

The difference between the special conjunction M (called intersection} and the
arbitrary propositional conjunction A is in the rule (NI). In order to show that



COMPUTATIONAL INTERPRETATIONS OF LCGICS 179

the term ¢ has the intersection type it is necessary to show that £ has both types
in the same bagis. { is the same in the conclusion as in both premises of the rule
{nf). The same holds for the rule {(ME}. Thus in these two steps £ remains the same
although the deduction grows and the A-terms do not correspond to the deductions.
With the usual propesitional conjunction A the lambda terms correspond to the
deductions since it is possible to obtain a term af conjunction type from two terms
with different types. Something similar happens with the special disjunction U
(called union).

In Dezani, Ghilezan and Venneri [45] we consider intersection and union types
i Combinatory logic, which is a formal system equivalent to A-calculus. In [45] we
investigate the Curry—Howard correspondence between Hilbert (axiomatic) style
intuitionistic logic and Combinatory logic. We propose a typed version of Combi-
natory logic with intersection and union types. This was a novelty, since all the
existing systems with intersection types up to 1990s were type assignment systems.
For the difference between typed systems (typeability & lo Church) and type as-
signment systems (typeability & la Curry) we refer the reader to Barendregt [9].
Different typed lambda calculi with intersection types were further proposed by
Liquori and Ronchi Della Rocca [23] and Bono et al. [112].

7.3. Intersection types and topologies in A-calculus. In Ghilezan [80] typeabil-
ity of terms in the full intersection type assignment system AN* is used to introduce
topologies on the set of lambda terms A. We consider sets of lambda terms that
can be typeable by a given type in a given environment:

Vra={teA|TFt: A}

For a fixed T" the family of sets {Vr 4}aeTyee forms the basis of a topology on A,
called the I'-fit fopolagy. Open sets in the T-fit topology are unions of basic open
sets.

These topologies lead to simple proafs of some fundamental results of the lambda
calculus such as the continuity theorem and the genericity lemma. We show that
application is continuous, unsolvable terms are bottoms, and Bn-normal forms are
isolated points with respect to these topologies.

The restriction of these topologies to the set of closed lambda terms A®, called
the fit topology, appears to be unique. It is defined by considering the set of all
closed lambda terms that can be typed by a given type:

Va={teA°Ft: A}

The family {Va}actype forms a basis for a topology on A®.

We compare the fit topology and the filter topology [11] and show that: (i) they
coincide on the set A” of closed A-terms, (ii) for every I'-fit topology on the set A
there is a coincident topology on A and vicé versa.

The fit topology is a simpler description of the filter topology since the main
difference between these topologies is that the former is a topology introduced on
the set of types and then traced on terms by the inverse map, whereas the latter is
introduced directly on the set of terms.



180 SILVIA GHILEZAN AND SILVIA LIKAVEC

7.4. Reducibility method. The reducibility method is a well known framework for
proving reduction properties of A-terms typeable in different type systems. It was
introduced by Tait [144] for proving the strong normalisation property of simply
typed A-calculus. Laier it was used to prove strong normalisation property of
various type systems in {145, 92, 105, 75], the Church-Rosser property {confluence)
of An-reduction in [104, 141, 115, 116} and to characterise some special classes of
A-terms such as strongly normalising terms, normalising terms, head normalising
terms, and weak head normalising terms by their typeability in various intersection
type systems in [69, 47, 41].

In Ghilezan and Likavec [88] we develop a general reducibility method for proving
reduction properties of A-terms typeable in intersection type systems with and
without the universal type 2, whereas in [89] we focus only on the intersection type
assignment system AN with the type Q. Sufficient conditions for its application
are derived. This method leads to uniform proofs of confluence, standardization,
and weak head normalisation of terms typeable in the system with the type 2. In
this system the reducibility method can be extended to a proof method suitable to
prove reduction properties of untyped A-terms with certain invariance.

The general idea of the reducibility method is to provide a link between terms
typeable in a type system and terms satisfying certain reduction properties (e.g.,
strong normalisation, confluence). For that reason types are interpreted by suitable
sets of A-terms: saturated and stable sets in Tait [144] and Krivine [L05] and
admissible relations in Mitchell [115] and [116]. These interpretations are based
on the sets of terms considered {e.g., strong normalisation, confluence). Then the
soundness of type assignment with respect to these interpretations is obtained. A
consequence of soundness is that every term typeable in the type system belongs
to the interpretation of its type. This is an intermediate step between the terms
typeable in a type system and terms satisfying the reduction property considered.

Necessary notions for the reducibility method are (as presented in [89]): 1. type
interpretation; 2. term valuations; 3. closure conditions; 4. soundness of the type
assignment. .

1. Type interpretation. We consider the set of all A-terms A as the applicative
" structure whose domain are A-terms and where the application is the application
of terms. If P C A is a fixed set, the type interpretation [—] : Type — 2% is defined

by:
(I1) [X] =P, X is an atom;
(12) [An B] = [A] 0 [B];
(I3) [A- Bl =([A]l=[B)nP={teP|Vse[A] tse[B]}
(14) [©] = A. : : :

An important property of the type interpretation is that [A] € P for all types
A0

2. Term valuations. Let p: var — A be a valuation of term variables in A,
Then [-],: A — A is defined as follows

[, = tleg = p(z1)y .. @n = p(xn)], where Fu(t) = {z1,...,za}.



COMPUTATIONAL INTERPRETATICONS OF LOGICS 181

The semantic satisfiability relation E connects the type interpretation with the
term valuation.
iy pEL: A T[], [A]
(i) pET it (Mx:A)eTD)plz) € [Al
(i) TEt: 4 if (VpED)pkEt: A
3. Closure conditions. Let us impose some conditions on P C A.
— X C A satisfies the P-variable property, notation VAR(P, X)), if

(Vz e var) (Wn 2 0) (Vh,. .., tn € P) Tt ... tn € X.
— X C A is P-saturated, notation SAT(P, X)), if
Ve, s e AY(Wn 20) (W, ..., t, €P)
tle:=slty...th € X = (Azt)st;. . .ty €X.
— X C A is P-closed, notation CLO(P, X), it € X = Azt € P.

The preorder on types is interpreted as the set theoretic inclusion. We prove the
following realizability property, which is referred to as the soundness property or
the adequacy properiy.

Theorem (Soundness of the type assignment). [f VAR(P,P), SAT(P, P}, and
CLO(P,FP) are satisfied, then THt: A=TEt: A

An immediate consequence of soundness is the following statement.

Theorem (Reducibility method). If VAR(P,P), SAT(P.P), and CLO(P,P),
then for all types A £ Q and A4 — B, where B A4 Q

e A=teP.

Proof method for A. To establish a proof method for untyped A-terms it is neces-
sary that a set P C A is invariant under abstraction, i.e.,

teP o dAzoteP. O

If P is invariant under abstraction and satisfies VAR(P, 79) and SAT(P,P),
then P = A. This method is applicable when:
~ P =C={teA| B-reduction is confluent on t};
— P =& = {t| every reduction of ¢ can be done in a standard way};
— P =WAN = {t|tis weakly head normalising}.

In [88] we distinguish the following two different kinds of type interpretation
with respect to a given set P C A.

(i) The type interpretation [~] : Type — 2% is defined by:
(Nn) [X]} =P, X is an atom;
(12) [An B[ = [A] n[B];
(I3) [A—=B]=[A|l=[Bl=1{teAl|¥sc[A] tse][B]}

(i) The Q-type interpretation []? : Type™ — 2% is defined by
Q1) [X]® =P, X is an atom;
(€2) [An B)* = [4]° n[B]*;



182 SILVIA GHILEZAN AND SILVIA LIKAVEC

(@3) [A = B]? = [A]? =o[B]? = (JA]? =[B]*) nP =
={t € WA |¥s € [A]" . ts € [B]"};
(Q4) [Q]% = A
Also, we distinguish two different closure conditions which a given set P C A
has to satisfy. By combining different type interpretations with appropriate closure
conditions on P C A we prove the soundness of the type assignment in both cases.
In this way a method for proving properties of A-terms typeable with intersection
types is obtained.
Preliminary version of the work presented in [89, 88] is [86].

The problem of typability in a type system is whether there exists a type for a
given term. The typability in the full intersection type assignment system AN s
trivial since there exists a universal type £ which can be assigned to every term in
this system.

But without the rule (£}), the situation changes. In Likavec [109] we focus on
typability of terms in the intersection type assignment systems without the type
Q. We show that all the strongly normalising terms are typable in these systems.
They are the only terms typable in these systems. We also present detailed proofs
for [88, 89).

7.5. Behavioural inverse limit models. In Dezani et al. [44] we construct two
inverse limit A-models which completely characterise sets of terms with similar
computational behaviours:

Normalisation properties

{1) A term t has a normal form, t € A/, if £ reduces to a normal form.

(2) A term ¢ has o head normal form, t € HN, if ¢ reduces to a term of the
form AZ.yf (where possibly y appears in z).

(3) A term ¢ has a weak head normal form, t € WA, if t reduces to an abstrac-
tion or to a term starting with a free variable.

Persistent normalisation properties

(1) A term ¢ is persistently normalising, t € PN, ifti e N for all € e N,

{2) A term ¢ is persistently head normalising, t € PHN, if t7 € HN for all
€ A.

(3) A term t is persistently weak head normalising, t € PWN, if # € WA for
allw e A,

Closability properties

(1) A term ¢ is closable, £ € C, if £ reduces to a closed term.

(2) A term t is closable normalising, t € CN, if ¢ reduces to a closed normal
form.

(3) A term £ is closable head normalising, t € CHN, if { reduces to a closed
head normal form.

We build two inverse limit A-models Doy and £, according to Scott [136], which
completely characterise each of the mentioned sets of terms. For that we need to dis-
cuss the functional behaviours of the terms belonging to these classes with respect



COMPUTATIONAL INTERPRETATIONS OF LOGICS 183

to the step functions. Given compact elements 2 and b in the Scott domains A and
B respectively, the step function s = b is defined by Ac.if a C c then b else |

Definition of models
{1} Let Dy be the inverse limit A-model obtained by taking as Dy the lattice
in Figure 13, as Dy the lattice [Dg — D)., and by defining the embedding
P Dy — [Py — Do)1 as follows:
PR =L =>hun=h), Phy=(h=nN0GE=n),
iPRy=L=h  iPh)=h=h PL)=1
{(2) Let £ be the inverse limit A-model obtained by taking as & the ¢po

in Figure 13, as £ the cpo {& — &), and by defining the embedding
i £y — [E0 — &) as follows:

S =(L=>hum=4a), {h)=h=hnu@E=>n),
iE(h) = L = h, ig(h) = h =>h,
i§(c)=c=rc iE(L)y=L1= L.
(3) We will denote the partial orders on Dy, and &£, by CF and C¥, respec-
tively.
fi fi
X 4 X +
hun hun nllc
N v N
h L/ﬂ n huc
W hV 1
h y c
$ \ Ve
s

Fi1GURE 13. The lattice Ty and the cpo &

More precisely, for each of these sets of terms there is a corresponding element in
at least one of the two models such that a term belongs to the set if and only if its
interpretation {in a suitable environment) is greater than or equal to that element.
This is the result of the following theorem.

Theorem (Main Theorem, Version I). Let D, and &£ be the inverse limit A-

models defined above and py the environment defined by pa(z) = A for all x € var
{since each variable is in PA'). Then:

(1) t € PN 4 [t o= 37 & iff [t 2F B

(2) te N off [tlo= 27 n off [t]5 2% n

(3) t € PHN iff [t]D= 27 h iff [t]5 :5 h;

(4) t € HN #ff [[t]jgm 3% hiff i[5 2€ b;

(8) te PWN iff [t 3P [, en(dl = . = L= 1)



184 SILVIA GHILEZAN AND SILVIA LIKAVEC

(6) t e WN iff [t}h= 2 L= &;
(7) t € CN iff [t]5= 2¢ cun;

(8) t € CHA #ff [t]5:= Z€ cUh;
(9) teCif [t]E= 2¢ c.

This is proved by using the finitary logical descriptions of the models D, and
Es0, obtained by defining two infersection type assignment systems in the follow-
ing way. Starting from atomic types corresponding to the elements of Dy and &,
we construct the sets T° and T% of types using the function type constructor —
and the infersection type constructor N between compatible types, where two types
are compatible if the corresponding elements have a join. Types are denoted by
AB Ay, ... A" - Bisshort for A —»---— A — B {n 2 0). The preorder be-

tween types is induced by reversing the orger in the initial cpo and by encoding the
initial embedding, according to the correspondence: {i) function type constructor
corresponds to step function and (ii) intersection type constructor corresponds to
join.

Then, we define the sets F2 and FE of filters on the sets T and T, respectively.
Both FP and F€, ordered by subset inclusion, are Scott domains. The compact
elements are precisely the principal filters, and the bottom element is T €. FT is
an w-algebraic complete lattice, since it has the top element TP.

We can show that FT and D, are isomorphic as w-algebraic complete lattices,
and that F¢ and £, are isomorphic as Scott domains. This isomorphism falls in
the general framework of Stone dualities. The interest of the above isomorphism
lies in the fact that the interpretations of A-terms in D, and £, are isomorphic to
the filters of types one can derive in the corresponding type assignment systems.
This gives the desired finitary logical descriptions of the models.

Theorem (Finitary logical descriptions).

(1) For anyt € A and p: var— FE, [t]fg ={AeT? | . Pp&T+P¢: A},
(2) For anyt € A and p: varims F¢, ﬂt]]fg ={AeT |I0.Tp& T HE ¢: A},
where T 1> p means that for (z : B) € T one has that B € p(x).

Therefore, the primary complete characterisation can be stated equivalently as
follows: a term belongs to one of the nine sets mentioned if and only if it has a
certain type {in a suitable basis) in one of the obtained type assignment systems.
This is the result of the following theorem.

Theorem (Main Theorem, Version II).
() t e PN iffTo b2 LD iff Tp FE ¢ 0y
(2) teN T FP tv if T FE L
(3) te PHN iff o FP b D iff To FE ¢ 2 i
(4) te HN iff T FP t o iff T FE o gy
(5) te PWN iff T FP Q" - Q for alin € N;
(6) te WA iff To FP £:Q — Q;
(T)y teCN iff To FE & yNw;



CCMPUTATIONAL INTERPRETATIONS OF LOGICS 185

(8) t e CHN if To FE £ ynp;
(9) teC iff ToFEt .

The proofs of the (=) parts are mairly straightforward inductions and case split,
with the exception of the case of persistently normalising terms, which are treated
using the notions of safe and unsafe suberms (see [21]}. The proofs of the (<)
parts require the set-theoretic semantics of intersection types and saturated sets,
which is referred to as the reducibility method. To that purpose we define the
interpretations of types in T and in T as follows:

Interpretation of types

(1) The map [-]% :T¥ — P(A) is defined by:
() [/7 =N, [2]° = PN, [u)” = BN, [a)7 = PHN, [9]7 = A;
(i) 4 BIP = [A]° 0 [B]?;
(iii) [4 — B]® = [4]P = [B]? = {t € WA |Vu € [4]° tue [B]P}.
(2) The map [-]¢ :T° — P(A) is defined by:
(i) [)° = N, [2]% = PN, [ul® = HN [a]* = PHN, hF =,
[21° = A;
(i) [An BIE = [AIF N [B]E;
(i) 4 — B]f = [A)F S [BlE = {t € A |Vue [A]¢ tue B}

The main contribution of the present paper is to show that only two models can
characterise many different sets of terms. On the one hand it seems that we cannot
find elements representing weak head normalisability and closability in the same
model, since the first property requires the lifting of the space of functions and this
does not agree with the second one. On the other hand, there are properties which
appear strongly connected, like each normalisation property with its persistent
version. It is not clear if these properties can be characterised separately, i.e., if
one can build models in which only one of these properties is characterised.

A preliminary version of the present paper (dealing only with the first six sets
of terms) is [41]. An extended abstract of the present paper is [43].

8. Intuitionistic sequent calculus and A%%-calculus

8.1. Intersection types for \“*-calculus. In Espirito Santo et al. [57], we intro-
duce intersection types for the A% -calculus. The set Type of types, ranged over by
A, B,C, ..., Ay,..., is defined inductively:

AB;:= X|A=B|ANB

where X ranges over a denumerable set TVar of type atoms.
The type assignment system A% is given in Figure 14.
The following rules are admissible in A%
L Iz AFt:Cthen,z:NA; +¢: C. ]
2. fTx: A;; DEEk:Cthen T,z NA; DKk CL
Basis expansion and bases intersection are defined in an obvious way. Standard
form of generation lemma holds for N6,



188 SILVIA GHILEZAN AND SILVIA LIKAVEC

Fer:nA;tx: A i=1,...,n,n21l (42)

z:ArFt: B T'Fu:A; Vi TBRE:C
T T = p (R = - (—1)
PFiit:A—- B indi —Bruzk:C
TrHE:A;, Vi I'nA;HE:B Tz:AFt: B
TFtk: B ) T avse.m OV

FIGURE 14. XS type assignment system for A6tZ_caleulus

Ezample: In A-calculus with intersection types, the term Azx.zz has the type
(An (A — B)) — B. The corresponding term in A®-calculus is Ar.z(z == §.y).
Although being a normal form this term is not typeable in the simply typed AS%=-
calculus. It is typeable in AS2N in the following way:

(Az)

z:AN{A—B),y: B+y: B
(Azx) {Seh)

z: AN{A—=B)Fz: A z:AN{A—BY,B+§y: B
(Az) (=L}

z: AN(A—-B)rz:A—B r: AN{A—-B)A—=BFr(x:Ty): B
(Cut)
z: AN(A=B)rz{z:§y): B
&R

Fiarz{z o fy):(AN(A—-B)— B

In (58] we describe our quest for the intersection type assignment system A6
and offered a new, equivalent system AS%n,. Both systems A®2N and A%, success-
fully characterize strongly normalizing terms of the A*Z-calculus. We also report
on various alternative formulations of the system. Two of them are not successful
and we explain why they fail and how they lead us to the systemXStn.

8.2, Subject reduction and strong normalisation. Basic properties of this sys-
temn are analysed and the Subject reduction property is proved le.,

IrrFt:Aandt = ¢, then Tt : A

The reduction i is of different nature, since it reduces contexts instead of terms.
A similar result for this reduction rule is given, ie.,

T NB; - Zak: A, then'; B; - k: A, for some 7.

In [83], a slightly modified type assignment system A®2N with respect to the one
given in 8.1 is considered. Subject reduction holds for this system as well.

We use intersection types in [57] to give a characterisation of the strongly nor-
malising terms of an intuitionistic sequent calculus {(where LJ easily embeds}. The
sequent term calculus presented in this paper integrates smoothly the A-terms with
generalised application or explicit substitution.



COMPUTATIONAL INTERPRETATICONS OF LOGICS 187 ’

In order to prove that typeability in A2 implies strong normalisation for the
A2, we connect it with the well-known system D for the A-calculus (given in Sec-
tion 2.2} via an appropriate mapping, and then use strong normalisation theorem
for A-terms typeable in system D.

Terms in D are ordinary Aterms equipped with the following two reduction
relations, in addition to standard 3 reduction:

(m) QzMYNP — Az MPYN  (m2) M({(Az.P)N)— (Az.MP)N.

We let m = m, Ume. We use capital letters here to denote the terms in D to
differentiate them from the terms in X570, ~
We define a mapping F from A% to A\. The idea is the following. If F(t) =
M, F(u;}) = N; and F(v) = P, then t(u; = up = (z)v), say, is mapped to
(Ax.PY(M Ny Nz). Formaily, a mapping F : A®Terms — Mlerms is defined si-
multaneously with an auxiliary mapping F' : XTerms x A2 ontexts — ATerms
as follows: '
Flz)=x F/(N,z1) = (. F(t})N
F(Az.t) = Az F(t) FI(N,uw: k)= F(NF(u),k).
F(tk) = FI{F(1), k)
We prove the following theorems:

¢ Soundness of F: If A% proves '+ ¢: A, then D proves 't F(t) : A
s Reduction of SN: For all t € A%, if F({) is f7-SN, then t is Snou-SN.

The main theorem is the following:

Theorem (Typeability = SN). If a A% -term ¢ is typeable in A°PN, then t is
Brou-SN.

In order to prove that SN implies typeability we prove the following:
e fBro-normal forms and Brou-normal forms of the A%*-calculus are typeable
in the A%“N system.
e Subject expansion property: If £ — t', ¢ is the redex and ¢ is typeable
in AN, then ¢ is typeable in AS#n.

The main theorem is the following:

Theorem {SN = typeability). All strongly normalising (Borp — SN) terms are
typeable in the A5 system.

Finally, in order to deal with generalised applications and explicit substitutions,
we consider two extensions of the A-calculus: the A.J-calculus, where application
M{N,z.P)} is generalised [102]; and the Ax-calculus, where substitution M[z := N]
is explicit [132]. Intersection types have been used to characterise the strongly
nortnalising terms of both AJ-caleulus [113] and Ax-calculus [108). But in both [113]
and [108] the “natural” typing rules for generalised application or substitution
had to be suplemented with extra rules in order to secure that every strongly
normalising term is typeable. Hence, the “natural” rules failed to capture the
strongly normalising terms. We prove that A% and A% are useful for resolving
these issues.



188 SILVIA GHILEZAN AND SILVIA LIKAVEC

Let ¢ be a A%2-term,

(1) tis a AJ-term if every cut occurring in ¢ is of the form t(u : Z.v).
(2) tis a Ax-term if every cut occurring in ¢ has one of the forms ¢(u :: T.z) or
t{Z.v).
We define appropriate type assignment systems AJM and AxN for these calculi
and prove the following:

(1) Let t be a AJ-term. ¢ is frop — SN iff £ is typeable in AJN.
(2) Let t be a Ax-term. ¢ is Awop — SN iff ¢ is typeable in Axn.

The extended version of [57] can be found in [59].

9. Classical natural deduction and ip-calculus

9.1. Terms for natural deduction and sequent calculus classical logic. In
Ghilezan [82], the work of Barendregt and Ghilezan [12] is further elaborated and
its results are generalised for classical logic. Two extensionally equivalent type as-
signment systems for the Ap-calculus are considered. The type assignment system
AN is actually the simply typed Ap-calculus, given in Figure 8. It corresponds
to implicational fragment of classical natural deduction NK (given in Figure 2),
whereas the type assignment system AgL given in Figure 15 corresponds to impli-
cational fragment of classical sequent calculus LK (given in Figure 4). In addition,
a cut free variant of AuL, denoted by /\,uLCf, is introduced and used to give a short
proof of Cut elimination theorem for classical logic.

(axiom)
Ny:AFy:AA
I'~u:AA T,z: Brt:C A Doy:Abé: B A
— left) (— right)
T,y: A— Brilz:=yul: CA TFiyt: A— B A

Pt AANB A a: B
Trpoflt: B,AB: A

(1)

TFuw:B,A Thx:BFHt:AA
Chtlz:=u]: 4,40

(cut)

FiGgure 15. Aul-calculus

. In Figure 15 a term context I' = {z1 : Ay,...,z, : A} is a set of variable
declarations such that for every variable z; there is at most one declaration x; : A4;
in I and a co-term context A = {c1 : By,...,0n : B} is a set of co-variable
declarations such that for every co-variable a; there is at most one declaration
ar: Brin A In this setup D~ x = {A1,... Ap} and A~ a={B,,... B}



COMPUTATIONAL INTERPRETATIONS OF LOGICS 189

It is shown that the statement A is derivable from assumptions in I' in NK if
and only if it is derivable from the same assumptions in LK, ie., for all ' and A

Py A ATt A A

The following result was given by Parigot [121] as an extension of the well-known
proposition-as-types interpretation of intuitionistic logic.

Theorem (Curry-Howard correspondence for classical logic). If SK is one of the

logical systems NK, LK or LK and if \uS is the corresponding type assignment
system, then

Paxbsg AANa &= e A (x)UA(a) Tyt A A
where A°(Z) = {t € A | Fu(t) C x}, A (o) = {t € A| Fuu(t) € o}
It is also proved that
Thaupt: CA =Ty t:CA.

Finally, using the type assignment system )\,uLCf, Cut elimination theorem of
Gentzen [71] for classical implicational sequent calculus is proved, i.e.,

Fl‘LK A<:>FE_LKcr A.

The type assignment system Apl is a novel system for encoding proofs in clas-
sical sequent logic. The main focus of this paper is on Au-terms, rather than on
derivations.

9.2. Separability in Au-calculus. Tn Herbelin and Ghilezan [98], we investigate the
separability property of Ap-calculus. In the untyped A-calculus Béhm’s theorem
deals with the separability property of A-terms [20, 35, 10, 105]. For two different
normal forms there is a context such that cne of these terms converges in this
context, whereas the other one diverges in the same context. A consequence of this
theorem is that 87 equality is the maxtmal consistent equality between M-terms
having normal forms. Henece, if £ and w are two A—terms having different 51 normal
forms, meaning that ¢ = « cannot be proved in A-calculus, and if this calculus is
extended with £ = u, then according to Béhm’s theorem every equality of A-terms
can be proved in the extended calculus. In other words such an extended calculus
is inconsistent.

Two terms are observationally equivalent if, whenever put in the same context,
either they both make it reducible to a normal form or they both make it diverge.
More generally, two terms may be considered as equivalent if, when observed from
outside, they exhibit the same behaviour. Therefore another important consequence
of Bohm's separability in the A-calculus setting is that observational equivalence for
normalisable terms coincides with f#n-equivalence. The proof of Bohm’s theorem
can be considered as a refutation procedure for observational equivalence. An
overview of the relation between Béhm’s theorem and observational equivalence is
given by Dezani-Ciancagiini and Glovannetti [46).

Regarding computational interpretations of classical logic Bohm's separability
property has been investigated in Parigot's Ap-calculus, so far. David and Py [38]



190 SILVIA GHILEZAN AND SILVIA LIKAVEC

showed that Parigot’s Ap-calculus does not satisly Béhm’s separability property.
This means that the equality of Parigot’s Au-calculus is not the maximal consistent
equality between Ap-terms having normal forms.

Saurin [135] studied the Bohro’s separability property in a syntactic modification
of the Au-calculus by de Groote [39] which is denoted here by Ay following Saurin.
The syntax of the Ap-calculus is given by the following:

i o= m| Awt | tu | pdt (ot

The reduction rules are the same ag of the Au-calculus (see Subsection 4).

Saurin showed that the Ag-calculus is a strict extension of Parigot's Au-calculus
and that it enjoys Bohm's separability property. Therefore, the equality in Ap-
calculus is the maximal consistent equality of Ag-terms having normal forms. The
two syntax were up t¢ now considered as almost the same. Obviously this subtle
move in the syntax has significant consequences. In [98] we restored Béhm separa-
bility in Ay by extending the syntax of Ag with a dynamically bound continuation
variable fp and the reduction rules with two rules

[t?;ﬂ ,utj[a.c — ¢
ptpftplt — £
In this way we obtained Auftp, actually its call-by-name variant. It is possible to

establish then a mutual embedding of Ag and Autp. Embedding of Ag into the
extended Ag, actually IT : Ap — Aufp is given by the following:

I{z) -
Oixt) 2 Azl
(ts) 2 H(t)H( 5)
Hiuot) 2 po Bl
Mol) & w6 lallll)
Embedding of the extended Mg into Ag, actually 5 : Autp — Ap is the following:
Z(x) £ oz
2(Az.1) 2 azB(t)
B(t s} = () S(s)
D(pe (88 2 po([f)B() if B and fp are distinet
Sualfl) 2 pa(S)
D(utp.lalt) & [o]X(t) if & and fp are distinct
Sl £ S,

iFrom the desired properties:
e ¢ =uin Ay implies TI{t) = IT(x) in Autp,
o t=uin Apfp implies £(t) = S(u) in Ay,
we conclude the separability of the extended Ap-caleulus.

Theorem {Separability). Aufp, the extended Au-calculus is observationally com-
plete for normal forms, t.e., for any two normal forms there exists an evaluation



COMFPUTATIONAL INTERPRETATIONS OF LOGICS 191

X € TypeConstants

AB = X|Ag— B
' == 0ilzx: Ax
A = BlA e A

,E o= 1|AX

Az

Tz:As ks z: A4 A

Pz As Fst: B A (=) [hzt:(Ay — B);A Thygs:A4;A
Iz det:(Ag — B);A © ° Frets: B A (e)

Trred;A,a:Ad ThrhagellA TDretid;Aa: A Pbs i 4 A
Phsuoc: ;A Thpplpe AN The o)t Aa: A Db gs [Bpjtl; A

FIGURE 16. Simple typing of Aptp-calculus

Aptp-context C), such that, in Aufp, Clt] = © and C[s] = y for = and y being
arbitrary fresh variables.

Separability in simaply typed Ap-calculus is an open question. It was shown
in [140, 138, 53] that separability in simply typed A-calculus needs different treat-
ment from Bohm's method for the untyped A-calculus. There is ongoing research
along the lines of the approach by Dogen and Petri¢ [33].

9.3. Simple types for extended )u-calculus. In Herbelin and Ghilezan [98] we
propose a system of simple types for call-by-name Aufp, the Au-calculus extended
by a dynamically bound continuation variable, which is introduced in the previous
subsection. Like for typing Au, we have two kinds of sequents, one for each category
of expressions:

Lkt A A (for terms)

ks ed; A (for commands).
Like for Mg, we have a context of hypotheses T that assigns types to term variables
and a context of conclusions A that assigns types to continuation variables. But
we have also to take care of the ufp dynamic binder.

There is an extra data to type the dynamic effects. Each use of ufp pushes the
current continuation on a stack of dynamically bound continuations. Each call to
ip pops the top continuation from this stack. The extra information needed to type
the dynamic binding is not a single formula but the ordered list X of the types of
the continuations present in the stack.

The type system, given in Figure 16 enjoys preservation of types under reduction.

Theorem (Subject reduction)..
0) T ret:A;A andt — s, then Dby s: A7 AL
() fThkpgeliAande—d, thenT by ¢ AL



192 SILVIA GHILEZAN AND SILVIA LIKAVEC

10. Classical sequent calculus and X.ji-calculus

10.1. Confluence of call-by-name and call-by-value disciplines. In Likavec and
Lescanne [111], we deal with untyped Apufi-calculus and its semantics, with complete
proofs given in [110].

This work investigates some properties of Aufir and Aficy, the two subcalculi of
untyped Augi-calculus of Curien and Herbelin [34], closed under the call-by-name
and the call-by-value reduction, respectively. The syntax and reduction rules of
Aufi were given in Section 5.

First of all, the proof of confluence for both versions of the Aufi-calculus is given,
adopting the method of parallel reductions given by Takahashi [146]. This approach
consists of simulitaneously reducing all the redexes existing in a term.

We present the proof for Aufir, the proof for Xu,,[ZQ being a straightforward
modification of the proof for Aufiy. The complete proofs can be found in [110]. We
denote the reduction defined by the three reduction rules for hufiy by —, and its
reflexive, transitive, and closure by congruence by —»,.

First, we define the notion of parallel reduction =, for Aufip. We prove that
—», 1s reflexive and transitive closure of =, so in order to prove the confluence of
—»,, it is enough to prove the diamond property for =,. The diamond property
for =, follows from the stronger “Star property” for =+, that we prove.

The parallel reduction, denoted by =, is defined inductively, as follows:

c=>nc
po.c=, pa .

U=rn U
T=x (gla) Az t=y Am.

{92n) (g3a)

vt E=y B
aooa (@) ve E= v e E

c=,c
. c=py gz .

{g54) (gﬁn)

U=>n't)',8=>nel (97 ) "Ulzt’nvisUZ::"n'UéaEzbnEf
)=l fe) 7" (Az .ty || vz @ B) =nlvi[z = vo] || E)

(987)

e, E=py B
{ua.c|| EY =y [a = F

v, e=p
- ; (910,)

(ggn) ('U ” ﬁLUC) = C’[QS = U’] )

It is easy to prove that for every term G

1. G=, G
2. If G-y G then G =, G
3. If @ =, & then G—, G";
4 HG@=,G and H=>, H',
then Glz = H] =, &'|z := H'] and Glev := H] =, G'a = H).

iFrom 2. and 3. we conclude that — is the reflexive and transitive closure of =,.
Next, we define the term G* which is obtained from G by simultaneously reducing
all the existing redexes of the term G.



COMPUTATIONAL INTERPRETATIONS OF LOGICS 193

(#1,) z* ==z (#2,) (Az.t)* = Az.t* (x3,) (mo.c)” =pa.c
(+dn) o =a (+5,) (ve EY* =v*e E* (x6,) (Hz.c)* =pr.c”
(7n) (W lleh)y = (0" | &) if (v] &) # .ty | v 0 ),

(lie) # (ua.c | By and (v &) # (v | iz c)
(48,)  ((ha.t1 | va e B)) = (vifz = 3] | BY)
(:90)  ((uacll £)) = c*lo = B7)
(100) (o) 7. <))" = e = v"]

We prove that if G'=>, G’ then G’ =, G*. Then it is easy to deduce the diamond
property for =,: if &y ,&=G =, G2 then Gy =, G <= G2 for some &', Finally,
from the previous, it follows that Aufiy is confluent, i.e., if Gy w—G—», Ga then
G1—n G =Gy for some (.

As a step towards a better understanding of denctational semantics of Aufi-
caleulus, its uniéyped call-by-value (Aufig) and call-by-name (Aujir) versions are
interpreted. Untyped Auf-calculus is Turing-complete, hence a naive set-theoretic
approach would not be enough. Continuation semantics of Aufig and Aufir is given
using the cafegory of negated domains of [142], and Moggi's Kleisli category over
predomains for the continuation monad [117]. Soundness theorems are given for
both, call-by-value and call-by-name subcalculi, thus relating cperational and deno-
tational semantics. A detailed account on the literature on continuation semantics
is also given. Lack of space forbids us to give a detailed account on the semantics
here.

*

mo

10.2. Strong normalisation in unrestricted Apj-calculus. In Dougherty et al. [51),
we develop a new intersection type system for the Auf-calculus of Curien and Her-
belin [34]. The system in this work improves on earlier type disciplines for Auji
{including the current authors’ [48, 49]): in addition to characterising the Apfi
expressions that are strongly normalising under free (unrestricted) reduction, the
system enjoys the Subject reduction and the Subject expansion properties.

The set Type of raw types is generated from an infinite set TV ar of type-variables
ag follows

AB:=TVar! A—-B|A° | AnB

where A® is the dual type of type A. We consider raw types modulo the equality
generated by saying that (i) intersection is associative and commutative and (ii)
for all raw types A4, A°° = A,

A lype is either a term-type or a coterm-type or the special constant L. A raw
type is a term-type if it is either a type variable, or of the form (A; — Aj) or
(A M- N Ag), 4 2 2 for term-types A;, or of the form D° for a coterm-type D.
A raw type is a coferm-type if it is either a coterm variable, or of the form A° for
a term-type A or of the form (D, - N D), i = 2 for coterm-types D;. Note
that every coterm-type is a type of the form A°, where 4 is a term-type, or an
intersection of such types.

Each type other than L is uniquely—up to the equivalences mentioned above—of
one of the forms in the table below. Furthermore, for each type T there is a nunigue
type which is 7°. II T is a term-type [resp., coterm-type| then T is a coterm-type



194 SILVIA GHILEZAN AND SILVIA LIKAVEC

[resp., term-type].

term-types coterm-types

T T

(A, — Az) (A1 — Ag)°
fornz2: (A1NAzn--NA4,) {AyNAN--NALT
formz2: (AjNAINM---MAZY® (AN AS M- M AS).

The characterisation of the $wo columns as being “term-types” or “coterm-types”
holds under the convention that the A; displayed are all term-types.

We refer to types of the form (A — B) and {4, 1+ N Ag) — B uniformly using
the notation ((VA; — B), with the understanding that the [ 4; might refer to a
single non-intersection type.

The type assignment system A"is given by the typing rules in Figure 17, where
v is any (cojvariable.

(ax)

o vi{Tyn--nTe) B ou T

5 z:AFr: B Lhkri A i=1,..0k Tk e:B°
S odar A= SFree ((An o nAg oBr O
N oa: A% Fe: L 5 rxcAbr el

Yk opoc: A ) b gz A° @)

LhkriA ke A°
DE {rjer: L

{cut)

FIGURE 17. The typing system A1"

In the system presented here there is no unrestricted M-introduction rule which is
significant for the treatments of Subject reduction and Type soundness. Intersection
types can be generated for redexes by the (1) or (@i} rules only. The rationale
behind the new type system is to accept the introduction of an intersection only
at specific positions and specific times when typing an expression, namely when an
arrow is introduced on the left; then a type intersection is anly introduced at the
parameter position. Still, the new system types exactly all the strongly normalising
expressions. )

Ezxample: The normal form ‘la.ua.{z || © e ¢), which corresponds to the normal
form ‘lz.zx in ‘l-caleulus, is not typable in Au with simple types. It is typable in
the currently introduced system M™ by lz.pa.z fzea): AN(A— B) — B.

Theorem (Subject expansion). Let ¢ and s be arbitrary terms or coterms and let
v be a variable or covariable. Suppose & b tlv := 5] : T and suppose that s is



COMPUTATIONAL INTERPRETATIONS OF LOGICS 195

typable in contert L. Then there is a type D= (DyN-- - NDy), k=1, such that
2k s:D;  foreachi and Yo:DvF T

Theorem (Main result). A Aufi term is strongly normalising of and only if it is
typable in A7,

It is straightforward to prove that strong normalisation implies typeability using
the fact that normal forms are typeable.

To prove strong normalisation under free reduction for typable expressions is
more challenging. The difficulty using a traditional reducibility {or “candidates™}
argument arises from the critical pairs (p'a.c || jiz.d). Since neither of the expres-
sions here can be identified as the preferred redex one cannot define candidates hy
induction on the structure of types.

The “symmetric candidates” technique in [6, 125] uses a fixed-point technique
to define the candidates and suffices fo prove strong normalisation for simply-typed
Aufi, but the interaction between intersection types and symmetric candidates is
technically problematic.

In order to prove that typeable expressions are SN we first construct pairs (R, E)
given by two non-empty sets T C A, and € C A.. The pair {R, E} is stable if for
every r € R and every e € E, the command {r || €) is SN. A pair {R, E) is saturated
if

e whenever u‘a.c satisfies Ve € F, cfor := €] is SN then y‘a.c € R, and
e whenever ix.c satisfies ¥r € R, ¢[z := 7| is 8N then fiz.c € E.

A pair (R, E) is séimple if no term in R is of the form p'e.c and no ceterm in F
is of the form fz.c.

We show that if the original pair is stable and simple, then we may always
construct the saturated, stable extension. To achieve this we define the maps:
@, :2M 90 and @, 20 - 2he by

&, (V) = {r|ris of the form po.c and Ve € ¥, c[a := ¢] is SN}
U {r|rissimple and Ye € Y, {r || e) is SN}

$.({X) = {e]| e is of the form fiz.c and Vr € X, ¢fz := r] is SN}
U{e|e is simple and ¥r € X, {r || e} is SN.}

Since each of ©, and @, is antimonotone, the maps (®, e $.) : A, — A, and
(P 0®,): Ap — A, are monotone, so each of these maps has a complete lattice of
fixed points, ordered by set inclusion.

We define different saturated pairs to interpret types depending on whether the
type to be interpreted is (i) an arrow-type or its dual or (i1) an intersection or its
dual. :

If R is a simple set of SN terms let AT be the least fixed point of (®, 0P, ) with
the property that R € R!. Analogously, BT is the least fixed point of (®, o &,)
such that F C ET.



196 SILVIA GHILEZAN AND SILVIA LIKAVEC

For interpreting the types that are intersections or their duals, we use the fact
that the collection of fixed points of {$, o &.} {and that of (@, o ®,)) carries its
own lattice structure under inclusion. We need the following definitions.

o Let Fixgs os,; be the set of fixed points of the operator (@, o &.). If
Ri,..., R are fixed points of (€, 0 ®.}, let (R A... A Ry) denote the mest
of these elements in the lattice Fixis, 00,

o Let Fixgp, op,) be the set of fixed points of the operator (¢, 0 ®,}. Let
{Ey A ... A Ey) denote the meet of fixed points of {$, o ®,].

Interpretation of types For each type 1" we define the set [T], maintaining
the invariant that when 7" is a term-type then [77] is a fixed point of ($, o ®.) (set
of terms) and when 1" is a coterm-type then [T is a fixed point of (®, o ®.) (set
of coterms).

e When T is L then [T] is the set of SN commands.

¢ When T is a type variable we set R to be the set of term variables, then
construct the pair {RT, ®.{R")}. We then take [T] to be R and [T°] to
be @, (R1).

¢ Suppose T is {1 A; — B). Set £ to be {ree| Vi, r € [A:] and e & [B°]}
then construct the pair (®.(ET), B1). We then take [T] to be ®,(£") and
[7°] to he (ET).

o When T'is (A1 Az---NA4L), n 22, wetake [T] tobe (JA]JA.. . A[A4L])
and then take [T°] to be &.([1]).

o When Tis (AJNAS - NAZ)°, n = 2, wetake [T°] to be ([AS] A. .. A[AS]D
and then take [T] to be ®,.([T°]).

The following collects the information we need to prove Type soundness.

(1)

(2) For each type T, [T] is a set of SN {co)terms. [((NA; — B)°] 2 {ree |
Wi, r € [As] and e € [B°]}.

(3} (Az.b) € [{N Ai — B)] if for all r such that Vi,r € |A;] we have bz :=r| €
15].

{4) (pfac) € [A] if for all e € [A®] we have c['a := ¢] SN. Similarly, (jiz.c) €
[A°] £ for all 7 € [A] we have c[z ;= r] SN.

BY [(Tn- nT)] S (T - [T

Theorem {Type soundness). If expression t is typable with type T then t is in [T].

Since each [T] consists of SN expressions Type soundness implies that all typable
expressions are SN,

General consideration of symmetry led us in [48, 49] to consider intersection and
union types in symmetric A-calculi. These papers characterised strong normali-
sation for call-by-name and call-by-value restrictions of the Apfi-calculus, whereas
the results in this work apply to unrestricted reduction. We might argue that if
a term has type AN B, meaning that it denotes values which inhabit both A and
B, then it can interact with any continuation that can receive an A-value or a
B-value: such a continuation will naturally be expected to have the type A U B.
But any type that can be the type of a variable can be the fype of a coterm (via



COMPUTATIONAL INTERPRETATIONS OF LOGICS 197

the fi-construction) and any type that can be the type of a covariable can be the
type of a term (via the p-construction}. This would suggest having intersections
and unions for terms and continuations. It is well-known [123, 7] that the presence
of union types causes difficulties for the Subject reduction property; unfortunately
our attempt to recover Subject reduction in [48] was in error, as was pointed out
to us by Hugo Herbelin [95]. Hence, this work only takes into account intersection
types. The use of an explicit involution operator allows us to record the relation-
ship between an infersection (A M B) and its dual type (A N B)°. The “classical”
nature of the underlying logic is reflected in the “double-negation”.

10.3. Dual calculus. Wadler’s Dual calculus was introduced in {151, 152} as a
term calculus which corresponds to classical sequent logic. In Dougherty et al. [52],
we investigate some syntactic properties of Wadler’s Dual calculus and establish
some of the key properties of the underlying reduction.

We give now the syntax and reduction rules of Wadler’s Dual calculus {although
in our slightly altered notation}. We distinguish three syntactic categories: terms,
coterms, and statements. Terms yield values, while coterms consume values. A
statement is a cut of a term against a coterm.

If r,q range over the set A, of terms, e, f range over the set A, of coterms,
and ¢ ranges over statements, then the syntax of the Dual calculus is given by the
following:

Term: rg = x| {r, g | {rinl| {r)inr | [e]not | pe.c
Coterm: e, f = a|le, f]|fstle] | sndle] | not{r) | gz.c
Command: ¢ 2= (r e e

where  ranges over a set of term variables Varg, {r, q) Is a pair, {r)inl ({r}inr) is
an injection on the left (right) of the sum, [e]not is a complement of a coterm, and
pa e is a covariable abstraction. Next, o ranges over a set of covariables Vary,
le, flis acase, fst[e] (snd[e]) is a projection from the left (right) of a product, not{r)
is a complement of a term, and gz .cis a variable abstraction. Finally (7 e e}
is a cut. The term variables can be bound by p-abstraction, whereas the coterm
variables can be bound by fi-abstraction. The sets of free term and coterm variables,
Fugp and Fup, are defined as usual, respecting Barendregt’s convention [10] that no
variable can be both, bound and free, in the expressicn.
The reduction rules for an unrestricted calculus are given in Figure 18,

{B1) (refz.c) — cr=r]
(Bu) (na.cee) — clo=¢
(BA) [{roa) o fstfel) — (7 o e
(BA) ({r,q) o sndle]) — {qee}
(8v) ((r)inl o [e, fl) — (r ee]
(Bv) ((r)inr e [e, fI) — {r e f)
(8-) (lenot & not{r}) — {r e e)

FicUurge 18. Reduction rules for the Dual calculus



198 SILVIA GHILEZAN AND SILVIA LIKAVEC

The basic system is not confluent, inheriting the well-known anomaly of classical
cut-elimination. Wadler recovers confluence by restricting to reduction strategies
corresponding to {either of) the call-by-value or call-by-name disciplines.

The two subcalcull Dualg and Dualy, are obtained by giving the priority to (i)
redexes or to (i) redexes, respectively. Duzlg is defined by refining the reduction
rule {3} as follows

(poc e e — cla=¢ provided ¢ is a coterm not of the form fz.c/
and Dualy, is defined similarly by refining the reduction rule (87} as follows
(r e gz.ch—cz:=1] provided 7 is a term not of the form p‘a.c’.

We show that once the “critical pair” in the reduction system is removed by
giving priority to either the “left” or to the “right” reductions, confluence holds in
both the typed and untyped versions of the term calculus. Although the critical
pair can be disambiguated in two ways, the proof we give dualises to yield conflu-
ence results for each system. The proof is an application of Takahashi’s parallel
reductions technique [146], analogous to the one used in [111] and with details of
the proves given in [110].

A complementary perspective to that of considering the Dual calculus as term-
assignment to logic proofs is that of viewing sequent proofs as typing derivations
for raw expressions. The set Type of types corresponds to the logical connectives;
for the Dual calculus the set of types is given by closing a set of base types X under
conjunction, disjunction, and negation

AB = X|ANB| AV E | -A

Type bases have two components, the antecedent a set of bindings of the form
I=x : Ay,... 2, : A., and the succedent of the form A =y : By,..., a4 @ By,
where x;, o; are distinct for all ¢ = 1,...,n and § = 1,..., k. The judgements of
the type system are given by the following:

I kA [r: A [e:A] T+ A ¢ (T F A)

where T is the antecedent and A is the succedent. The first judgement is the typing
for a term, the second is the typing for a coterm and the third one is the typing for
a statement. The box denotes a distinguished output or input, i.e., a place where
the computation will continue or where it happened before. The type assignment
system for the Dual calculus, introduced by Wadler [151, 152}, is given in Figure
10.3.

We prove strong normalisation {SN) for unrestricted reduction of typed terms,
including expansion rules capturing extensionality. The proof is a variation on the
“semantical” method of reducibility, where types are interpreted as pairs of sets of
terms. Qur proof technique uses a fixed-point construction similar to that in [6]
but the technique is considerably simplified.

The approach is similar to the one given for {51] so we just present the details that
differ. The pairs are defined analogously, as well as the notion of stable, saturated,
and simple pairs.



198

COMPUTATIONAL INTERPRETATIONS OF LOGICS

Sn[noTes [en( ayi 10] walsds odAT, 'fT AUNDLY

s e e s]

ZOEEE

(v 4.1

v 1)

(3m2)

o Y + 01 (v oed

Ty Az o

vV 4 I {v=: {4)ou

vq 4 19gvyiplpus] v 4 a3lgvy s

(7-) ——
(Vi 'v
gavya{d)| 'y 4 1 [gaviude| 'y 4.1
(gA) , ,
g4y 4 [Vi4]'v 4
avy b u|'y 41
(& v) “ , (7v ;
g:b)'v 41 (vi4v A v 4.1 (g:?]
Q.T_dlbh_«fd )
(7o) (3yzD)

v v




200 SILVIA GHILEZAN AND SILVIA LIKAVEC

We can always expand a pair to be saturated. Also if the original pair is stable
and simple, then we may always construct the saturated, stable extension.
We define the following constructions on pairs, where script letters denote pairs,
and if P is a pair, Pr and Pp denote its component sets of terms and coterms.
Let P and € be pairs.
o The pair (P 4 Q) is given by:
~ (P AQ), ={lr, ra)ir. €Pgr, 2 € A}
- (PAQ), ={fstle] |[ee P} U{sndle]lec O}
# The pair (P ¥ Q) is given by:
- (PYQ), ={{»inl|rePelu{{rinr|re Qx}
- (/p Y Q)L = {[81, 82] | e} € PL. ey € QL}
e The pair P° is given by:
— (P°), = {[e]not | e € P}
— (P°), = {not{r) | r € Pr}.
Each of (P A @}, {P ¥ Q), and P° is simple and we show that i{ P and @ are stable
pairs, then (P A @), (P ¥ Q), and P° are each stable.
The type-indexed family of pairs § = {57 | T € Type} is defined as follows,
which is our notion of reducibility candidates for the Dual calculus:
When 7 is a base type, ST is any stable saturated extension of ( Varg, Vary).
S48 is any stable saturated extension of (S* A §F).
S4V8 s any stable saturated extension of (S* v §%).
S$74 is any stable saturated extension of ($4)°.

Next we prove that tyvpeable terms and coterms lie in the candidates &, i.e., if
term 7 is typeable with type 4 then r is in & and if coterm e is typeable with
type A then e is in S7. Since S and S consist of SN expressions, it follows that
typeable terms and coterms are SN. If t = ¢ is a typeable statement then it suffices
to observe that, taking ‘a to be any covariable not occurring in ¢, the term p'a.c
is typeable. This proves the strong normalisation of all typeable expressions of the
calculus.

10.4. Symmetric calculus. Another interesting calculus expressing a computa-
ticnal interpretation of classical logic is the Symmetric Lambda Caleulus of Bar-
banera and Berardi [6], which was originally used to extract the constructive con-
tent of classical proofs. In Dougherty et al. [50] we explore the use of intersection
types for symmetric proof calculi. More specifically we characterise termination in
the {propositional version of) the Symmetric Lambda Calculus of Barbanera and
Berardi [6].

The syntax of A*¥™ expressions is given by the following:
Eim | (tts) [ on(t), | oalt), | Az (b + 1),

We depart frem [6] in that we treat the operator * as syntactically commutative.
The reduction rules of the calculus are

(Az.b % a) = bz = q] ({ts,22) * o;(u)) — {ts, 1)

Az.(b * x) — bif z not free in b.



COMPUTATIONAL INTERPRETATIONS OF LGGICS 201
The set Type of raw types is generated from an infinite set TV ar of type-variables
as follows
A, Bu= TVar | ANB|AvB| A | AnB.
We consider raw types modulo the equations
At =4 (AAB =4tvBY (AvB)t =4t ABh

A type 1s either an equivalence class modulo these equations or the special type
1. Note that by orienting the equations above left-to-right each type has a normal
form, in which the ()L operator is applied only to type variables or intersections.
It is then easy to see that each type other than L is uniquely of one of the following
forms (where 7 is a type variable):

ot (A A AA) (ALY VAL (AnenAn) (An-nA)h

The type assignment system B is given by the typing rules in Figure 20.

(ax)
5 oz:(hin-nT) bz T
Ef‘tliA}_ E"tg:Ag E}'“fA,J
A (V)
2 F (tl,tz)'.Al /\Az Z + O‘i(t):Al\’Ag
¥, z: A b ¢l : Lk p:A Sk og:At
— ) — (cut)
Yk Aze: A DF{p#ag:L

Figure 20. Typing rules of the system B

The symmetry in classical calculi blocks a straightforward adaptation of the tra-
ditional reducibility technique which uses the fact that function types are “higher”
in a natural sense than argument types, permitting semantic definitions to proceed
by induction on types. In this paper we adapt the symmetric candidates technique
to the intersection-types setting. As we can see, this technique applies generally to
all of the symmetric proof-calculi we have investigated, including the X ugi-calculus
of Curien and Herbelin [34, 51], and the Dual calculus of Wadler {151, 152].

The key to the symmetric candidates technique is to interpret types in certain
families of saturated sets which are closed under inverse 3-reduction. The problem
in the intersection types setting arises since in standard semantics of intersection
types, the interpretation of an intersection type (AN B) is the intersection of the
interpretations of 4 and B and in general intersections of salurated sets are not
saturated,

A consequence of this fact is that the standard typing rule for intersection-
introduction is not sound. So our type system has an intersection-elimination rule



202 SILVIA GHILEZAN AND 3ILVIA LIKAVEC

enly. This is not a problem since intersection-introduction is not needed for char-
acterising termination. In the absence of intersection-introduction, terms receive a
type which is an intersection by double-negation elimination.

Theorem (Main result). A A¥™ term is terminating #f and only if it is fypable
mn B

The direction “every terminating term is typable” follows the standard pattern
from traditional A-calculus where the standard intersection-introduction typing rule
is not needed. '

The proof that every typable term is terminating is analogous to the one given
for [51] and [32]. We only briefly account for the differences.

We consider pairs { X, X1} which are stable if for every r € Xy and every e € X,
the command (r * e) is terminating, They are saturated if for each 4, :

whenever Az.c satisfies: Ve € Xy, ¢z 1= €] is terminating, then Az.c € X;_;.

An expression is siraple if it is not a ‘l-abstraction; a set X is simple if each term
in X is simple.
We define the map @ : 24 — 24 by

&(X) = {e| e is of the form Az.c and ¥r &€ X,c[x ;= r] is terminating}

{e| e is simple and ¥r € X, (r * ¢) is terminating}.

If X # @ then #(X) is a set of terminating terms and if X C SN then all
variables are in ®(X). & is antimonotone, hence (& ¢ ®) = $? is monotone and has
a complete lattice of fixed points, ordered by set inclusion.

If X is a simple set of terminating terms we denote by X7 the least fixed point
of ®? with the property that X € X7. Furthermore, let Fixge be the set of fixed
points of the operator 2. If Ry,..., Ry are fixed points of ®2, let (B} A ... A Ry)
denote the meet of these elements in the lattice Fixge.

Interpretation of types For each type T" we define the set [T as follows.

(1) When T is L then [T] is the set of terminating terms.
(2) When T is a type variable we set R to be the set of term variables, then
construct the pair (RY, ®(RT). We then take [T] to be R and [T+] to be
S(R").
(3) Suppose T'is (A1 A Az). Set Rio be {{#1,t2) |t € [Ai], 1= 1,2}. We then
take [7] to be (RT) and [T1] = [A;~ V Ag*] to be $(RY).
(4) When 7' is (A1 MAz - -NAp), n =2, wetake [T] to be ([A1] A... A[4:))
and then take [T+] to be &([T]).
Note that the interpretation JA4; v A2] of a disjunction-type is determined in part 3
above since any type B V Bs is the Dual of Bt A Bt

We prove the following, which is the key for proving the Type soundnes.

(1) [T] is & set of terminating terms.

(2) (414 Az 2 {1, t0) | € [A], ¢ = 1,2},

(3) 42 v 4] 2 {oa(s) | p € LA} U {o2() | p € [4al}.

{4) (Mz.c) € [A] if for all e € [AL] we have ¢z := €] terminates.



COMPUTATIONAL INTERPRETATIONS OF LOGICS 203

(3) [(Arrv---nA] € ([A] - [Ag]D.
Since each [T consists of terminating expressions the following theorem implies
that all typable expressions are terminating.

Theorem (Type soundress). If expression ¢ is typable with type T then t € [T7.

11. Application in programming language theory

11.1. Functional languages. )-calculus The basic concept of programming lan-
guages is the concept of a function, more precisely of intensional (or computational)
function considered as a composition of computational steps, i.e., as algorithms {or
methods). A universal model of computational functions is Church’s A-calculus [27].
A-calculus as a simple language is very convenient to describe the semantics of pro-
gramming languages (it is even used as a core for the languages Lisp, Algol, Scheme,
ML, Haskell, etc).

The M-calculus exists in basically two main flavours: call-by-name {of which
Haskel! implements the call-by-need variant) and call-by-value {as in Scheme, ML,
C, Java, etc). Call-by-name has been extensively studied (see e.g., Barendregt [10],
Krivine [105]) and call-by-value reasonably well too.

Classical A-calculus. The Ag-calculus is an extension of A-calculus with an oper-
ator similar to the call-cc operator that can be found in Scheme and ML. Tt also
models weaker operators, such as break and return in C and Javs.

The Ap-calculus is the prototypical formulation of a classical A-calculus. As A-
calculus, Au-calculus exists in call-by-name and call-by-value variants, the latter
being a rather intricate structure to study {62, 133].

The Apfi-calculus [34] is an improvement over Au-calculus. It is an elegant
calculus that exhibits different forms of symmetries. One of them is a symmetry
between call-by-name and call-by-value which allows to significantly reduce the
syntactic complexity of the call-by-value calculus compared to Ap-calculus.

Call-by-value and call-by-name delimited continuation. Historically, delim-
ited control came with ad hoc operators for composing continuations: Felleisen [61]
had a calculus that included a control operator control a delimiter prompt (de-
noted by F and #, respectively); Danvy and Filingki {36] had an operator shift
to compose continuations and an operator reset to delimit them (these were also
written S and < _ >). Contro! operators are connected to classical logic, as first
investigated by Griffin [94].

From {66], it is known that shift and reset are equivalent to the combination
of Scheme’s call-cc, Felleisen's abort and reset, and hence equivalent to C and
reset. From (28], it is known that control and prompt are also equivalent to shift
and reset, in spite that control is semantically more complex to study than € or
shift. The simplicity of the semantics of shift together with its relevance for
some programming applications contributed to set shift as a reference in delimited
control. And this is so in spite (it seems that) it has never been studied unti) now
as part of a dedicated A-calculus of delimited control.



204 SILVIA GHILEZAN AND SILVIA LIKAVEC

As shown by Ariola et al. [4], a fine-grained Autp-caleulus of delimited control
of the strength of shift and reset is obiained if one starts from Ap-calculus and
extends it first by a notation tp for the “toplevel” continuation, then by a toplevel
delimiter. A possible interpretation for this toplevel delimiter is as a dynamic
binder of tp, what justifies to interpret the resulting call-by-value calculus, called
as an extension of call-by-value Ap-calculus with a single dynamically bound con-
tinuation variable tp, where the hat on tp emphasises the dynamic treatment of the
variable. A typical analogy for the dynamic continuation variable here is exception
handling: each call to ip is dynamically bound to the closest surrounding tp binder,
in exactly the same way as a raised exception is dynamically bound to the closest
surrounding handler. The expressiveness of this calculus was shown by simulating
the operational semantics of shift and reset and of most standard control op-
erators, such as F and A (abort) of Felleisen’s, call/cc (the implementation of
call~cc in Scheme).

sM 2 g [fp)(M Az.ufp.[o]z)
<M> & utptplM
AM & [tplM
C (Mk.M) % po [Ep){M Az pi- o] x)

call/cc (Ak.M) o fou| (M Az.p. o))

Herbelin and Ghilezan [98] proposed an approach to call-by-name delimited control.
They devised a call-by-name variant of Aufp, for Ariola et al’s call-by-value calculus
of delimited control [4].

Continuation-passing-style semantics is given by a CPS transformation of the
Aufp into M-calculus.

z* L2 g

(Ax MY & Az, k).M*k
EMN)): % i!}:M:(N*,}c)
&X.C = {£
(M) & Mok,
(utpc)” & ¢

([fp)M)" & M~

FIGURE 21. Call-by-pame CPS translation of Aufp

We present the behaviour of cail-by-name Autp on standard examples that nses
delimited control. We consider the example of list traversal that is used to empha-
sise the differences between Felleisen’s operator F and shift. We extend Autp with
a Axpoint operator, list constructors and a list destructor:

MN = | M|[]|M:N
| if M is ziy then M else M



COMPUTATIONAL INTERPRETATIONS OF LOGICS 205

and we extend call-by-name reduction with the rules

vy M - Mz = . M)
if [] is z:y then My else M) — M
if MuN is ziy then Mo else My —  Ma[x := My := Nj

if pocis roy then Mo else My —

peclo = o] (if O is zuy then My else M )]

In informal ML syntax, the example is the following

let traverse 1

| -1

= let rec¢ visit 1 = match 1 with

| a::1? ~> visit (shift (fun k -> a :: k 1))

in reset (visit 1) in traverse [1;2;3]

Translated into Ag, it gives

v (nyungungn(])

where v is v;.(ALif { is azl’ then f (po.as[a]l’) else []). Translated into Aufp, v

18

ve.(Aif Lis a:l then f (uo[fplautp.[a]l’) else {)).
Let ¢ be an arbitrary continuation distinct from tp. We write I; for ng:: .. sngs[).
We list the steps of the reduction of |e]{v {; ):

[e]v &

— [e](Mlif lis aul then v (poca:[all’) else [N Ik
— [eif &y is a:l then v (uavai[a]l’) else {])
— [e]v (panyaliz)

—» if

™
]

Otherwise said,

(permz|e)ls) is anl’ then v {pa.as[a)l’) edse ||

le]par.nyz[o]{if ly is axl’ then v (peas(a]l’) else [))
el (if lp is anl’ then v (po.a[afl’) else |])

=l (v {(peeng:[ofis))

zle](pemg:lel(v 13))

gfe] (v is)

rngnfe] (poeng:al(v []))

Ifigiingll|€
rigting el

HOICH)
[

the list traversal program coples its argument and shifts ifs

continuation to the tail of the list.

11.2. Ohject-oriented languages. The aim of the following works was to give the

basis for designing

a calculus that combines class-based features with object-based

ones. We propose twa extensions of the “Core Calculus of Classes and Mixing”
of [22], one with higher-order, composable mixins, the second one with incomplete

objects.
Mixins [24] are

subclass definitions parameterised over a superclass and were

introduced as an alternative to some forms of multiple inheritance. A mixin can



206 SILVIA GHILEZAN AND SILVIA LIKAVEC

be seen as a function that, given one class as an argument, produces a subclass, by
adding and/or overriding certain sets of methods.

The calculus proposed in Bettini et al. [13, 14] extends the core caloulus of classes
and mixins of {22] with higher-order mixins. In this extension a mixin can: (i) be
applied to a class to create a fully-fledged subclass; (i} be composed with another
mixin to obtain yet another mixin with more functionalities. In what we believe is
quite a general framework, we give directions for designing a programming language
equipped with higher-order mixins, although our study is not based on any actual
object-oriented language.

In the calculus proposed in Bettini et al. [18, 17, 16, 15] we extend the core
calculus of classes and mixins of [22] with incomplete objects. In addition to stan-
dard class instantiation, it is also possible to instantiate mizins thus obtaining
incomplete objects.

Incomplete objects can be completed in two ways: (£) via method addition,

(it) via object composition, that composes an incomplete object with a complete
one that contains all the required methods. When a method is added, it becomes an
effective component of the host object, meaning that the methods of the host object
may invoke it, but also the new added method can use any of its sibling methods. |
The type system ensures that all method additions and object compositions are
type safe and that only “complete” methods are invoked on objects. This way the
type information at the mixin level is fully exploited, obtaining a “tamed” and safe
object-based calculus.

The metatheory of both extensions is studied in Likavec [110]. In particular, the
soundness property is proved, to guarantee the absence of run-time "message-not-
understood” errors.

In addition, in [18] the calculus is endowed with width subtyping on complete ob-
jects, which provides enhanced flexibility while avoiding possible conflicts between
method names.

Part 3 — Related work

Related work on computational interpretation of logic. The Au-caiculus of
Parigot [121] embodies a Curry-Howard correspondence for classical natural deduc-
tion. Tt was introduced in call-by-name style, followed by a call-by-value variant,
proposed by Ong and Stewart {120}

Herbelin [96] proposed the first “sequent” A-calculus, named X, for which bi-
jective correspandence between normal simply typed terms and cut-free proofs of
the appropriate restriction of the Gentzen’s LJ was obtained. He considered a
A-calculus with an explicit operator of substitution and substitution propagation
rules. Fach cut-elimination step corresponds to G-reduction, a substitution propa-
gation or concatenation. However, this bijection failed to extend to sequent calculus
with cuts.



COMPUTATIONAL INTERPRETATIONS OF LOGICS 207

After that, intuicionistic sequent A-caleuli were proposed by several authors,
Barendregt and Ghilezan [12], Dyckhoff and Pinto [55], Espirito Santo and Pinto [60],
among others.

The Apji-calculus of Curien and Herbelin [34] provides a symmetric computa-
tional interpretation of classical sequent style logic. Expressions in Aufi represent
derivations in the sequent calculus proof system and reduction reflects the process
of cut-elimination. This calculus provides an environment for a more fine-grained
analysis of calculations within languages with control operaters. Since its intro-
duction, Curien and Herbelin's calculus has had a strong influence on the further
understanding between calculi with control operators and classical logic (see for
example [3, 2, 151, 152]).

In the calculus of Urban and Bierman (147, 148] derivations correspond exactly
to cut elimination.

This calculus inspired Lengrand’s A€ in [107] and further led to the development
of X calculus of van Bakel et al. [5], and van Bakel and Lescanne [150]. In this work,
a calculus which interprets directly the implicational sequent logic is proposed as a
language in which many kinds of other calculi can be implemented, from A-calculus
to Aui through a caleulus of explicit substitution and Au.

Wadler's dual calculus [151, 152] corresponds te Gentzen’s classical sequent cal-
culus. Conjunction, disjunction, and negation are primitive, whereas implication is
defined in terms of the other connectives.

One of the most recently proposed systems is -calculus, developed by Espirito
Santo [56], whose simply typed version corresponds to the sequent calculus for
intuicionistic implicational logic.

Prior to Curien and Herbelin's Auji [34) several term-assignment systems for
sequent calculus were proposed as a tool for studying the process of cut-elimination
[126, 12, 147). In these systems—with the exception of the one in [147]—expressicns
do not unambiguously encode sequent derivations.

The Symmetric Lambda Calculus of Barbanera and Berardi 6], although not
based on sequent calculus, belongs in the tradition of exploiting the symmetries
found in c¢lassical logic, in their case with the goal of extracting constructive content
from classical proofs.

)\Gtz

Related work on strong normalisation. Barbanera and Berardi [6] praved SN for
their calculus using a “symmetric candidates” techrique; Urban and Bierman [147]
adapted their technique to prove SN for their sequent-based system. Lengrand [107)
shows how simply-typed Auf and the caleulus of Urban and Bierman [147] are
mutually interpretable, so that the strong normalisation proof of the latter calculus
yields another proof of strong normalisation for simply-typed Aufi. Polonovski [125]
presents a proof of SN for Auf with explicit substitutions using the symmetric
candidates idea of Barbanera and Berardi [6]. Pym and Ritter [129] identify two
forms of disjunction for Parigot’s Au-calculus [121]; they prove strong normalisation
for Auv-calculus (Au-calculus extended with such digjunction). David and Nour [37)
give an arithmetical proof of strong normalisation for a symmetric Au-calculus.



208 SILVIA GHILEZAN AND SILVIA LIKAVEC

The larger context of related research includes a wealth of work in logic and
programming languages. In the 1980°s and early 1990°s Reynolds explored the
role that intersection types can play in a practical programming language (see for
example the report [131] on the language Forsythe).

Related work on continuation semantics. Continuation-passing-style (cps) trans-
lations were introduced by Fischer and Reynolds in [67] and [130] for the call-by-
value A-calculus, whereas a call-by-name variant was introduced by Plotkin in [124].
Moggi gave a semantic version of a call-by-value cps translation in his study of no-
tions of computation in [117]. Lalont {106] introduced a cps translation of the
call-by-name AC-calculus [63, 64] to a fragment of M-calculus that corresponds to
the —, A-fragment of the intuitionistic logic. Hence, continuation semantics can be
seen as a generalization of the double negation rule from logic, in a sense that cps
translaticn 1s a transformation on terms which, when chserved on types, corre-
sponds to a double negation translation.

As early as 1989 Filinsky [65] explored the notion that the reduction strategies
call-by-value and call-by-name could be dual to each cther in the presence of contin-
uations. Filinski defined a symmetric A-calculus in which values and continuations
comprised distinct syntactic sorts and whose denotational semantics expressed the
call-by-name vs call-by-value duality in a precise categorical sense. !

Categorical semantics for both, call-by-name and call-by-value versions of Par-
igot’s Au-calculus [121] with disjunction types was given by Selinger in [137]. In
this work the notion of control category is formally introduced and formalised as
an extension of cartesian closed category with premonoidal structure. It is showed
that the call-by-name Au-calculus forms an internal language for control categories,
whereas the call-by-value Ap-calculus forms an internal language for co-control
categories. The opposite of the call-by-name model is shown to be equivalent to
the call-by-value model in the presence of product and disjunction types. Hofmann
and Streicher presented categorical continuation madels for the call-by-name Ap-
calculus in [100] and showed the completeness.

Lengrand gave categorical semantics of the typed Aufi-calculus and the M-
caleulus (implicational fragment of the classical sequent calculus LK} in [107].

Ong [119] defined a class of categorical models for the call-by-name Ap-calculus
based on fibrations. This mode! was later extended for two forms of disjunction by
Pym and Ritter in [129].

References

[1] R.M. Amadio and P.-L. Curien, Domains and lambda-celeuli, Cambridge University Press,
Cambridge, 1998.

(2] Z.M. Ariola, H. Herbelin, and A. Sabry, A #ype-theoretic foundation of continuations and
promapts; in: Proc. 9th Internat. Conf. on Funciionael Programming ICFFP ‘04, pp 40-53,
2004.

[3] Z.M. Ariola and H. Herbelin, Minimel classical logic and control operatars; in: Proc. Annual

I'nternat. Colloquium on Automata, Languages and Programming ICALP 03, Lect. Notes

Comput. Sci. 2719, Springer-Verlag, 2003, pp. 871~885.

Z.M. Ariola, H. Herbelin, and A. Sabry, A type-theoretic foundation of delimited continu-

ations, High.-Order Symb. Comput. 2007, to appear.

(4



(5]

(6]
(7]
(8]
@l

{10]
(1i]
(12]

13)

{14]

23]

(16}

(7]
(18]

(19]

(20]

21]

(22]

(23]
(24]

(25]

COMPUTATIONAL INTERPRETATIONS OF LOGICS 209

S. v. Bakel, S. Lengrand, and P. Lescanne, The language X: circuits, computations and
classical logic; in: Proc. 9th Italion Conf. on Theoretical Computer Science JCTCS 05,
Lect. Notes Comput. Sci. 3701, Springer-Verlag, 2005, pp. 81-96.

F. Barbanera and S. Berardi, A symmetric lambda calculus for classical program extraction,
Inf. Comput. 125(2):103-117, 1994.

F. Barbanera, M. Dezani-Ciancaglini, snd U. de’ Ligucro, ntersecition and union types:
syntex end semantics, Inf. Comput. 119(2):202-230, 1995. ‘

I, Barbanera, M. Dezani-Ciancaglini, and U. de'Liguoro, Intersection and union types:
Syntex and semantics, Inf. Comput. 119(2):202-230, 1985.

H.P. Barendregt, Lambde calculi with types; im: 5. Abramsky, D. Gabbay, and T. Maibaum,
editors, Handbook of Logic in Computer Science, pp. 117-309 Oxford University Press,
Oxford, 1992.

H.P. Barendregt, The Lambda Cealculus: its Syntex and Semantics, revised edition, North-
Holland, Amsterdam, 1984.

H. P. Barendregt, M. Coppo, and M. Dezani-Ciancaglini, A filier lambda model and the
completeness of type assignment, J. Symb. Log. 48(4):931-840 (1984), 1983.

H. P. Barendregt and S. Ghilezan, Lambda terms for natural deduction, seguent calculus
and cuf-eliminetion, J. Funct. Program. 10{1}:121-134, 2000.

L. Bettini, V. Bono, and S. Likavec, A core caleulus of higher-order mirins and classes; in:
Proc. Workshop Types for Proofs and Programs TYPES 03 (Selected Papers}, Lect. Notes
Cormput. Sci. 3085, pp. 83-98, Springer-Verlag, 2004.

L. Bettini, V. Bono, and S. Likavec, A Core Calculus of Higher-Order Mizins and Classes;
in: Proc. 189th Annuael ACM Symposium on Applied Comguting, SAC 04, pp. 15081509
ACM Press, 2004.

L. Bettini, V. Bono, and S. Likavec, A core celculus of mizin-based incomplete objects; in:
Proc. 11th Internationel Workshop on Foundations of Object-Oriented Languages, FOOL
04, pp. 2941, 2004,

L. Bettini, V. Bono, and S. Likavec, A core calculus of mizins and incomplete objects;
in: Proc. Coenf. on Objeci-Oriented Programaning Systems, Langueges, and Applications
GOPSLA 04, pp. 208-209, ACM Press, 2004.

L. Bettini, V. Bono, and 8. Likavec, Safe and Flexible Objects; in: FProc. 20th Annual ACM
Sympasium on Applied Computing SAC '05, pp. 1258-1263, ACM Press, 2005.

L. Bettini, V. Bono, and S. Likavec, Safe and Flexible Objects with Sublyping, J. Object
Technelogy 4{10}, 2005, Special Issue on “The 20th ACM SAC - March 2005”.

G. M. Bierman, A computaltenal interpretation of the Ap-calewlus; in: Proc. Symp. en
Mathematical Foundations of Computer Science MFCS '98, Lect. Notes Comput. Sci. 1450,
pp. 336-345 Springer-Verlag, 1998,

C. Bdhm, Alcune proprete delle forme 8 — n-normali nel A — k-calcole, Publ. Inst. Appl.
Calc. 696:1~15, 1968.

C. Bdhm and M. Dezani-Ciancaglini, A-terms as total or partial functions on normal forms,
n: A-celculus and Computer Science Theory, Lect. Notes Comput. Sci. 37, pp. %6-121,
Springer-Verlag 1975.

V. Bono, A. Patel, and V. Shmatikov, A core colculus of classes and mizins, in: Proc
Eurep. Conf. on Object-Oriented Progremming ECOOP ’99, Lect. Notes Comput. Sci. 1628,
pp. 43-66. Springer-Verlag, 1899.

V. Bono, B. Venneri, and L. Bettini, A typed lambda calculus with intersection types, Theor.
Corpput. Sci. 398(1-3}:95-113, 2008.

G. Bracha and W. Cook, Mizin-based inherifance, in: Proc. Conf. on Objeci-Oriented
Programmang Systems, Languages, and Applications OOPSLA 90, pp. 303-311, 1990.
C.-c. Shan, Shift to control, in: Proc. 5th Workshop on Scheme and Functional Program-
ming, pp. 99-107, 2004.



210

(28]

[27]
28]
[29]
130]

(31)

(32

(33)
(34]
(33)
[36)

(37

(38}

{29)

{40)

(41]

{42}

43)

{44)
48]

46)

[47)

SILVIA GHILEZAN AND SILVIA LIKAVEC

3. Carlier and J. B. Wells, Type inference with expension variables and interseclion types in
system £ and an ezact correspondence with bete-reduction, in: Proc, 6th Conf. on Principles
and Practice of Declarative Programming PPDP 04, pp. 132-143, ACM, 2004.

A. Church, A set of postulates for the foundefion of logic, Ann. Math. T1.33:346-366, 1932.
A. Church, A formulation of the simple theory of types, J. Symb. Log. 5:56-68, 1940.

M. Coppe and M. Dezani-Ciancaglini, A new type-assignment for lambda terms, Archiv
Math. Logik 19:139-156, 1978.

M. Coppo and M. Dezani-Ciancaglini, An extension of the basic funclionality theory for the
A-calculus, Notre Dame J. Formal Logic 21{4):685-693, 1980.

M. Coppo, M. Dezani-Ciancaglini, and B. Venneri, Principal type schemes and A-calculus
semantics; in; J.P. Seldin and J.R. Hindley, editors, To H. B. Curry: Essays on Com-
binatory Logic, Lambda Calculus and Formalism, pp. 535-560, Academic Press, London,
1980.

P.-L. Curien, Abstract machines, contrel, and sequents, in: Applied Sementics, Interna-
tional Summer School, APPSEM 2060, Advanced Lectures, Lect. Notes Comput. Sci. 2395,
pp. 123-136, Springer-Verlag, 2002.

P.-L. Curien, Symmetry and inleractivity in programming, Bull. Symb. Log. 9(2):169-180,
2003.

P.-L. Curien and H. Herbelin, The duality of computation; in: Proc. 5th Internat. Conf. on
Functional Programming, ICFP’00, pp. 233-243, Montreal, Canada, 2000; ACM Press.
H.B. Curry, J.R. Hindley, and J. P. Seldin, Combinatory Logic, volume II, North-Holland,
Amsterdam, 1972.

<. Danvy and A. Filinski, A functional absiraction of typed contexts, Technical Report
89/12, DIKU, University of Copenhagen, Copenhagen, Denmark, Aug. 1989.

R. David and K. Nour, Arithmetical proofs of strong normalization results for the symmetiric
Ape-celeulus; in: Proc. Typed Lambde Coleulus and Application, TLCA ‘05, Lect. Notes
Comput. Sci. 3461, pp. 162-178, Springer-Verlag, 2005.

R. David and W. Py, Lambda-mu-celculus and Bdhm’s theorem, J. Symb. Log. 66(1):407-
413, 2001.

P. de Groote, A CPS-translation of the Ap-calcwlus, in: Proc. Colloguium on Trees in
Algebra and Programming, CAAP 94, Lect. Notes Comput. Sci. 787, pp. 85-99, Springer-
Verlag, 1994.

P. de Groote, On the relation between the Ap-caleulus and the syntactic theory of sequential
control; in: Proc. fnternat. Conf. on Logic Pregramming end Automated Reasoning, LPAR
94, Lect. Notes Comput. Sci. 822, pp. 31-43, Springer- Verlag, 1894.

M. Dezani-Ciancaglini and S. Ghilezan, A lambde model characterizing computational be-
haviours of terms, in: Proc. Internat. Workshop on Rewriting in Proof and Computation
RPC 01, pp. 100-119, 2001,

M. Dezani-Ciancaglini and S. Ghilezan, A behavioural lambda model, Schedae Informaticae
Universitas lagelenica, 12:35-47, 2003,

M. Dezani-Ciancaglini and S. Ghilezan, Two behavioural lambda models; in: Proc. Workshop
Types for Proofs and Programs TYFES 02, Lect. Notes Comput. Sci. 2646, pp. 127-147,
Springer-Verlag, 2003.

M. Dezani-Ciancaglini, S. Ghilezan, and S, Likavec, Behavioural inverse limit models, Theor.
Comput. Sei. 316(1-3):49-74, 2004.

M. Dezani-Ciancaglini, S. Ghilezan, and B. Venneri, The “relevence” of intersection and
unton types, Notre Dame J. Formal Logic, 38(2):246-269, 1997.

M. Dezani-Ciancaglini and E. Giovannetti, From Bohm teorem to observational equivalence:
an informel account; ini Proc. Béhm theorem: applications to Computer Science Theory ~
BOTH '01, Electr. Notes Thecr. Comput. Sci. 50{2), 2001.

M. Dezani-Ciancaglini, F. Honsell, and Y. Motohama, Compositional characterization of
A-terms using intersection types; in: Proc. Mathematical Foundotions of Computer Scrence
MFCS 00, Lect, Notes Comput. Sci. 1893, pp. 304-314, Springer-Verlag, 2000.



48]

{49)

[50]

[51)

{52}

(53]

54]

[55]

(58]

[57]

(58]

[59

i60

{61

(62)
[63)
(64]
(65]
[66]

(67}

COMPUTATICNAL INTERPRETATIONS OF LOGICS 211

D. Dougherty, 5. Ghilezan, and P. Lescanne, Characterizing strong normalization in a lan-
gquege with control operators; in: Proc. 6th Conf. on Principles and FPractice of Declorative
Programmang PPDP 04, pp. 155-166, ACM Press, 2004.

D. Dougherty, S. Ghilezan, and P. Lescanne, Intersection and union types in the Aufi-
calculus; in: Proc. Workshop on Intersection Types and Related Systems ITRS '04, Electr.
Notes Theor. Comput. Sci. 136:153-172, 2005.

D. Dougherty, S. Ghilezan, and P. Lescanne, A general technique for anclyzing termination
in symmetric proof calculi; in: FProc. 9th Internat. Workshop on Termination WST 07,
2007,

D. Dougherty, S. Ghilezan, and P. Lescanne, Characterizing strong normalization in the
Curien-Herbelin symmetric lambda calculus: extending the Coppo-Dezani heritege; Theor.
Comput. Sci. 398:114~128, 2008.

D. Dougherty, S. Ghilezan, P. Lescanne, and S. Likavec, Strong normalization of the dual
classical sequent calculus; in: Proc. 12th Internat. Conf. on Logic for Programming, Artif.
Intell., and Reasoning LPAR ’05, Lect. Notes Comput. Sci. 3835, pp. 168-183 Springer-
Verlag, 2005.

K. Dosen and Z. Petrié, The typed Béhm teorem; in: Proc. Bohm theorem: applications
to Computer Science Theory — BOTH 01, Elecir. Notes Theor. Comput. Sci. 50(2), p.13,
2001.

J. Dunfield and F. Pfenning, Type assignment for intersections and unions in call-by-velue
languoges; in: Proc. 6th Internat. Conf. on Foundations of Sofiware Science and Computo-
tion Structures FOSSACS '03, Lect. Notes Comput. Sci. 2620, pp. 250-266, Springer-Verlag,
2003.

R. Dyckhoff and L. Pinto, Cut-elimination and o permutation-free sequent calculus for
intuitionistic logic, Studia Logica 60(1):107-118, 1998.

J. Espirito Santo, Completing Herbelin's programme; in: Proc. Conf. on Typed Lambda
Calculus and Applications TLCA '07, Lect. Notes Comput. Sci. 4583, pp. 118-132, Springer-
Verlag, 2007.

J. Espirite Santo, 8. Ghilezan, and J. Iveti¢, Characterising strongly normalising intuitiondis-
tic sequent terms, in: Proc. Workshop Types for Proofs and Progrems TYPES 07 (Selected
FPapers), Lect. Notes Comput. Sci. 4941, pp. 85-99 Springer-Verlag, 2007,

J. Espirito Santo, J. Iveti¢, and 8. Likavec, /nterseciion lype assignment systems for in-
tuitionisiic sequent calculus, in: Workshop on Inferseciion Types and Related Systems
{TR508, 2008.

. Espirito Santo, J. Ivetié, and S, Likavec, Characterising strongly normalising intuitionistic
ferms, submitted to Fundamenta Informaitcae.

J. Espirito Santo and L. Pinto, Permutative conversions in intuitionistic multiary sequent
calculi with cuts; in: Proc. Conf. on Typed Lambde Cealculus and Applications TLCA 03,
Lect. Notes Comput. 5¢i.2071, pp. 286-300, , Springer-Verlag, 2003.

M. Felleisen, The theory and practice of first-class prompis, in: Proc. 15th ACM Symp. on
Principles of Programming Longuages POPL 88, pp. 180-190. ACM, 1988.

M. Felleisen, D. P. Friedman, E. Kohlbecker, and B. F. Duba, Reasoning with continuations,
in: Proc. 1st Symposium en Logic tn Computer Science LICS °86, pp. 131-141, 1986.

M. Felleisen, D. P. Friedman, E. Kohlbecker, and B. F. Duba, A syntactic theory of sequential
control, Theor. Comput. Sci. 52(3):205-237, 1987.

M. Felleisen and R.. Hieb, The revised report on the syniactic theories of sequeniial control
and state, Theor. Comput. Sci., 103{2):235-271, 1992, *

A. Filinski, Declarative continuations and calegorical duclily, Master’s thesis, DIKU, Com-
puter Science Department, University of Copenhagen, 1989, DIKU Rapport 89/11.

A. Filinski, Representing monads, in: Proc. 21st ACM Symp. on Principles of Programming
Languages, FOPL’94, pp. 446-457 ACM, 1994,

M. Fischer, Lambda calculus schemata, in: Proc. ACM Conf. on Proving Assertions About
Programs 72, pp. 104~1090 ACM Press, 1972.



212

58]

(74]
9
[76)
(7]
(78]
[79]
180]
[81;

82)

[83)

84]

(85]

(e8]

(87}

(88]

(89}

(90]

SILVIA GHILEZAN AND SILVIA LIKAVEC

G. Frege, Begriffsschrift, o formula longuage, modeled upon that of arithmetic, for pure
thought, Halle, 1879; reprinted in Jan van Heijenoort, editor, From Frege to (odel, A
Sourcebook in Mathematical Logic, 1879-1931, Harvard University Press, 1967.

J.H. Gallier, Typing untyped A-terms, or reducibility strikes again!, Ann. Pure Appl. Logic

91:231-270, 1998.

J.H. Gallier, Constructive logics part i A tutorial on proof systems and typed lambda-
calculi, Theor. Comput. Sei. 110(2}:249-339, 1993.

G. Gentzen, Unterschungen tber das logische Schiiessen, Math Z. 39 (1935), 176-219; in:

M. Szabo, editor, Collected popers of Gerhard Gentzen, pp. 68-131, North-Holland, 1969,

3. Ghilezan, Inhebitation in intersection and union type assignment systems, J. Log. Com-

put. 3{6):671-685, 1593.

5. Ghilezan, Application of lyped lambda calculi in the untyped lombda colewlus, in: Proc.

Logical Foundations of Computer Science LFCS "G4, Lect. Notes Comput. Sci. 813, pp. 129~

139, 1994.

S. Ghilezan, Generalized finitness of developments in typed lambda caleuli, J. Autom. Lang.

Comb., 1{4):247-258, 1996.

S. Ghilezan, Strong nermalization and typebility with intersection types, Notre Dame J.

Formal Logic 37(1):44-52, 1996.

S. Ghilezan, Cuf elimination in the simply typed lambda caleulus, in: Proc. Ist Panhellenic

Logic Symp. PLS *87, pp. 21-24, 1997,

S. Ghilezan, Natural deduction and sequent lyped lambdae calculus, Novi Sad J. Math. 25:209-

220, 1999,

S. Ghilezan, Topolagies in lambda calculus, in: Proc. 2nd Panhellenic Logic Symp. PLS 89,
pp. 102-105, 1999.

3. Ghilezan, fniersection iypes and topologies and lambda calculus, in: [CALP Satellite
Workskops, pp. 303-304, 2000.

S. Ghilezan, Full intersection types and iopologies in lembda caleulus, J. Comput. Sys. Sci.

62(1):1-14, 2001.

S. Ghilezan, Types and confluence in lambda caleulus, in: Proc. 3rd Panhellenic Logic Symp.

PLS 01, 2001.

S. Ghilezan, Terms for natural deduction, sequent caleulus and cut elirmination n clossical

logic; in: Reflections on Type Theory, Lambda Calculus, and the Mind — Essays Dedicated

to Henk Barendregt on the Occasion of his 60th Birthday, 2007.

5. Ghilezan and J. Ivetié, Intersection types for A8 calculus, Publ. Inst. Math., Nouv. Sér.

82{96):85-91, 2007.

S. Ghilezan and V. Kunéak, Confluence of untyped lambda calculus via simple types, in:

Proc. Ttalian Conf. on Theoretical Computer Science JCTCS *01, Lect. Notes Comput. Sci.

2202, pp. 3849, , Springer-Verlag, 2001.

S. Ghilezan and V. Kunéak, Reducibility method in simply typed lambda calculus, Novi Sad

J. Math. 31;27-32, 2001.

S. Ghilezan, V. Kuné¢ak, and S. Likavec, Reducibility method for termination properties of

typed lambda terms, in: Proc. 5th Internat. Workshop on Termination WST ‘01, pp. 14-16,

2001.

3. Ghilezan and P. Lescanne, Classical proofs, typed processes and intersection types, in:

Proc. Workshop Types for Proofs and Programs TYPES ‘03 (Selecied Popers}), Lect. Notes

Comput. Sci. 3085, pp. 226-241, Springer-Verlag, 2004.

S. Ghilezan and S. Likavec, Reducibility: A Ubiguitous Method in Lambde Calculus with

Intersection Types, in: Proc. Warkshop on Infersection Types and Related Systems [TRS
‘02, Electr. Notes Theor. Comput. Sci. 70, 2003,

5. Ghilezan and 8. Likavec, Fxtensions of the reducibility method, in: Proc. 4th Panhellenic

Logic Symp. PLS 04, pp. 107-112, 2004.

S. Ghilezan, J. Pantovic, and J, Zunic, Separating Points by Pamltet Hyperptanes — Char-

acterization Problem, IEEE Transactions of Neural Networks 18 {5}, pp. 1356-1363, 2007.



[o1]
[92]

(03]
(04}
[95]
(o8]
97)

08)

[#9]
1100)

(101]
[102]

[103]
[104]
[105]
[106]
1107]
(108}
[109]
[110}
(111
(112]
(113]
f114]
[115}

[116)

COMPUTATIONAL INTERPRETATIONS OF LOGICS 213

S. Ghilezan, J. Pantovic, and J. Zunic, Partitioning Finite d-Dimensional Integer Grids
with Application, in T. Gonzalez, editor, Handbook of Approzimation Algorithms and Meta-
heuristic, pp. 55-1-55-15, Taylor and Fransis Group, USA, 2005.

I-Y. Girard, Une extension de Uinterprétation de Gddel ¢ l'analyse, et son epplication a
Uelimination des coupures dans U'analyse et la théorie des fypes, in: Proc. 2nd Scandinav.
Legic Symp., pp. 63-92. North-Holland, Amsterdam, 1971.

J.-Y. Girard, A new constrcutive logie: classical logic, Math. Struct. Comput. Sei. 1(3):255-
296, 1991,

T. Griffin, A formulae-as-types notion of control, in: Proc. 19th Annual ACM Symp. on
Principles Of Programming Languages, POPL 90, pp. 47-58, ACM Press, 1980.

H. Herbelin, Private communication.

H. Herbelin, A lambdea calculus structure isomorphic to Gentzen-style sequent caleulus struc-
ture, in: Proc. Conf. on Computer Science Logic, CSL ’94, Lect. Notes Comput. Sci. 933,
pp. 61-75, Springer-Verlag, 1995.

H. Herbelin, Séquents qu'on calcule : de Uinterprétation du celcul des séguents comme
calcul de A-termes el comme calcul de stralégies gagnantes, These, Université Paris 7 1995.
H. Herbelin and 8. Ghilezan, An approach to cali-by-name delimited conimnualions, in: Proc.
B5th Annual ACM Symp. on Principles of Programming Languages POPL '08, pp. 383-394,
SIGPLAN Notices 43, ACM Press, 2008.

J. R. Hindley, Coppo—Dezani types do not correspond to propositional logic, Theor. Comput.
Sci. 28(1-2%:235-236, 1984.

M. Hofmann and T. Streicher, Completeness of continuvation models for Ap-calculus, Inf.
Comput. 179(2):332-355, 2002.

W. A. Howard, The formulas-as-types notion of construction, in: J. P. Seldin and J. K. Hind-
ley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formal-
ism, pp. 479490, Academic Press, 1980.

F. Joachimski and R. Matthes, Standardization and confluence for AJ, in: Proc. Rewrii-
ing Techniques and Applications RTA '00, Lect. Notes Comput. Sci. 1833, pp. 141-155,
Springer-Verlag, 2000. .

A.J. Kfoury and J. B. Wells, Principality and type inference for intersection types using
expansion variabies, Theor. Comput. Sci. 312(1-3):1-70, 2004.

G. Koletsos, Church-Rosser theorem for typed functionals, J. Symb. Log. 50:782-790, 1985.
J-L. Krivine, Lambda-calcul types et modéles, Masson, Paris, 1990.

Y. Lafont, Negation versus implication, Draft, 1991,

S. Lengrand, Call-by-value, call-by-name, and strong normalization for the classical sequent
calculus, Electr. Notes Theor. Comput. Sci. 86, Elsevier, 2003,

S. Lengrand, P. Lescanne, D. Dougherty, M. Dezani-Ciancaglini, and S. van Bakel, Inter-
section types for explicit substitutions, Inf. Comput. 186(1):17-42, 2004.

3. Likavec, Reducibility method for A caleulus with intersection types, Master’s thesis, Uni-
versity of Novi Sad, Serbia, 2005.

S. Likavec, Types for object oriented and functional progremming longuages, PhD thesis,
Universita di Torino, Ttaly and ENS Lyon, France, 2005.

S. Likavec and P. Lescanne, On uniyped  Curien-Herbelin calculus, in: Proc. 1st Workshop
on Classical Logic and Computaetion CLaC 06, 2006.

L. Liquori and S. Ronchi Della Rocca, Intersection-types 4 lo church, Inf. Comput.
205(5):1371-1386, 2007.

R. Matthes, Characterizing strongly normalizing terms of a calculus with generalized appli-
calions wia interseclion types, in: JOCALP Satellite Workshops, pp. 339-354, 2000.

G. Mints, Normal forms for sequent derivations, in: P. Odifreddi, editor, Kreiseliona. About
and Around Georg Kreisel, pp. 469492, A K. Peters, Wellesley, 1986.

J. C. Mitchell, Type systems for programming languages, in: J. van Leeuwen, editor, Hand-
book of Theoretical Computer Science, Volume B, pp. 415-431, Elsevier, Amsterdam, 1990.
J. C. Mitchell, Foundation for Pregrammimg Languages, MIT Press, Boston, 1996,



214

[117]
[118]

[119]

(120]

[121]

(122)
[123]
[124]

[125)

[126]
[127]
128
120}
130}
(131)
[132]
[133]

[134]

[135)
[136]
[137]

[138]

[139]

[140]
[141}

SILVIA GHILEZAN AND SILVIA LIKAVEC

E. Moggi, Notions ef computations and monads, Inf. Comput. 93(1), 1991.

C.R. Murthy, Classical proofs as programs: How, what, and why, in: Constructivity in
Computer Science, Lect. Notes Comput. Sci. 613, pp. 71-88, Springer-Verlag, 1991.
C.-H.L. Ong, A semantic view of classical proofs: type-theoretic, categorical, denotational
characterizaiions, in: Proc. 11th IEEE Annual Symp. on Logic in Computer Science LICS
87, pp. 230-241. IEEE Computer Society Press, 1997.

C.-H.L. Ong and C. A. Stewart, A Curry-Howard foundation for functionel computation
with control, in: Proc. 24th ACM Symp. on Principles of Programming Languages POPL
‘97, pp. 215-227, 1997.

M. Parigot, An algorithmic interpretation of classical natural deduction, in: Proc. Internat.
Conf. on Logic Programming and Automated Rensoning, LPAR '92, Lect. Notes Comput.
Sci. 624, pp. 190-201, Springer-Verlag, 1292.

M. Parigot, Proofs of strong normalisation for second order classical natural deduction, J.
Symb. Log. 62(4):1461-1479, 1997.

B.C. Pierce, Programming with intersection types, union types, and polymorphism, Tech-
nical Report CMU-CS-91-108, Carnegie Mellon University, Feb, 1991,

G.D. Plotkin, Cell-by-name, call-by-value and the A-calculus, Theor. Comput. Sci. 1:125—
159, 1975.

E. Polonovski, Strong normalization of Aufi-calewlus with explicit substilutions, in: Proc.
7th Internat. Conf. on Foundations of Sofiware Science and Computation Structures, FOS-
SACS 04, Lect. Notes Comput. Sci. 2987, pp. 423-437, Springer-Verlag, 2004.

G. Pottinger, Normalization es homomorphic image of cut-elimination, Ann. Math. Log.
12:323-357, 1977.

G. IPottinger, A type assignment for the strongly normalizable A-terms, in: J. P. Seldin and
J.R. Hindley, editors, To H. B. Curry: Fssays on Combinatory Logic, Lambda Calculus
and Formaelism, pp. 861-877, Academic Press, London, 1980,

D. Prawitz, Naturel Deduction, Almqvist and Wiksell, 1965.

D. Pym and E. Ritter, On the semantics of classical disjunciion, J. Pure Appl. Algebra
159:315-338, 2001.

J. C. Reynolds, Definitional interpreters for higher-order programring longuages, in: Proc.
ACM Annuel Conf., pp. 717-740, ACM Press, 1972.

J.C. Reynolds, Design of the programming lenguage Forsythe, Report CMU-CS-96-146,
Carnegie Mellon University, Pittsburgh, Pennsylvania, 1996.

K. Rose, Baplicit substitutions: Tutoriel end survey, Technical Report LS-96-3, BRICS,
1996.

A Sabry and M. Felleisen, Reosoning about programs in continuation-passing siyle, Lisp
and Symbelic Computation 6(3-4)/289-360, 1993.

P. Sallé, Une extension de lo théorie des types en lambda-celeul, in: Proc. 5th Internat.
Conf. on Automata, Languages and Programwming [CALP 79, Lect. Notes Comput. Sci.
62, pp. 398410, Springer-Verlag, 1978.

A. Baurin, Seporetion with streams in the Ap-calculus, in: Proc, 20th Annual IEEE Symp.
on Logic in Computer Science LICS '05, pp. 356-365 IEEE Computer Society Press, 2005.
D.S. Scott, Continuous lattices, in: Toposes, Algebraic Geometry and Logic, Lect. Notes
Math. 274, pp. 97-136, Springer-Verlag, 1572,

P. Selinger, Control categories and duality: On the categorical semantics of the lambda-mu
cafcutus, Math. Struct. Comput. Sci. 11(2}:207-280, 2001,

A K. Simpson, Categarical completeness results for simply typed lombde calculus, in: Proc.
Conf. on Typed Lambda Calculus and Applications TLCA 95, Lect. Notes Comput. Sci.
902, pp. 414427, Springer-Verlag, 1995.

M. H. S¢rensen and P. Urzyceyn, Lectures on the Curry-Howard isomorphism, Studies in
Logic and the Foundations of Mathematics, 149. Elsevier, 2006.

R. Statman, Compleleness, invariance and A-definability, J. Symb. Log. 47(1):17-26, 1982.
R. Statman, Logical relations and the typed A-coleulus, Inf. Control 65:85-97, 1985.



1142]
[143]
f144)
[145]
(1486]
(147}
148]
(149)
[150]
(151)

[152]

COMPUTATIONAL INTERPRETATIONS OF LOGICS 215

T. Streicher and B. Reus, Classical logic, continuiaiion semantics end abstract machines,
J. Funct. Program. 8(6):543-572, 1998.

G.J. Sussman and G.L.S. Jr, Scheme: A interpreter for extended lambda calculus, High.-
Order Symb. Comput. 11{4):405-439, 1598.

W. W. Tait, Intensional interpretations of funciionals of finite type I, J. Symb. Log. 32:198—
212, 1967,

W.W. Tait, A reclizability inierpretation of ihe theory of species, in: Logic Colloguium,
Lect. Notes Math, 453, pp. 240-251, Springer-Verlag, 1975.

M. Takahashi, Parallel reduction in A-celewlus, Inf. Comput. 118:120-127, 1895.

C. Urban and G. M. Bierman, Streng normalisation of cut-elimination in clussical logic, in:
Proc. Conf. on Typed Lambda Caleculus and Appiications, TLCA 99, Lect. Notes Comput.
Sei. 1581, pp. 365-380 Springer-Verlag, 1999.

C. Urban and G.M. Bierman, Strong normelisation of cut-elimination in classical logic,
Fund. Inf. 45(1-2):123-155, 2001.

8. van Bakel, Intersection type assignment sysiems, Theor. Comput. Sci. 38(2):246-269,
1997.

S. van Bakel and P. Lescanne, Compulation with classical sequents, Math. Struct. Comput.
Sci- 18(3):5565-609, 2008.

P. Wadler, Call-by-value is dual to call-by-name, in: Proc. 8th Internat. Conf. on Functional
Programming [CFP 08, pp. 188201, 2003.

P. Wadler, Call-by-value is dual to cell-by-name, reloaded; in: Proc. Conf. on Rewriting
Technics end Applications RTA °05, Lect, Notes Comput. Sci. 3467, pp. 185-203, 2005.



	Binder12
	Binder1
	Image (0)
	Image (1)
	Image (2)
	Image (3)
	Image (4)
	Image (5)
	Image (6)
	Image (7)
	Image (8)
	Image (9)

	Image (10)
	Image (11)
	Image (12)
	Image (13)
	Image (14)
	Image (15)
	Image (16)
	Image (17)
	Image (18)
	Image (19)
	Image (20)
	Image (21)
	Image (22)
	Image (23)
	Image (24)
	Image (25)
	Image (26)
	Image (27)
	Image (28)
	Image (29)
	Image (30)
	Image (31)
	Image (32)
	Image (33)
	Image (34)
	Image (35)
	Image (36)
	Image (37)
	Image (38)
	Image (39)
	Image (40)
	Image (41)
	Image (42)
	Image (43)
	Image (44)
	Image (45)
	Image (46)
	Image (47)
	Image (48)
	Image (49)
	Image (50)
	Image (51)
	Image (52)
	Image (53)
	Image (54)
	Image (55)
	Image (56)
	Image (57)
	Image (58)
	Image (59)
	Image (60)
	Image (61)
	Image (62)
	Image (63)
	Image (64)
	Image (65)
	Image (66)
	Image (67)
	Image (68)
	Image (69)
	Image (70)
	Image (71)
	Image (72)
	Image (73)
	Image (74)
	Image (75)
	Image (76)
	Image (77)
	Image (78)
	Image (79)
	Image (80)
	Image (81)
	Image (82)
	Image (83)
	Image (84)
	Image (85)
	Image (86)
	Image (87)
	Image (88)
	Image (89)
	Image (90)
	Image (91)
	Image (92)
	Image (93)
	Image (94)
	Image (95)
	Image (96)
	Image (97)
	Image (98)

	Image (99)
	Image (100)
	Image (101)
	Image (102)
	Image (103)
	Image (104)
	Image (105)
	Image (106)
	Image (107)
	Image (108)
	Image (109)
	Image (110)
	Image (111)
	Image (113)
	Image (114)
	Image (115)
	Image (116)
	Image (117)
	Image (118)
	Image (119)
	Image (120)
	Image (121)
	Image (122)
	Image (123)
	Image (124)
	Image (125)
	Image (126)
	Image (127)
	Image (128)
	Image (129)
	Image (130)
	Image (131)
	Image (132)
	Image (133)
	Image (134)
	Image (135)
	Image (136)
	Image (137)
	Image (138)
	Image (139)
	Image (140)
	Image (141)
	Image (142)
	Image (143)
	Image (144)
	Image (145)
	Image (146)
	Image (147)
	Image (148)
	Image (149)
	Image (150)
	Image (151)
	Image (152)
	Image (153)
	Image (154)
	Image (155)
	Image (156)
	Image (157)
	Image (158)
	Image (159)
	Image (160)
	Image (161)
	Image (162)
	Image (163)
	Image (164)
	Image (165)
	Image (166)
	Image (167)
	Image (168)
	Image (169)
	Image (170)
	Image (171)
	Image (172)
	Image (173)
	Image (174)
	Image (175)
	Image (176)
	Image (177)
	Image (178)
	Image (179)
	Image (180)
	Image (181)
	Image (182)
	Image (183)
	Image (184)
	Image (185)
	Image (186)
	Image (187)
	Image (188)
	Image (189)
	Image (190)
	Image (191)
	Image (192)
	Image (193)
	Image (194)
	Image (195)
	Image (196)
	Image (197)
	Image (198)
	Image (199)
	Image (200)
	Image (201)
	Image (202)
	Image (203)
	Image (204)
	Image (205)
	Image (206)
	Image (207)
	Image (208)
	Image (209)
	Image (210)
	Image (211)
	Image (212)
	Image (213)
	Image (214)
	Image (215)

