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1. Hilbert’s program

With the progress of mathematics some mathematicians have been interested
‘in the development of a formal system which would yield all true mathematical
statements and only them. Special places in these efforts belong to Gottfried
Leibniz (1646-1716) and David Hilbert (1862-1943).

One of Leibniz’ favorite ideas was to build "an alphabet of human thought that
makes it possible to deductively derive new ideas by means of definite rules for
combining symbols”?. This idea is contained in his conception of lingue character-
istice. Leibniz had in mind two aspects of this notion. The first one is associated
with the linguistic idea of creating a universal language, suggested to Leibniz by
the. British philologist George Dalgarno who had tried to realize it?. The other
aspect consists in the requirement of developing a universal language and sym-
bolism which should not be used only for communtcating thoughts between two
men, but also to facilitate the very process of thought. Thus, Leibniz distin-
guished the linguistic and logical aspect of his universal characteristic. If taken
as a logical project, the universal characteristic is a system of rigorously defined
symbols that can be used in logic and other deductive sciences to denote simple
elements of the object under the investigation. Some properties of the symbols are
presupposed. They would have to be brief and not overlapping, and they would
have to include the maximum information. Further, there wouid be an isomorphic

Y Historia et commendatio lingue characlerisiicee universaelis, guae simul ¢11 ars tnveniendiet
judicandi (Oewres, Raspe, 1765).
2Ars signoTum vulgo character universalis ef lingue philosophica, London, 1661.
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correspendence belween symbois and the objects they denole: simple elements
in logical derivations by letters; complex logical considerations by formulas; and
sentences by equations, This would make it possible to obtain all logical conse-
quences that necessarily follow from given hypothesis. Leibniz adopted Descartes
thesis on mathernatics as a universal science and stated it in terms of his logical
studies. So he held that there exists a universal mathematics from which all of
the mathematical sciences pull their principles and most general theorems. This
merges mathematics with logic, and there is no mere formal analogy, nor paralle-
lism between mathematics and logic, but an identaty, or at least a partial identity.
Leibniz not only made logic mathematical but mathematics logical. For example,
ke attempted® to give the concept of number in purely logical definition. However,
his endeavor to include all of mathematics in formal logic failed. Even if we leave
aside technical difficulties and the extreme complexity of the task, this failure in
the light of Godel results on inherent incompleteness of formalized arithmetic to-
day is very comprehbensible. So not all of Leibniz’ logical program resisted the
test of time. In particular the development of the contemporary mathematics and
other sciences showed that the concept of universal characteristic is unrealizabie.
But his attempt at reducing all of meaningful human thought to a finite number
of formal mathematical calculuses, and consequences of this notion such as Leib-
niz’ try to confine all of meaningful mathematics to the narrow frame of formal
logic attracted many mathematicians that came after Leibniz. Probably the most
notable formulation and attempt of this type is Hilbert’s Entscheidungsproblem.

Hilbert had long* been interested in the famous problems of mathematics. He
held that the problems of mathematics can all ultimately be solved, as justifies
his famed sentence ” Wir miissen wissen, wir werden wissen”. Also in 1928, in a
small book with W. Ackerman, he formulated an explicit version of his Entschei-
dungsproblem for a certain specific formal system: the first order predicate cal-
culus. In 1931. just as Hilbert stated that we must know, Godel showed that
Entscheidungsproblem is unsolvable. More explicitly, it could not be solved in a
formal system as for example "Principia Mathematica” of Russel and Whitehead.
A Chuzch’s paper from 1986 did the same for the specific formal system (predi-
cate calculus) used by Hilbert. However, there are opinions that the problem for
a given systern can be solved by means of some other more powerful system. A
result of this type have in fact been obtained by Gerhard Gentzen, an early leader
1n the branch of logic called proof theory.

If we want to understand better how (Godel’s theorems originated we have to
explain the so called Second Hilbert problem: The Compatibility of Arithmetical
Axioms. In the beginning of the statement of the problem Hilbert says® »When

3Specimen calculi universalis.

*at least since 1900 when Hilbert delivered the famous lecture on twenty three mathematical
problems before the Second International Congress of mathematicians at Paris in 1990.

SMathematical problems, D. Hilbert, Gottinger Nachrichten, 1900, pp.253-297, and in the
Archiv der Mathematik und Physik, 3d ser., 1, {1901), and English translation in Bulletin of
AMS, 8, (1902), 437-479.
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we are cngaged in the investigating the foundation of a science, we must set up
a system of axioms which contains an exact and complete descriptlion of the rela-
tions subsisting between elementary ideas of that science.” In the same statement
Hilbert designate the following problem as the most important among the numer-
ous questions which can be asked with the regard to the axioms:®

To prove that they {arithmetical azioms) are not coniradiclory, that is, a finite
number of logical steps based upon them can never lead to conirediclory results.

The notion of the contradiction in the above statemeni had some deeper mean-
ing for Hilbert then a mere impossibility of syntactical derivation of a contradiction
from the system: ”If contradictory attributes be assigned to a concept, I say, that
mathematically the concept does noi exisi. Sc, for example, 2 real number whose
square is —1 does not exist mathematically. But if 1t can be proved that the at-
tributes assigned to the concept can never lead to a contradiction by the application
of a finite number of logical processes, I say that the mathematical existence of the
concept (for example, of a number or a function which satisfies certain conditions)
is thereby proved.” The consistency problem for arithmetic is hard since it is not
quite ¢lear how to approach it. Namely, Hilbert did not expect to prove the con-
sistency of arithmetic by interpreting it into some other theory or by some infinite
structure, but he wished a direct or a finitist proof. This is quite understandable,
as arithmetic 1s the starting point of whole mathematics, so the question of the
consistency of whole mathematics in this sense is reducible to the consistency of
arithmetic. An acceptable way to do it would be, as Hilbert indicated by himself,
to prove that the formulas which represenis the axioms have a ceriain syntactical
property, and that this property is inherited by the formal rules used for obtaining
the theorems of the system. This presupposes a kind of a formalization of arith-
metic. So we need to have a language, effectively” given set of formulas, set of
axioms, inference rules, proofs and other syntactical notions of the system. The
most important formalization of arithmetic is formal Peano aritmetic, or simply
formal arithmefic, formulated as a certain theory in the first order logic. These
ideas guided Hilbert’s further analysis of the problem, during the first decades of
the century, and led to Hilbert’s program. So the main goal of his program 1s to
eliminate the mmfinity from mathematics, or at least to show that it is possible to
establish mathematics without referring to infinity. One could try to find here the
analogy to Welerstrass £ — & analysis which eliminated actual infinitesimals from
the Leibniz analysis. However, we should mention that Hilbert’s intention was not
to prohibit the use of infinity in mathematics, but to justify it. The realization of
the program should have been shown by finitary methods {orming a proper part of

51t should be said that the originel presentation of the second problem had serious ambiguities
in contrast to the most of other problems. This can be explained by the fact that it dealt
with notions that had not been previously analyzed. Sc the axicms that were described in the
statement of the problem are the axioms of the arithmetic of the real continuum, not the positive
integers. Later in the twenties they are referred to as the axitom of formal arithmetic.

"in modern terms recursive.



78

formal arithmetic. Namely, unbounded quantifiers are used in arithmelic, so the
sentences containing them refer 1o potentially infinite domains. Therclore in the
modern reinterpretation of Hilbert’s program the finitist part would be the formal
arithmetic with only bounded quantifiers, or primitive recursive arithinetic. So the
problem of the possibility of reduction of {all) "infinitary” statements to finitary
statements is equivalent to the conservativity® of formal arithmetic with respect
to the primitive recursive arithmetic. The consistency problem is treated in the
same way as the conservativity problem, so the finitary proof of the consistency
of formal arithmetic should be found. As a response to the program, Godel ob-
tained his incompleteness theorems and showed that neither task of the program
is achievable.

The first Godel incompleteness theorem states that there is no (finitist) formal
system which would codify all theorems of intuitive arithmetic (all true staternents
on natural numbers). Namely, for every formal system® which inciudes the formal
system of Peano arithmetic, contains a sentence ¢ so that neither ¢, nor - are
provable in the system. So there is no formal system which would yield all the
true statements on arithmetics!®. It should be also observed that this theorem not
only denies the possibility of complete formalization of mathematics, but also puts
the question mark on the equivalence of the conservativity and the consistency.

The second Godel’s incompleteness theorem states that the consistency of for-
mal system containing formal arithmetic cannot be proved by means of the system
alone. Namely the sentence of the formal systemn which codify the consistency of
the system is unprovable in the system. Therefore it is not possible to prove the
consistency of formal arithmetic in the frame of formal arithmetic, so neither of
the stronger formal systems.

2. Formal arithmetic

The airn of this section 1s to clarify some points in the previous section from
the mathematical point of view, and to supply some technical details. Namely,
we have to describe the appropriate formal system ~ the right setting for Gédel
incompleteness results, so we shall outline now a formalization of arithmetic. For-
mal arithmetic is given by an effective set of symbols and formulas, while the set
of theorems of this system is characterized by effectively given sets of axioms and
rules of inference. The theory of algorithms (the theory of effective computabili-
ty) gives the precise meaning to the word effeciive above. From now on we shall
abbreviate the system of formal arithmetic by PA.

4this means: if a sentence ¢ is deducible from formal arithmetic, then it deducible already in
the primitive recursive arithmetic. Obviously, formal arithmetic contains the primitive recursive
arithmetic.

?which is effectively, i.e. recursively, given. The contemporary meaning of the notion of
"formal system” is sornewhat broader, so this remark is necessary.

1%Tn the classical mathematics, for every arithmetical sentence o, one of sentences », = is
true.
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2.1 Language of PA

We distinguish the following types of symbols:

Logical symbols: = A, V, -V, 3 =

Variables: vy, vy, ve, ...

Auziliary symbols: (| ).

Signs of arithmetlical operations.:  +, -, Constant symbol 0.

Starting from these basic symbols we can build other syntactical objects: nu-
merals, terms, formulas and seniences.

Definitions of terms, formulas and sentences are the usual ones as given in
standard logic courses. Numerals are defined in the following way:

=0, 3= (0),3=(0)),...
So the numerals represent natural numbers.

2.2 Arithmetical axioms

Theory PA is formulated in the first-order predicate calculus. Besides the logical
axioms we have the {ollowing arithmetical axioms:
P #0, =y =r=y
z+0=2, z+y =(zc+y),
z-0=0, z.¢¥=( y)+=z
(2(0) AVz(p{z) = ©(z")) = Vze(z) (induction scheme)
¢ is an arbitrary formula of PA '
Now we can prove various theorems in PA, for example that the numerals have
all expected properties, as m +§ 7 = fi+ 71, where m, n are non-negative integers,

and +py 1s the operation of addifion in the structure of natural numbers. As an
illustration we prove that 2 + 2 = 4%

i_‘_ i — (01)1 i (0.’)[ — ((Ol)i iy 01)1 - (((0/)1 £% 0)1):‘ — (((Of)l)l)t - Zl

2.3. Coding 7

A coding of a domain S of certain objects is an explicit and effective 1-1 map-
ping k: § — N. Here N denotes the set of natural numbers. We say that an object
5 € S is coded by the natural number k(s). From the injectivity of k, it follows
that to each code n corresponds exactly one object s € S such that n = k(s).

Also, from this defimition of coding, we see at once that the domain S is at most
countable. Here are some examples of codings.

Example 2.3.1 Cantor’s coding function {m,n}) : N x N — N is defined by

{mny=(m+n+D(m+n)/2+n

1tThis "logical” proof of 2 4+ 2 = 4 belongs to Leibniz, see [Sty].
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So the first few values of this function arc:

(0,00 =0,{1,0)=1,{0,1)=2,{2,00=3,{1,1) =4,{0,2 =5,(3,0) =6,. ...
Example 2.3.2 Godel’s coding function of finite sequences is defined in the
following way. Let py,ps,ps,. .. be the sequence of all primes 2,3,5,.... Let s
be a hereditary?? finite sequence of finite objects s1,82, ..., 8m. Then the coding
function k is defined recursively by

]\,( )__ p}c(s,)+1 k(82)+1 p:;ssm)-kl

All above mentioned syntactical objects are hereditary finite. If we are given a
coding of starting symbols, i.e. of symbols of the Janguage of PA, then we are given
a coding of terms, formulas and sentences. One possible coding of the symbols of
the language of PA is:

- Y 3 = [ ) vy
§ 9 10 11 12 13 204«
1,2,...}. Then the code of the formula

07 + - = AV
12 3 4 5 6 7
Here v; is a variable, and i € {0,
© = Yus3vg{(ve - v]) = wy) is:

k(o) = 5510701 11213121 7901049371 0GP 113371 4122435 ,

Not only single syntactical objects can be represented in PA, bui seis of syn-
tactical objects too. Namely, we can introduce special formulas of PA which stand
for certain syntactical constructions needed in proofs of Godel’s theorems. These
formulas are:

Term(z) iff  x  is acode of an arithmetical term.

For(z) ff  x is a code of an arithmetical formula.

Ded(z, y) iff x isa code of 2 proof in PA of a formula whose code is y.
Pr{z) it x is acode of an arithmetical theorem, so

(Pr{z) & JyDed(y, z))
Con(PA) iff  there is no number who is the code of the proof of
the contradiction. So, Con(PA) <& -Pr(k(0 = 1)}

If ¥ is a code of a finite sequence Y, then 7 is the length of Y (i.e. the number of
distinct primes in the prime decomposition of y), while (y); denotes the code of -
th member of ¥ (i.e. (y): is the exponent of i-th prime in the prime decomposition
of y). Then, for example, formula Term(z) looks like:

Jy((yv)g =z ANVES (¥ = ARV, (3z < (W )(v)e = — 9204z
(3i < k)( (T Wi+ TA (W7 = 24 (Y2 <@k = (@) V).

12

this means not only s is finite but members s,, 52,... , 5,n are finite too, and members of
each s; are finite also, and etc,



2.4. Goadelization: coding in PA

The previous coding of metamathematical notions (syniactical abjects) is done
in the structure of intuitive natural numbers. We use vanous properties ol this
structure to prove theorems about the coding function &, for example the Unique
Factorization Theorem to prove that k 1s 1-1. On the other side, notions we have
{reely used, as the notion of a prime number, and exponential function are not even
defined in PA. So, up to now we did not represent metamathematics in PA, but in
1ts intuitive counterpart. Godel proved that this task, coding of all the mentioned
syntactical objects, can be done in PA. This process is called gddelezation, and n
most parts mimics coding in V. Main steps in construction are as follows:

o Values of the coding function are numerals. The code of a formula ¢ is denoted
by [e].
s The exponential function is representable in PA. So there is a formula (z, y, z)
so that for all m,n, k € N, m = n* iff PAF (@, 7, k).
If instead of @(z, y,.z) is writlen = y*, then the usual properties of the expo-
nential function y* are provable in PA: z¥%? = z¥z%, (2¥)* = z¥%; then Newton
binomial formula, etc.

¢ Finite sequences are representable in PA. There is an arithmetical function
F{y, =}, which is denoted by (y)., representable in PA so that for all k € N:

PAR (Vo) B () = A (9) = we).

(Godel proved these theorems by use of formalized version of Chinese Reminder
Theorem which says that certain finite systems of congruence equations have so-
lution. Now it is easy fc define in PA

e The sequence of prime numbers,
e A coding function of finite sequences.
+ Formal replicas of metamathematical notions Term(x), For(z), Ded(z, y), Pr(z),
Con(PA).
Now the formal arithmetic “can speak” about itself. For example, the Second
Godel theorem looks like:

nol PAF Con(PA), N = Con(PA).

Therefore, Con(PA) would be an example of a trae sentence (l.e. true in the
infuitive structure of natural numbers), but net provable in PA. So not PAF
—Con(PA), as all theorems of formal arithmetic are true (or at least if assume that
PA is, in fact, consistent). Also, Con(PA) serves as an example of undecidable
sentence: neither it, nor it’s negaiion are provable in PA. Exactly this 1s the
statement of the First Godel’s theorem. Proofs of Gédel’s theorems are based on
the following lemma:

Diagonalization Lemma Let 9(x) be a formula of PA which has only z as
free. Then there is a sentence ¢ of PA such that F ¢ < ¢([¢]).

If F is any consistent formal system extending PA, then all above arguments
can be applied as in the case of PA, so Godel’s theorems held for F also. Important

81



82

examples of this kind are formalized analysis (which is identified with the second
order arithmetic), and formalized set theory (as ZFC for examplce). Some other
consequences, or related results to Godel’s theorems are:

1.

(Gad]

[Kre]

[Mar]
[MMD]

[Sty]

(Godel-Rosser) PA 1s undecidable theory. There is no effective procedure which
would decide for any given arithrmetical sentence if it is a theorem of PA or not.

{T. Skolem) PA is not a categorical theory. There are non-isomorphic structures
satisfying all the axioms of PA. In {act, for any infinite cardinal number k, there
are 2% pair-wise non-isomorphic structures of the cardinality k.

PA has the continuum many complete extensions.
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