bridge Tracts in Mathematics
;and Mathematical Physics

GENERAL EDITORS.
P. HALL & F. SMITHIES

No. 12

ORDERS OF INFINITY

THE ‘INFINITARCALCUL’ OF
PAUL DU BOIS-REYMOND -

BY >
G. H.HARDY

u@

"5
>

FAMBRIDGE UNIVERSITY PRESS

Pri~- 20s. 6d. net



Cambridge Tracts in Mathematics
and Mathematical Physics

No. 12
ORDERS OF INFINITY

" THE <INFINITARCALCUL’ OF
_ PAUL DU BOIS-REYMOND



ORDERS OF INFINITY

THE ‘INFINITARCALCUL’ OF
PAUL DU BOIS-REYMOND

BY
G. H. HARDY

SECOND EDITION
REPRINTED

CAMBRIDGE
AT THE UNIVERSITY PRESS

1954



PUBLISHED BY
THE SYNDICS OF THE CAMBRIDGE UNIVERSITY PRESS

London Office: Bentley House, N.w. 1
American Branch: New York

Agents for Canada, India, and Pakistan: Macmillan

First Edition 1910
Second Edition 1924
Reprinted 1954

Printed in Great Britain at the Unicversity Press, Cambridge
(Brooke Crutchley, University Printer)



PREFACE TO THE SECOND EDITION

HE present edition of this tract embodies a large number of alter-

ations and additions. In particular I have rewritten Section VI
completely, and hope it may now be useful as an introduction, from a
special point of view, to a large field of modern research.

I should like to add a few words concerning the motives of Sections
I1T—V, which form the most characteristic part of the tract, and I can
make my point best by reference to a particular problem. Suppose that
the problem 1s that of determining the behaviour of the power series
3 ¢ (n) 2™ when @ tends to unity. It is usual to delimit the problem
in one or other of two ways. One is to restrict ¢ (z) by ‘conditions of
inequality’, to suppose, for example, that ¢ (z) and a certain number of
its derivatives or differences are monotonic functions of specified signs.
The other is to confine our attention to special forms of ¢ (n), such as
n* (log n)8 (loglog »)7 ..., sufficiently general to illustrate the principal
questions at 1ssue.

There 15, however, a third point of view which is often advantageous
in the discussion of problems of this character. We may suppose that
¢ (n) is any function of some standard corpus whose rate of increase 1s
not too large; and the natural corpus to select is the corpus of ¢ L-func-
tions’, that 1s to say of functions finitely definable by logarithms and
exponentials. Thus, in the particular problem which I have mentioned,
we may suppose ¢ (n) to be any L-function whose increase does not
exceed that of all powers of n. In this way we may hope to prove
theorems, not of course exhaustive, but including all the standard
examples as particular ‘cases. This point of view is adopted by impli-
cation in much of du Bois-Reymond’s work, and it is that which is
usually adopted here. It is, however, obviously necessary to begin by
an exact and general investigation of the properties of L-functions, and
this du Bois-Reymond omitted. The first essential theorem, for example,
1s that which appears here as Theorem 13. This theorem may be verified
immediately in any particular case, but du Bois-Reymond never proves
it and, so far as I know, no general proof had been given before the
publication of this tract.

I am much indebted to Mr E. C. Titchmarsh and Mr A. Oppenheim
for suggestions made in the course of correction of the proofs.

G. H. H.

20 February, 1924. 4{\?‘,"‘: ; =
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I
INTRODUCTION

1.1. Tue notions of the ‘order of greatness’ or ‘order of smallness’
of a function f(n) of a positive integral variable n, when  is ‘large’,
or of a function f(«) of a continuous variable #, when # is ‘large’ or
‘small’ or ‘nearly equal to a’, are important even in the most elementary
stages of mathematical analysis*. We learn there that 2? tends to in-
finity with #, and moreover that 2* tends to infinity more rapidly than z,
7.e. that the ratio 2%/« tends to infinity also; and that 2° tends to infinity
more rapidly than 2% and so on indefinitely. We are thus led to the
idea of a ‘scale of infinity’ (") formed by the functions z, #% 7 ...,
2", .... This scale may be supplemented and to some extent completed
by the interpolation of non-integral powers of 2. But there are functions
whose rates of increase cannot be measured by any of the functions of
our scale, even when thus completed. Thus log # tends to infinity more
slowly, and ¢* more rapidly, than any power of 2 ; and 2/(log ) tends
to infinity more slowly than #, but more rapidly than any power of #
less than the first.

As we proceed further in analysis, and come into contact with its
modern developments, such as the theory of Fourier’s series, the theory
of integral functions, or the theory of singular points of analytic functions
in general, the importance of these ideas becomes greater and greater.
It is the systematic study of them, the investigation of general theorems
concerning them and ready methods of handling them, that is the subject
of Paul du Bois-Reymond’s Infinitdrcalcil or ‘calculus of infinities’.

1.2. Let us suppose that fand ¢ are two functions of the continuous
variable 2, defined for all values of # from a certain value 2, onwards.
Further, let us suppose that / and ¢ are positive, continuous, and
steadily increasing, and tend to infinity with z; and let us consider the
behaviour of the ratio /¢ when # — . We can distinguish four cases.

(1) If f]¢ — o, we shall say that the order, or the rate of increase,
or simply the increase, of f is greater than that of ¢, and write

S >
(1) If f/¢ =0, we shall say that the increase of f is less than that
of ¢, and write f< .

* See, for instance, Hardy, 1, 360.
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(i11) If f/¢ remains, for all values of z from a certain value #; onwards*,
between two positive numbers 8 and A, so that 0 <8 <f/¢ <A, we shall
say that the increase of f is equal to that of ¢, and write

X
It may happen, in this case, that //¢ tends to a definite limit. If this
18 50, we shall write [ .

Finally, if this limit is unity, we shall write
S b |

When we can compare the increase of / with that of some standard
function ¢ by means of a relation of the type /< ¢, we shall say that
¢ measures, or simply ss, the increase of /. Thus we shall say that the
increase of 22° +z + 3 is 2>

It often happens that f/¢ is monotonic (i.e. steadily increasing or
steadily decreasing) as well as fand ¢ themselves. In this case f/¢ must
tend to infinity, or to zero, or to a positive limit: so that /> ¢ or f < ¢
or f>=2¢. We shall see in a moment that this is not true in general.

(iv) It may happen that f/¢ neither tends to infinity nor to zero, nor
remains between positive bounds.

Suppose, for example, that ¢;, ¢ are two continuous and increasing
functions such that ¢; > ¢o. A glance at the
figure (Fig. 1) will probably show with sufficient vy &
clearness how we can construct, by means of a
‘staircase’ of straight or curved lines, running i
backwards and forwards between the graphs of
¢; and ¢y, the graph of a steadily increasing b
function f such that f=¢, for x=1,, 23, ... and
f=a¢g for x=mx5, z4,.... Then f/¢p;=1 for P,

=Ly, L3y ey
but assumes for x=wx,, 24, ... values which
decrease beyond all limit; while f/¢,=1 for
L=12y, %4, ..., Dut assumes for x=2,, 23, ... values G P
which increase beyond all limit; and f/¢, where
¢ is a function, such as A/(p1¢s), for which
¢1 > ¢ > g, assumes both values which increase O %1 T2 %3 4 X
beyond all limit and values which decrease Fia. 1
beyond all limit.

* No mention of 2, is really necessary when (as is supposed in the text) f and
¢ are positive and continuous. There are then numbers §; and A; such that
0<d;<flp<A for 2y =z <z, and 0<d<f/p<A for z =z, implies 0 <, < flp<A,,
where 8,=Min (3, 8;), Ay=Max (A, 4), for'z Z«,.

It is however often convenient to extend our definitions to more general cases in

which this argument would be invalid, and we retain.the unnecessary words in order
that the definitions may be more immediately adaptable.

<0
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Later on (§ 4.43) we shall meet with cases of thiskind in which the functions
are defined by explicit analytical formulae.

1.3. If a positive constant 8 can be found such that f>d¢ for all
sufficiently large values of @, we shall write

Srd;
and 1if a positive constant A can be found such that f<A¢ for all
sufficiently large values of #, we shall write

S=< ¢
If £ >= ¢ and /< ¢, then /X ¢.

It is however, important to observe that /»=¢ is not logically equi-
valent to the negation of /< ¢.” The relations /= ¢, /< ¢ are mutually
exclusive, but not exhaustive; the first implies the negation of the
second, but the converse 1s not true. Again, / > ¢ is not equivalent to
the alternative /> ¢ or fX¢’. Each of these points may be illus-
trated by the example at the end of § 1.2. Here f = ¢, and /< ¢, are
both false; and / >=¢,, but neither /> ¢, nor /X ¢, is true. In the
language of upper and lower limits, / »= ¢ means

)\:]_i_@'é>0
d* is false’ it —
and ‘f< ¢ 1s false’ means A=lim$>0;

while to assert ‘> ¢ or /<X ¢’ is to assert that A > 0 and that, if A 1s
finite, A is also finite.

" The reader will have no difficulty in proving the following theorems.
There are many other simple theorems of the same character, but these
seem the most important.

(@) If [, b=, then f .

() If /= ¢, o>, then f - .

(¢) If f 2=, b=, then f =

(@) If fXb, Xy, then f X4

(e) If /=&, then f+ ¢ X f.

(f) If /> ¢, then f— X f.

(g9) If /> ¢, fr = b1, then f+ 11>~ ¢ + .

(k> If [ b, L X b, then f+ 11 b + ¢,

() If [, i, then f+ 1< b+ ¢y

(J) I /- b, /1= b1, then > oy

(k) If f X, i X by, then i< P
He will also find it instructive to state for himself a series of similar
theorems involving also the symbols = and ~,

1—2
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1.4. So far we have supposed that the functions considered all tend
to infinity with #. There is nothing to prevent us from including cases
m which / or ¢ tends steadily to zero, or to a limit other than zero;
thus we may write 2> 1, or 2> 1/x, or 1/2>1/2% Bearing this in
mind, the reader should frame a series of theorems similar to those of
§ 1.3 but involving quotients instead of sums or products.

It is also convenient to extend our definitions so as to apply to
negative functions which tend steadily to — «, or to 0 or to some other
limit. In such cases we make no distinction, when using the symbols
>, <, =, =, between the function and its modulus: thus we write
—2 < —a* or —1/2 <1, meaning thereby exactly the same as by z <2?
or 1/#<1. But f~¢ 1s to be interpreted as a statement about the
actual functions and not about their moduh.

It will be well now to lay down the principle that functions referred
to in this tract, from this point onwards, are to be understood, unless
the contrary is expressly stated or obviously implied, to be positive,
continuous, and monotonic, increasing if they tend to infinity, and
decreasing if they tend to zero. But it is sometimes convenient to
depart from these conventions. We may abandon the restriction to
continuous functions, writing, for example,

[#]~z, =(2)<z,
where [#] is the integral part of  and = (#) the number of primes which
do not exceed . Or we may write

1+sinz <z, 22 >xsinz,

meaning by the first formula, for example, that (1 +sin2 )/z 0. We
may even apply our notation to complex functions, writing ¢ <« or
¢#><1. The reader will find no difficulty in modifying the definitions
in the appropriate manner. '

There are other possibilities to be considered. We have so far confined
our attention to functions of a continuous variable z which tends to
+ o0. This case may be held to include one which is perhaps even more
important in applications, viz. that of functions of the positive integral
variable n. We have only to disregard non-integral values of 2. Thus
n!>n? —1/n<n.

Finally, by putting z=—vy, #=1/y, or 2=1/(y — &), we are led to
consider functions of a continuous variable y which tends to — o or 0
or a. The reader will easily supply the necessary modifications of

© detail.
In what follows we shall generally state and prove our theorems



INTRODUCTION 5

only for the case with which we started, that of continuous and in-
creasing functions of a continuous variable which tends to infinity, and
shall leave to the reader the task of formulating the corresponding
theorems for the other cases.

1.5. There are some other symbols which we shall sometimes find it
convenient to use in special senses. By

0(¢)

we shall denote a function f, otherwise unspecified, but such that

/1< K¢,

where K is a constant and ¢ a positive function of 2. This notation
was first used by Bachmann *, though its general adoption is due to the
influence of Landau. Thus

z+1=0(z), z=0(2", sinz=0().
It is clear that the three assertions

f:O(¢>’ lf‘<K¢; f<¢)

are equivalent to one another. By
0 (¢)
we shall, again following Landau t, denote a function fsuch that /¢ —0.
Thus
z=0(2"), l=o(x), sha=o(z)
and S=0(p), [fl¢—=0, f<¢
are equivalent.

We shall follow Borel { in using the same letter K in a whole series of
inequalities to denote a positive number, independent of the variable
under consideration, but not necessarily the same in all inequalities
where it occurs. Thus

smax<K, 2z+1<Kz, am"<Ke (xz1)
If we use K thus in any finite number of inequalities which (like the
first two above) do not involve any variables other than #, or whatever
other variable we are considering, then all the values of A lie between
two numbers A, and A,: thus A; might be 10~ and K, be 10*. In
this case all the A’s satisfy 0 < K; < K < K,, and every relation f< K¢
might be replaced by /< K,¢, and every relation /> K¢ by f> K, ¢.
But we shall also have occasion to use A in equalities which (like the
third above) involve a parameter (here 7). In this case X, though in-
dependent of z, is a function of m. Suppose that a finite number of
parameters a, B, ... occur in this way in this tract. Then if we give any

* Bachmann, 1, 401, 1 Landau, 1, 61. I Borel, 6 and 2, 105.
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special system of values to o, B, ..., we can determine K, K, as above.
Thus all our K’s satisfy '

0<Ki(o, B, ...) <K <Ky(a, 8, ...),
where K, K, are positive functions of «, 8, ... defined for any permissible
set of values of those parameters. But X, may have the lower bound
zero, and K, may be unbounded. We can then, by choosing a, f3, ...
appropriately, make K, as small and X, as large as we please.

When a function f possesses a property for all values of z greater
than some definite value, this value of course depending on the function
and the property, we shall say that / possesses the property for > a,.
Thus :

z>100 (z>x,), € >1002" (Z> x,). )

We shall use 6 and A to denote arbitrary but fixed positive numbers,
using 8 when we wish to-emphasize the possible smallness of the number,
and A when we wish to emphasize its possible largeness. Thus

means ‘however small 3, we can find z, so that /<8¢ for > 2, i.e.
means the same as /< ¢; and

(log )4 < 2?
means ‘any power of log # (however great) tends to infinity more slowly
than any positive power of # (however small)’.

Finally, we denote by e a funetion (of a variable or variables indicated
by the context or by a suffix) whose limit is zero when the variable or
variables are made to tend to infinity or to their limits in the way we
happen to be considering. Thus ¢ means the same as o (1), and

f=d(l+e), fod, f=d+o(d)

are equivalent to one another.

1.6. In order to become familiar with the use of the symbols defined in the
preceding sections the reader is advised to verify the following relations, in
which P,, (z), €. (z) denote polynomials whose degrees are m and » and whose
leading coefficients are positive:

P (%) > @u (%) (m>n), P (2) 3= Qn(2) (m=n),
Po(@)Zam, Pp(@)]@n (@) Zamm,
@zt +2bz+c) = x(a>0), J(rt+a)~Jr, Jlxta)- \/xwéax—%,
e > a1, € > AT e""A, log z < 2%, loglogz < (log «)’,
10g Py (2) 5 10g @u (#),  loglog P ()~ loglog @ ()

ztasinzoor, z(atsinz) Xz (a>1),
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ertsinz 1 coshx ~sinhz~ e, cosh (z+a)= cosh z,

28 =0 (), (log2) =0 (19827, 28 =0 [olosn' ™,

1 1 1 1 -
1+§+...+7—Z~10gn, 1+§+...+%—logn7\“1, 1

nl<nn, 01> pl=p® =gttt

nleon™ e ™ J(9n), nl(efn)r=(1+¢)/(2rn),

/“imx wi_x_l_o{w} e z
ologt loga’ Jglogt logxz (logz)?)’ J3 loglogtwloglogx'

~

II

SCALES OF INFINITY IN GENERAL

2.1. Ir we start from a function ¢, such that ¢>1, we can, in a
variety of ways, form a series of functions

b=, P2y D3y ooy Duy oo

such that the increase of each function is greater than that of its
predecessor. Such a sequence of functions we shall denote for short-

ness by (¢,)-
One obvious method is to take ¢, = o™ Another is as follows: If

¢ >z, it is clear that
¢ {b (@)} (2) >,
‘and 50 ¢, (#)=¢d (@)>¢ (2); similarly ¢, (2)=dd, (#)>¢, (#), and
.80 On.

Thus the first method, with ¢ =z, gives the scale z, 27 4, ... or
(a™); the second, with ¢ =2 gives the scale 4% 2, 27, ... or (2¥)." In
this case the second scale is merely a selection from the terms of the
first. With ¢ = ¢, the two methods give the scales €%, ¢, ¢, ... and

év, gex, eeex’
Here the second term of the second scale is of greater increase than
any term of the first.

These scales are enumerable scales, formed by a simple progression of
functions. We can also, of course, by replacing the integral parameter n
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by a continuous parameter a, define scales containing a non-enumerable
multiplicity of functions: the simplest is (%), where a is any positive number.
But such scales play a subordinate part in the theory.

It is obvious that we can always insert a new term (and therefore,
of course, any number of new terms) in a scale at the beginning or
between any two terms: thus /¢ (or ¢% where a is any positive number
less than unity) has an increase less than that of any term of the scale,
and ./(dnbns1) OF dndboss has an increase intermediate between those
of ¢, and ¢,,;. A less obvious and more important theorem is the
following.

Theorem 1*. Ghiven any ascending scale of increasing functions éy,
1.6. a series of functions such that ¢, < dy< < ..., we can always find
a function f whick increases more rapidly than any function of the scale,
1.e. which satisfies the relation ¢, < f for all values of n.

In view of the fundamental importance of this theorem we shall give
two entirely different proofs.

2.21. We know that ¢,,, > ¢, for all values of #, but this, of course,
does not necessarily imply that ¢,.;> ¢, for all values of z and z in
questiont. We can, however, construct a new scale of functions ¥,
such that

(@) Yy 1s identical with ¢, for all values of # from a certain value
#, onwards (z,, of course, depending upon %);

(0) Yut1 = Yy for all values of z and n.

For suppose that we have constructed such a scale up to its nth
term y,,. Then it is easy to see how to construct ¥,,,,. Since ¢, > ¢y,
PpoUy, 1t follows that ¢,y >y, and s0 ¢nyy Z ¢, from a certain value
of # (say @n+1) onwards. For z > z,., we take Y4y = dpia. For @ <z,
we give Y, & value equal to the greater of the values of ¢y, ¥n.
Then 1t is obvious that 4, satisfies the conditions (@) and ().

Now let S (n) =y, (n).

* This is the theorem usually called the ‘Theorem of Paul du Bois-Reymond’;
see for example Borel, 1, 113. Actually the theorem first proved explicitly by
du Bois-Reymond was the corresponding theorem for descending scales (Theorem 3,
§ 2.4). See du Bois-Reymond, 4, 365.

t dp1y > ¢ implies ¢, ;> ¢, for sufficiently large values of z, say for x> z,.
But z,, may tend to infinity with n. Thus z,=n+1 if ¢,,=2"/n!
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From #(n) we can deduce a continuous and increasing function f(2),
such that )

1a @) < () <Ys ) |
for n<ax<n+1, by joining the points
(n, ¥ (n)) by straight lines or suitably
chosen arcs of curves. Then

S ¥n> Ynia/in
for 2>n+1, and so f>y,; therefore
S >y, and the theorem is proved.
It is perhaps worth while to call atten-
tion explicitly to a small point that has

sometimes been overlooked*. It is not
always the case that the use of straight

.

lines will ensure i ntl
S (@) > Y (2) i

for 2> n (see, for example, Fig. 2, where

the dotted line represents an appropriate ‘ Fic. 2

arc).

The proof which precedes may be made more general by taking f(n)=+ (n),
where » is an integer depending upon 7z and tending steadily to infinity
with ».

2.22. The second proof of du Bois-Reymond’s Theorem proceeds-on
entirely different lines. We can always choose positive coefficients a,

so that w
f(’v) = ?“n‘!’n (w>

is convergent for all values of #. This will certainly be the case, for
istance, if-
Van=y1(1) 5 (2) ... Yp(n).
For then, if v is any integer greater than @, ¥, (2) <y (n) for nZv,
and the series will certainly be convergent if
S 1
RAOIAC)RNNCESY
is convergent, as is obvious.
Also S (@) (2) > @1 Y1 (&) (@) o,
so that / > ¢, for all values of n.
2.31. Suppose, e.g., that ¢, =2 If we restrict ourselves to values of «

greater than 1, we may take y,,=¢,=2" The first method of construction
would naturally lead to Fo= = gnlogm,

* Borel, 1, 114; 5, 25.
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or f=v" where v is defined as at the end of §2.21, and each of these functions
has an increase greater than that of any power of n. The second method gives
x‘n.
f (x) 11 9233 g0’
It is known* that when & is large the order of magnitude of this function is

roughly the same as that of _
ob (log z)%[log log T

As a matter of fact it is by no means necessary, in general, in order to
ensure the convergence of the series by which f(z) is defined, to suppose that
ay decreases so rapidly. It is very generally sufficient to suppose 1/a, = ¢, (n):
this is always the case, for example, if ¢, (x)={¢ (2)}*, as the series

(6 (@)|"
EWMJ

is always convergent. This choice of a, would, when ¢ =z, lead to

s 3 /) on.

But the simplest choice here is 1/a,=2!, when

z"
— — a% .
f(x)—En!—e —leve®;
it is naturally convenient to disregard the irrelevant term —1.

2.32. We can always suppose, if we please, that f () is defined by a power
series 3 a, 2" convergent for all values of z, in virtue of a theorem of Poincaré’s
which is of sufficient intrinsic interest to deserve a formal statement and
proof.

Theorem 2. G<iven any continuous increasing function ¢ (x), we can always
find an integral function f(z) (i.e. a function f(x) defined by a power series
S a, x™ convergent for all values of z) such that f(z)> ¢ ().

The following simple proof is due to Borel §.

Let @ (#) be any function (such as the square of ¢) such that & > ¢. Take
an increasing sequence of positive numbers @, such that a, = «,and another
sequence of numbers b, such that

o <by<as<bj<ag<......

We can then choose a sequence of positive integers v, so that (i) vy > v,
and (ii)

Va
(Z—:) >® (an + 1)'

Vn

Now let f(z)=3 (bﬁﬂ) .

* Hardy, 6. See also § 6.3.

+ See Lindeldf, 2, 41 and 8; le Roy, 1; and § 6.3.
1 Poincaré, 1, 214

§ Borel, 4, 27.
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This series is convergent for all values of #; for the nth root of the nth term
is not greater (when b, > z) than z/b,, and so tends to zero. Also

F@>(3)"> (> @)

if a, < 2 <a,,1, and so for all values of # greater than a,; so that > ¢.

2.4. So far we have confined our attention to ascending scales, such
as z, 2%, &%, ..., &" ... or (2"); but it 1s obvious that we may consider
in a similar manner descending scales such as z, \/z, 3/=, ..., Yz, ...
or (%/z). Itis very generally (though not always) true that if (¢,) is
an ascending scale, and ¢ denotes the function inverse to ¢, then (y,)
1s a descending scale.

If ¢ > ¢ for all values of x (or all values greater than some definite value),
then a glance at Fig. 3 is enough to show that, if
Y and 4 are the functions inverse to ¢ and ¢, y
then » < for all values of # (or all values ¢
greater than some definite value). We have only
to remember that the graph of {» may be obtained
from that of ¢ by looking at the latter from a _
different point of view (interchanging the parts of // ¢

z and y). But it is not true that ¢ > ¢ involves
¥ <. Thus ¢ > ¢%/z. The function inverse to %
¢* is log #: the function inverse to ¢*/x is obtained
by solving the equation x=e¥/y with respect to z.
This equation gives o z

y=logz+logy, Fia. 3

and it is easy to see that y ~logz.

Theorem 3. Given a scale ‘%f nereasing Junctions b, such that

by > o > ps - > 1,

we can find an tncreasing function f such that ¢, >-f >1 for all values
of n. .

The proof of this theorem, which is in principle the same as the first
proof (§ 2.21) of Theorem 1, may be left to the reader.

2.5. The following extensions of Theorems 1 and 8 are due to du Bois-
Reymond, Pincherle, and Hadamard*.

Theorem 4. Given ¢, < dy<cpy< .. <, < ... <P,
we can find f so that ¢, < f <@ for all values of n.

* du Bois-Reymond, 7 ; Hadamard, 2; Pincherle, 1.



12 SCALES OF INFINITY IN GENERAL

Theorem &5. Given y, >y > s> ... >, > ... >,
we can find f so that ¥, > f > for all values of n.

Theorem 6. Given an ascending sequence (p,) and a descending
sequence (Y,) such that ¢, <y, for all values of n and p, we can find f

S0 that bu<.S <y
Jor all values of n and p.

To prove Theorem 4 we have only to observe that
By > Dby > o > Db > o 1,

and to construct (as we can in virtue of Theorem 3) a function #
which tends to infinity more slowly than any of the functions ®/¢,.

Then F=®/F

is a function such as is required. Similarly for Theorem 5. Theorem 6
requires a little more attention.

In the first place, we may suppose that ¢, , ;> ¢, for all values of x and »:
for if this is not so we can modify the
definitions of the functions ¢, as in §2.21.
Similarly we may suppose v, 1<V, for all
values of z and p.

Secondly, we may suppose that, if » is
fixed, ¢, as n-—>cw, and y,—>0 as
p->cw. For if this is not true of the
functions given, even when their definitions
are modified as above, we may replace the ?,

Pr o1
¢n+l

modified ¢, and v, by ®,=2"¢, and /
¥,=2"P,; and then &, > 2, , ¥, < 2Py, Ty, e
so that &, when n->w and ¥,—-0 when Fio. 4
p—a- o,

~ Since Y, > ¢, but, for any given z, ¥, < ¢, for sufficiently large values of =,
it is clear that the curve y =4+, intersects the curve y =g, for all sufficiently
large values of n (say for n>n,). The curves being continuous, their inter-
sections form a closed set of points; and they have therefore a last point of
intersection, which we denote by P, ,.

If p is fixed, P, , exists for n >n,; similarly, if n is fixed, 2, , exists
for p>ps.. And as either # or p increases, so do both the ordinate and the
abscissa of P, ,. The curve y=+, contains all the points P, , for which p has
a fixed value, and y=¢h, contains all the points for which » has a fixed value.

It is clear that, in order to define a function f which tends to infinity
more rapidly than any ¢, and less rapidly than any v, all that we have to
do is to draw a curve, making everywhere a positive acute angle with each of
the axes of coordinates, and crossing all the curves y =¢, from below to above,
and all the curves y =1+, from above to below,
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Choose a positive integer &, corresponding to each value of p, such that
(i) ¥y >mnp and (ii) Ny > o as p—-o. Then Py, , exists for each value of p.

And it is clear that we have only to join the points Py 1, Py, 2, Pry,35 .. DY

straight lines or other suitably chosen arcs of curves in order to obtain a
curve which fulfils our purpose. The theorem is therefore established.

2.61. There are further interesting developments concerning scales
of infinity due to Pincherle*.

We have defined /> ¢ to mean f/¢—oo, or, what is the same thing,

(2.611) log f—log ¢ — .
We might equally well have defined /> ¢ to mean
(2.612) F(f)—F($) =,

where F'(2) is any function which tends steadily to infinity with »
(e.9. , ¢°). Let us say that if (2.612) holds then

(2.613) S (),
so that f>¢ is equivalent to /> ¢ (log ). Similarly we define
J< ¢ (F)to mean that F(f)- K (¢$)>—, and f<X¢ (L) to mean
that #'(f)—F'(¢) is bounded. Thus

z+logz =2, x+loga>a (),
z+ 1=z (x), ©+ 1>z (&),
since ¢**1—¢*=(¢—1) "o,
It 1s clear that, the more rapid the increase of #', the more likely is
it to discriminate between the rates of increase of two given functions

J and ¢. More precisely, ¢/
S ¢ (F),

and F=FF,, where F, is any increasing function, then

F>¢ ().
For

F(f)-F($)=F(f)F(f)~F($) Fi($)>{F(f)~F($)} Fi($)—> 0.

2.62. The substance of the following theorems is due in part to
du Bois-Reymond and in part to Pincherle .

Theorem 7. However rapid the increase of f, as compared fwzt/z
that of b, we can choose F so that f X ¢ (F).

Theorem 8. If f— ¢ is positive for x> &,, we can choose F' so that
S (F).

* Pincherle, 1.
1 du Bois-Reymond, 4 ; Pincherle, 1
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Theorem 9. If.f = ¢ and f— ¢ is monotonic for x> xy, and f XX ¢ (F),
however great be the increase of F, then f=¢ from a certain value of @
onwards.

(1) If £ ¢, we may regard / as an increasing function of ¢, say

S=0(9),
where 0 (z) > 2. We can choose a constant ¢ greater than 1, and then
choose X" so that 6(z)> gz for > X. Let a be any number greater
than X, and let
ay=0(a), ay=0(a), a3="0(a), ....
Then (a,) 1s an 1ncreasing sequence, and @, — «, since @, > g"a.
We can now construct an increasing function /' such that
F(a,)=4nK,
where K is a constant. Then if ¢, =2=a,, @, < 0(2) £a,.,, and
Fi{0 (@)} —F (@) = Flavn)— F(av)= K.
Thus F(f)-F(¢) remains less than a constant, and Theorem 7 is
established.

(2) Letf—¢=A, sothat A>0. If A, as 2 increases, remains greater
than a constant K, then

¢/ —e®>(5-1)¢* > 0,
so that we may take #'(z) = ¢"

If it is not true that A = A, the lower bound of A is zero. Let A, ()
be defined as the lower bound of A (¢) for £ =2. Then A, tends steadily
to zero as # -, and A, = A. We may also regard A, as a steadily

decreasing functlon of ¢, sa,y =u ()
Let @ (¢) be an increasing funct1on of ¢ such that pw > 1., Then if

F<¢>=/¢w<t>dt,

P()-F@=["warz [ wits p@)w @)1,

and F' () fulﬁls the requirement of Theorem 8. Finally, Theorem 9 is
an obvious corollary of Theorem 8.

The three theorems which follow are of the same character as those which
we have just proved. The reader will find it instructive to deduce them, or

prove them independently.
Theorem 10. However great be the increase of f, as compared with that
of ¢, we can determine an increasing function F such that F(f) =X F(P).
Theorem 11. If f— ¢ is positive for x> x,, we can dete7 mine an Inereasing
JSunction F such that F (f) > F ().
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Theorem 12. If f = ¢ and f— ¢ is monotonic for x > z,, and F (f) X F ()

however great the increase of F, then f=¢ from a certain value of % onwards,

To these he may add the theorem (analogous to that proved at the end of
§ 2.61) that f>> ¢ tnvolves F (f) > F (Pp) if log F(z)[logxz is an increasing
function (a condition which is roughly equivalent to &' > z).

2.63. Let us consider some examples of the theorems of the last paragraph.

(i) Let f=2™(m >1) and ¢p=2a. Then, following the argument of § 2.62 (1),
we have 8 (¢p)=¢™ We may take

a=e, a;=€™, ag=e™’, ..., a,=e™", ...,
and we have to define /" so that
F(e")=4nE.

The most natural solution of this equation is
K loglog =

(@)= 2 logm

And in fact
Fam™)y—F (z)= %——”—b {log (mlog x) —log log #} =4 K,
so that 2™ Xz (F).
(i) Let f=e*+e~* ¢p=e* Following the argument of § 2.62 (2), we find
A=e~%=N;, p(p)=1/¢,
and we may take @ (¢)=¢p'T*(a>0). This makes F (¢) a constant multiple
of 212 and it is easy to verify that
(F+e - e > 0,
if £> 2.

(ili) The relation F'(f) =X F (¢) is equivalent to f <X ¢ (log F'). Using the
result of (i), we see that F(a™) =X F'(x) if 1 < F=<{logx. Similarly, using the
result of (i), we see that F(e*4e=%) > F (%) if F 3= (k> 2).

2.7. Before leaving this part of our subject, let us observe that the
substance of § 2.1—2.5 may be extended to the case in which our
symbols >, ete. are defined by reference to an arbitrary increasing func-
tion /. We leave it as an exercise to the reader to effect these exten-
s10ns.
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I1I

LOGARITHMICO-EXPONENTIAL SCALES :
THE FUNDAMENTAL THEOREMS

3.1. THE scales of infinity that are of most pract\ical importance in
analysis are those which may be constructed by means of thelogarithmic
and exponential functions.

We have already seen (§ 1.1) that

&> a"
for any value of #; and from this it follows that
log z < '™
for any value of n*. It is easy to deduce that
PP PN
log log 2 < (log )Y, log log log #< (log log 2)'*, ...

The repeated logarithmic and exponential functions are so important
in this subject that it 1s worth while to adopt a notation for them of a
less cumbrous character. We shall write

ha=lz =log , Lo =lz, Lz =1z, ...T,

QT =0x = €5 6,0 = 66X, €34 = €8s,y ...
It is easy, with the aid of these functions, to write down any number
of ascending scales, each containing only functions whose increase is
greater than that of any function in any preceding scale: for example

@y B e, T 5O 6,

Among the functions of these scales we can interpolate new functions
as freely as we like, using, for instance, such functions as

Y0t
waeﬁw € ,
where a, B, v, 8, € are any positive numbers ; and we can construct non-

enumerable as well as enumerable scalesi. Similarly we can construct
"any number of descending scales, each composed of functions whose

* It was pointed out in §2.4 that ¢ > ¢ does not necessarily involve y < v (% ¥
being the functions inverse to ¢, ¢). But it does involve Y <y for sufficiently large
values of «, and therefore y=Cy. Hence ¢ > ¢, (for any n) involves Yy, (for any
n) and therefore, if (y,) is a descending scale, as is in this case obvious, y <, for
any n.

+ lzr is defined for >0, Lz for z>1, lgz for z>e, {;x for z>e?, and so, on.

T See § 2.1. :
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increase 1s less than that of any functions in any preceding scale: for
example
lw, (6", ..., (W)™ ... La, (o) ..., (L), ...
Two special scales are of fundamental importance ; the ascending scale
(E) Xy Oy €20, 63, -..,
and the descending scale
(L) z, lz, L, Lz, ....
These scales mark the limits of all logarithmic and exponential scales.
It 1s of course possible, in virtue of the general theorems of § 2.1—2.5,
to define functions whose increase is more rapid than that of any ¢,z
or slower than that of any /,2; but, as we shall see in a moment, this is
not possible if we confine ourselves to functions defined by finite and
explicit formulae involving only the ordinary functional symbols of
elementary analysis.

3.2. We define a logarithmico-exponential function (shortly, an L-
Sunction) as a real one-valued function defined, for all values of # greater
than some definite value, by a finite combination of the ordinary algebraic
~ symbols (viz. +, —, x, +, %/) and the functional symbols log (...) and
(), operating on the variable # and on real constants.

It is to be observed that the result of working out the value of the function,
by substituting # in the formula defining it, is to be real at, all stages of the
work, It is important to exclude such a function as

y V(-3 4 = W(-aY)

which, with a suitable interpretation of the roots, is equal to cos .

We might generalize our definition by admitting implicit algebraic functions,
including, for example, such functions as e; \/(%y), where y5+y —2=0; but this
generalization is not particularly interesting.

Theorem 13. Any L-function is ultimately continuous, of constant
sign, and -monotonic, and tends, as x—  , to infinity, or to zero or to
some other definite limit. Further, if f and ¢ are L-functions, one or

other of the relations
Srob S=é f<¢
holds between them.

We may classify L-functions as follows, by a method similar to that by
which Liouville* classified the ‘elementary’ functions. An Z-function
is of order 0 if it 1s purely algebraic; of order 1 if the functional

* Liouville, 1; Watson, 1, 111, See also Hardy, 2; this tract contains fuller
references to Liouville’s memoirs,
H. 2
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N

symbols /(...) and e(...) which occur in it operate only on algebraic
functions; of order 2 if they operate only on algebraic functions or
L-functions of order 1; and so on. Thus
e+ / (log z), @ = oN21087, a® — gloge® 18

are of orders 1, 2, and 8 respectively. As the results stated in the
theorem are true of algebraic functions, it is suffiéient to prove that,
if true of L-functions of order n— 1, they are true of L-functions of
order 7.

It should be observed that an Z-function of order » may always be exfmeséed
as a fugction of any higher order; thus z=e¢ (lx)=e, (lpx)=.... We need not
suppose that our functions are always expressed in the simplest possible form.
In Liouville’s work it is essential to assume that an ‘elementary function of
order »’ cannot be expressed as a function of lower order; but no such hypo-
thesis is necessary here.

The following additional definitions will be found useful. We shall
say that f,, an L-function of order n, is ¢ntegral if it is of the form

Spp—160p- 1(17(1) )Kl (Z (2) .. (ZTgLil Kh,

where the functions with suffix n—1 are L—functions of order n —1 and
Xy, Kg, <+, &7, aTe positive integers. We call x; + &y + ...+, the logarithmic
degree, or, simply, the degree, of the typical term of £,; and,if A is the
greatest value of k;+xy+ ...+ Ky, we say that f, 1s of logarithmic degree A.
If the number of terms of degree A in f, is p, we say that /, is of
logarithmic type (A, ). We denote integral L- functlons by the letter 24,
with or without suffixes, indices, ete. , <

If an integral L-function is of degree 0, ¢.¢. of the form .

- : 2lofn,—leo'n—ly ‘
we shall say that it is ewponential. If an integral exponential L-function”
contains @ terms, we shall say that it is of ¢ype w; if w=1, we shall
say that it is simply ewponential. This (lz)’e(¢*lx) is a simply ex-
ponential L-function of order 2, while (lz)*(l,#)*¢(¢"lx) is an integral
function of order 2, of type (2, 1). We shall in general denote integral
exponential L-functions by the letter V.

If 7, is the quotient of two-integral functions, ¢.e. of the form M,/ M,,
we shall say that it is rational. If M, and M, are exponential, 7.e. if /,,
1s of the form Nl/Ng, we sha.ll say that f, is a rational exponentml
L-function.

It may be veriﬁed.immediately that: :

(i) The derivative of an L-function of order # is an L-function of
order n. In exceptional cases the derivative may be of order n — 1.
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(1) The derivative of a simply exponential function is a simply ex-
ponential function, with the same exponential factor.

(111) The derivative of an intégral exponential function of type = is
in general an integral exponential function of type =. If one of the
terms of the original function is a constant, the derivative is of type
w— 1.

(iv) The derivative of an integral function of logarithmic type (A, w)
is in general a function of the same type. If the exponential factor
Pr-1604-, of one of the terms of degree A is a constant, then the derivg-
tive 1s of type (A, w —1); if u =1, the derivative is of degree A —1.

3.3. We can simplify the induction required for the proof of
Theorem 13 by two preliminary remarks. :

(i) If fis an L-function of order =, so is its derivative f’. Hence, if
every such function 1s ultimately continuous and of constant 51g11 every
such function is ultimately monotonic. ’

(11) If fand ¢ are L-functions of order #, so is f/¢. Hence, if every
such function is ultimately monotonic, f/¢ must tend to infinity or a
limit, and one of the relations >, =, < holds between the functions.

It 1s therefore sufficient to prove that if Theorem 13 is true for func-
tions of order n—1, then any functzon of order n is uitimately continuous

and of constant sign.

We prove this first when £}, is an integral exponential function. The
result is obvious when £, is of type 1 (i.e. when f,, is a simply exponential
function py— €0,_;). Liet us then assume it true for functions of type

w—1; and let
f =3 0p1005-1

be of type @. If py_160,- 1s any one of the terms of /,, the function

—fn/<Pn -1€0p— 1)

18 of type @, with one term a constant (unity); and so, by §3.2 (iii), F,’ -
is of type w —1. Hence £ is ultimately continuous and of constant

sign; and so the same is true of #,, and therefore of fn
We prove next that the result is true when J 18 any integral function
of order #. Suppose that '
f = EPn Z166, 1<ZT(1) 1)'(1 (Z @ Kz ([ (,}:) I)K"
18 of 1ogar1thmlc type (X, ,u) The result has been proved true when
A=0. Hence it is enough to prove
(i) that, if true for functions of logarithmic degree .A—1, 1t is true

for functions of degree A and type (A, 1); -
292
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(i) that, if true for functions of type (A, w —1), it is true for functions
of type (A, p).

Suppose that the typical term written above in the expression of /,
is one of the terms of degree A, and let F, = f,/(pn-1€0,—1) as before.
Then, by § 3.2(iv), F, is of type (A, u~1), unless u=1, when it is of degree
A—1. Hence, whichever of the inductions (i), (i1) we are engaged in
proving, F,' is ultimately continuous and of constant sign; and we
deduce as before that the same is true of /.

We are now in a position to complete the proof of the theorem. Any
L-function f;, 1s of the form

()

Jo= Alodnls, only ooy bula, Wols, ooy Bla, Xalsy ooy Xnla)
—A(zl, Zay <evs Zg)s
say, where ¢ =7+s+¢ and 4 is an algebraic function of its arguments.
There 1s therefore an identical relation
Fz, y)=Muy?+ My*'+ ...+ M,=0,

where y = £, and the coefficients M, M,, ..., M, are integral L-functions
of order n. The derivatives of these coefficients are also integral. It
therefore follows from what has already been proved that

Fo-T =3ty B= =3 (p—i) My,
considered as functions of the two variables #, y, are continuous for all
sufficiently large values of 2 and for all values of .

Let & n be a pair of values of 2 and y satisfying the equatlon F=0.
Then, if only £ is large enough, F), cannot vanish for z =§, y = 9. For,
if F and £, both vanish for x=$, y =7, the eliminant of y between
F'=0 and F,=0 vanishes for #=¢ But this eliminant is plainly an
integral L-function of order », and so cannot vanish for values of
surpassing all limit. It follows, by the fundamental theorem concerning
implicit functions®, that £, is an ultimately continuous function of .
Finally, f, is ultimately of constant sign. For f, =0 involves M, =0,
and we have already seen that it is impossible that this equation should
be satisfied for values of # surpassing all limit. This completes the
proof of the theorem.

3.4. The limits of the increase of L-functions. The increase
of an increasing Z-function is subject to limitations of rapidity or slow-
ness. We may say roughly that an L-function cannot increase more
rapidly than any exponential or more slowly than any logarithm ; if f is

¥ Goursat, 1 (1), 81, 94; Hardy, 1, 192; Young, 1
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any L-function, we can determine % so that f<¢,2, and if f 1s any
L-function which tends to infinity, we can determine £ so that /> f2.
More precisely, we have the two following theorems:

Theorem 14. An L-function of order n cannot satisfy

../;b > €n (wA)
Theorem 15. An L-function of order n cannot satisfy

1< fo < ().

Theorem 14 is very easy to prove. It is plainly sufficient to establish
an induction from # — 1 to =n.

Any function of order » is an algebraical function of certain argu-
ments ebp_1, -y Wn-1y «-ey Xn-1, ---, the increase of any one of which
is ex hypothesi less than that of

¢ (tn— %) = 0, (2F)

for some value of K. ‘Hence the increase of the function is less than

that of
(ena® )k

for some values of K and K;; and so less than that of ¢, (2¥?) for some
value of K,. Thus the theorem is established.

The proof of Theorem 15 is considerably more troublesome, and,
though it presents no particular difficulty of principle, is too long to
be inserted here*. It is included in a more precise theorem, viz.

Theorem 16. If fis an L-function of order n, and
1< /< (ln—lx)sa
then JS=(la2),
where h is rational.

3.5. Let fand ¢ be any two L-functions which tend to infinity with
z, and let o be any positive number. Then one of the three relations
S0 S S<P*
must hold between f and ¢; and the second can hold for at most one
value of a. If the first holds for any a it holds for any smaller a; and
if the last holds for any a it holds for any greater a.
Then there are three possibilities. Either the first relation holds for
every a; then
J > A
Or the third holds for every a; then
F< .

* The details of the proof will be found in Hardy, 9, 65—72.
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Or the first holds for some values of a and the third for others; and
then there is a value @ of a which divides the two classes of values of «,
and we may write

f= 4)“./('1’

where ¢ ¢ < f; < ¢% We shall find this result very useful in the sequel.

8.6. It is possible to classify the possible modes of increase of L-
functions of given order much more precisely. Thus we have:

Theorem 17. An L-function of order 1, whick tends to infinity with
2, 18 of one of the jforms

eAs* (e 427 (log 2) (1 + ),

where s and t are rational.

Theorem 18. An L-function of order 2, which tends to infinity with
z, 18 of one of the forms ' _ ‘

eeAx3(1+e), eAa;s(la:)t(1+e)’ L. (Zx)‘(1+e), Az® (lxy <Z2$)u (1+e),
where s, t, and u are rational.

The functions
| ex, Lz, 2% av?, eV
each increase in a manner which differs from either of those of Theorem 17.
They are therefore not expressible as L-functions of order lower than 2.
Similarly La, (lo)V?, or e./(l,z) are not expressible as L-functions of -
order lower than 3. No L-function of order 1 can satisfy
s < f< &,
and no L-function of order 2 can satisfy either of
ear < f< e, e(lv)r < f< e’
The reader will find detailed proofs of these theorems in a memoir by the
author¥,
* Hardy, 9.
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Iv

SPECIAL PROBLEMS CONNECTED WITH LOGARITHMICO-
EXPONENTIAL SCALES

41. The functions e, (/,2)*. We have agreed to express the fact that,
however large be @ and however small be b, #* has an increase less than that

of ¢, by
(4.11) 78 < o7,
Let us endeavour to find a function f such that
(4.12) 7 < f< e
If ¢ > (1)2 eh > ¢® Thus (4.12) will certalnly be satisfied if

log z < log f < #°.
Hence a solution of our problem is glven by
f=eloga) (g>1).
Similarly we can prove that
F=ell82)" (0 <q<1):
satisfies -(log 2)* < f<< 2.

It will be convenient to write .
ex = lyr =7,

a for a positive number less than 1, 8 for a positive number greater than 1,
and v for any positive number; and then we have the relations
(4.13) e (7)Y < 1 (112)* < e (o) < &1 (1 2)P < 1 (Lo ).
Let us now consider the functions '
f=e(lea)s f'=ep (lya),
where p, p’ are positive and not equal to 1. If r=+', > f' or f< f’ accordmg
as s<§ or s>¢. If s=¢, the same relations hold according as 7 ># or r < r'.

If r=7" and s=¢, then f> f’ or f<f' according as u>p"or u<p'. Leaving
these cases aside, suppose s> ¢, s—§'=0¢>0. Putting lyx=y, we obtain
_ f= er (Za'y)”'; f'=6’r'3/‘“l-
If r <+, it is clear that f<¢. If »r>7# let r—7"=p; then
Lf=(leg)s Lf'=ly* Zly: .
if p>1 the symbol = may be replaced by cv. If ¢ >p, . f<1.f" and so
S HHo<p, f>-f" If o=p, f>~f" or f < f" according as p>1 or p < 1.

Thus .

| Frfr=s>r=4§), fLf(r-s<r'-5),

while if r—s=7r"—¢, f>f' or f< f' according as p>1 or p <1, pu being the
exponent of the logarithm of higher order which occurs in f or /.
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From this it follows that
vty (la2)* < e (12 = (12)Y < &g ()’ < & (ls2)° < ...
e < ey (lax)* < oy (L 2)* < e (L) =" < ey (@) < ...,
e < e3(la@)* < eg (L2)* < € (fyzr) =ex” < e (11-70)‘B <.
These relations enable us to interpolate to any extent among what we may
call the fundamental logarithmico-exponential orders of infinity, viz. ({;z),
zY, ezx?. Thus

S )

(l.’l?)"’ e(ux)a
and e, e y oo (0<a<),

, e (B>1),

?

are two scales, the first rising from above z”, the second falling from below
ex”, and never overlapping.

These scales, and the analogous scales which can be interpolated between
other pairs of the fundamental logarithmico-exponential orders, possess
another interesting property. The two scales written above cover up (to put
it roughly) the whole interval between z¥ and ex?, so far as L-functions are
concerned : that is to say, it is impossible that an L-function f should satisfy

F> e (o), (every 7),

F=< trer (b (every 1);
and the corresponding pairs of scales lying between ({;,1#)? and (lzz), or
between ep2” and e,,,2Y, possess a similar property. This property is
analogous to that possessed (Theorems 14 and 15) by the scales (I,x), (e,x);
viz. that no L-function f can satisfy f> e.#, or 1 <f<{,z, for all values
of r. A little consideration is all that is needed to render the theorem
plausible: for a formal proof we must refer to the memoir quoted on p. 21.

4,21. Successive approximations to a logarithmico-exponential func-
tion. Consider such a function as

Fm o ()2 N (12) (a2 N D (B

If we omit one or more of the parts of the expression of f, we obtain another
function whose increase differs more or less widely from that of f. The
question arises which parts are of the greatest and which of the least im-
portance, ¢.e. which are the parts whose omission affects the increase of f most
or least fundamentally.

Taking logarithms we find

(4.211) i=%lz +J(1z) (o) N BD) 6T Lop g,
the three terms being arranged in order of importance. Again

l2f= lgx —l2+€, l3f= l3x+e.

1f we neglect the ¢'s in these equations, we deduce the approximations

(1) f==, (2) f=n=.
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By neglecting the last term in the equation (4.211) we obtain the much
closer approximation
(6) f= eV 1) (127)
In order to obtain a more complete series of approximations, we must re-
place the equation (4.211) by a series of approximate equations. Now if
b=/ (1z) (L)t eV (27 a2),
we have Ip=%lx+(lsz) (l32) + 23,
bo=lax—12+e Lp=lz+te
Hence we obtain (0) ¢p=Iz, (8) ¢p=o(z), and (5) ¢=y/(lz)eV ) ED? 4
approximations to the increase of ¢: of these, however, the first is valueless,

Inasmuch as it would make ¢ preponderate over the first term on the right

hand side of (4.211).
A similar argument, applied to the function eV (b®) (L2)% eads us to inter-

polate (4) ¢ =4/(lx) N (%) hetween (3) and (5). We can now, by substituting
these approximations to ¢ in (4.211), deduce a complete system of closer and
closer approximations to the increase of f, viz.
W)z @ Vo, @) Joo/lD, (@) Yo/t
(5) oo/ 10V BBV gy /(1) (paft eV () (2"
This order corresponds to the order of importance of the various parts of the
expression of f.

2e N 2) (I z)?

g’\/ (L)
)

4.22. Legitimate and illegitimate forms of approximation to a log-
arithmico-exponential function. In applications of this theory, such as
occur, for instance, in the theory of integral functions, we are continually
meeting such equations as

(4.221) f=1+e e, f=dlt92% 127" (>0).

It is important to have clear ideas as to the degree of accuracy of such
representations of . The simplest method is to take logarithms repeatedly,
as in § 4.21.

In the first example the term e does not affect the increase of f: we have
fevex® This is not true in the second; but If ~ 2% so that the term ¢ does
not affect the increase of {f; while in the third this is not true, though {{f~a.
Of the three formulae the first gives the most, and the last the least, informa-
tion as to the increase of f.

Such a formula as

(4.222) f=mellFe)e”
would not be a legitimate form of approximation at all, since the factor e (ex®)

may well be far more important than the accurate factor x, and (4.222) conveys
no more information than the second equation (4.221).

4.3. Attempts to represent orders of infinity by symbols. It is
natural to try to devise some simple method of representing orders of infinity

a+



26 SPECIAL PROBLEMS

by symbols which can be manipulated according to laws resembling as far as
possible those of ordinary algebra. Thus Thomae* has proposed to represent
the order of infinity of f=2x*(lz)™ (l,2)*... by

0f=a+alll+a252+...'|',
where the symbols [, 05, ... are to be regarded as new units. It is clear that
these units cannot, in relation to one another, obey the Axiom of Archimedes] :
however great n, nl, cannot be as great as /;, nor nl; as great as 1.

The consideration of a few simple cases is enough to show that any such

notation, if it is to be useful, must obey the following laws:
@) if f=¢, O(f+¢)=0f;

(i)  O(fp)=0f+0¢;

(i)  O{f($)}=0fx0p.
And Pincherle§ has pointed out that these laws are in any case inconsistent
with the maintenance of the laws of algebra in their entirety. Thus if

Oz=1, Olz=A,
we have, by (iii), Ollz =% and by (iii) and (ii),
Ol (zlz)=X(1+N)=X+2A2%;
and on the other hand, by (i),
Ol (zlz)=0 (la+Uz)=A.

Pincherle has suggested another system of notation; but the best yet
formulated is Borel's||. Borel preserves the three laws (i), (ii), (iii), the
commutative law of addition, and the associative law of multiplication. But
multiplication is no longer commutative, and distributive on one side only 7.
He would denote the orders of

eam,  an(lz)P, e, et e, VT $,
11 11
by a)+n, 7&+%, 2.(0, 0).2, (1.)2, w.é.;, ;.Q.w.

But little application, however, has yet been found for any such system of
notation ; and the whole matter appears to be rather of the nature of a

mathematical curiosity.

4.41. Functions which do not conform to any logarithmico-
exponential scale. We saw in § 1.2 that, given two increasing functions
¢ and ¢ such that ¢ > ¢, we can always construct an increasing function
J which is, for an infinity of values of # increasing beyond all limit, of

* Thomae, 1, 144.
1 The reader will not confuse this use of the symbol O (which does not extend

beyond this paragraph) with that explained in § 1.5.
1 ‘If 2>y >0, we can find an integer n such that ny >z,
§ Pincherle, 1.
| Borel, 4, 35 and 5, 14.
T (a+b) c=ac+be, but in general a (b +¢)==ab+ ac.
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the order of ¢, and for another infinity of values of # of the order of y.
The actual construction of such functions by means of explicit formulae
we left till later. We shall now consider the matter more in detail, with
special reference to the case in which ¢ and ¢ are L-functions.

We shall say that f is an érregularly increasing fonction (fonction a
eroissance irréguliere) if we can find two L-functions ¢ and (¢ >v)
such that

Sz (w=a, 2, ...), fSY (x=a, 2, ...),
&y, &y, ... and @y, @7, ... being any two indefinitely increasing sequences
of values of #. We shall also say that ‘the increase of f is irregular’
and that ‘the logarithmico-exponential scales are inapplicable to f'.

The phrase ¢ fonction a croissance irréguliére’ has been defined by various
writers in various senses. Borel* originally defined f to be @ croissance
réequliére if

& << (@ > ay)
or in other words if I{f = (x.
This definition was of course designed to meet the particular needs of the

theory of integral functions; and has been made more precise by Boutroux
and Lindeloft, who use inequalities of the form

ex“(lm)al . (lk:v)a"—a <f< exa, (Zx)al . (lkx)ak"‘a.

All functions which are not & crovssance régulrére for these writers are included
in our class of irregularly increasing functions.

4.42. The logarithmico-exponential scales may fail to give a complete
account of the increase of a function in two different ways. The
function may be of irregular increase, as explained above, and the
scales tnapplicable, or on the other hand they may be, not inapplicable,
but nsufficient (en défaut). That is to say, although the increase of
the function does not oscillate from that of one L-function to that of
another, there may be no L-function capable of measuring it. That such
functions exist follows at once from the general theorems of §3.4. Thus
we can define a function which tends to infinity more rapidly than any
¢rx, or more slowly than any /.2 ; and the increase of such a function is
more rapid or slower than that of any L-function. Or again (§ 2.5,
Theorem 6) we can define a function whose increase is, for every r,
greater than that of e, (/,#)? and less than that of e.., (L.z)e, if
0 <a<1<f; and (§4.1) the increase of such a function cannot be equal
to that of any L-function.

We shall now discuss some actual examples of functions for which
the logarithmico-exponential scales are inapplicable or insufficient.

* Borel, 2, 108. T Boutroux, 1; Lindelof, 2. See also Blumenthal, 1, 7.
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4.43. Irregularly increasing funetions. Functions whose in-
crease is irregular may be constructed in a variety of ways.

(i) Pringsheim* has used, in connection with the theory of the convergence
of series, functions of an integral variable » whose increase is irregular.
A simple example of such a function is

fn)= 1oL(ogs '”)I/T]T (r>1),
where [#] denotes the integral part of z. It is easily verified, for instance,
when r=2, that the increase of f(n) varies between that of #n and that of
n. 10—2\/(10g10n),

(i) A more natural type of function is given by

f=¢ cos? 8+ sin?é,
where ¢, Y, 6 are increasing L-functions and ¢ > 4> 1. We have to consider
what conditions ¢, y, 6 must satisfy in order that f may increase steadily
with #. That its increase oscillates between that of ¢ and that of v is

obvious.
Differentiating, we obtain

f'=¢ cos?d+y/'sin?0+2 (Y — ) 6 cos fsin 4.
We shall now assume that (as will be proved in the next chapter) relations
between L-functions, involving the symbols >, ..., may be differentiated and
integrated. The condition that f’ should always be positive is that

PV > (p—¥) 6%
or ¢y > 262 Since ¢’ >/, this involves ¢’ > $&'; or logp >4 ; and f will
certainly be monotonic if
logp > 6, ¢'>p26%/¢"
These conditions are satisfied, for example, if ¢=a"e2®, =2 ez’ 0=uz, and
a—2p+2 < B<a Changing our notation a little we see that
F=(2"*% cos? z + 27 % sin z) e*”
is monotonic if 0 <8< p — 1; and the increase of f oscillates between that of
2" 8ex? and that of 47 ~%ez®. Similarly it may be shown that
f=(e"* cos? z+¢"% sin? z)e?"

is monotonic if v <p <v+21; and again the increase of £ is irregular,

(iii) Borelf has shown how, by means of power series, we may define
functions which increase steadily with 2, while their increase oscillates
to an arbitrary extent.

Let ¢ () =Saz2”, ¥ (x)=3b,a™
be two integral functions of # with positive coefficients. The increase
* Pringsheim, 5 and 1, 373. 1 Hardy, 8 (1).

:t Borel, 2, 120 and 4, 32. Borel considers the cases only in which y=exz, qs-—ea:2
or ez, but h1s method is obviously general. The proof given here is however more

general and simpler.
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of ¢ and y may be as large as we like (§ 2.32, Theorem 2). We suppose
that ¢ >y > 4. Then we can define a function
S (@)= 3Zc,2",

where every c, is equal either to a, or to b,, in such a way that f~d
for an infinity of values @, whose limit is infinity, and f~ ¢ for a similar
infinity of values 2, *

Let () be a sequence of decreasing positive numbers whose limit is
zero. Take a positive number z, such that ¢ (z,)> 1, ¥ (2,) > 1, and a
number #; greater than z,. When 2, is fixed, we can choose #, 80 that

Sz < %‘771, Shpa" < %7]1)
ny (5!
and so, however ¢, be selected for different values of n,

oo ]
1 1

We take ¢, =a, for 0 <n<n,. Then
| f(21) — ¢ (1) | <f(an+ Cn) 0" < 1y,

and so, since ¢ () > 1,
(ml) -1
b (1)
Now let @, be a number greater than z,; we can suppose #, chosen
so that

nl—l
2 an:vz /l/f (@3) < 2ma, < E bnwz”>/¢ (@) < %1a
When 2, 1s ﬁxed we can choose n,, greater than n,, so that
S0nx" < §M, Dbudy® < L.
ng g

We take ¢,=b, for n, <n<mn,; and, however ¢, be chosen for n = n,,
we have

o [+ 2}
Sien s < 2 (g + by) 2" < 2.
L Ty

Also 1
m— -1 o0 0
|f (@) =¥ (@) | < 2 an2,™+ 5 bay™ + 3 Cpty + Shy 2
0 0 ny g
< %772‘[’ ('772) + %772 <MY (502),
f(xz) ’
d -1 .
ane 5o 4 (wz) =

¥ By ‘fevg for an infinity of values x,’ we mean of course that f/¢->1 when
x> through this particular sequence of values.
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It is plain that, by a repetition of this process, we can find a sequence
&y, &y, Xy, ... whose limit is infinity, so that

'I/’_(%_) <1, f( 2s) 1(
b (2s) Y (@ 4)
and our conclusion 1s established.

We may remark that not only f itself, but all its derivatives also, are
increasing and continuous. It is clear also that, if we were given any
number of integral functions ¢, ¢, ..., ¢z, with positive coefficients, we
could define /' so that f~ ¢,, as #—- o through a suitably chosen
sequence of values, for each of the functions ¢.

Another interesting method for the construction of irregularly in-
creasing functions by means of power series will be explained in § 6.34.

4.44. Functions which transcend the logarithmico-expo-
nential scales. We turn our attention now to functions for which the
logarithmico-exponential scales are not inapplicable but insufficient
(§ 4.42). Of the existence of such functions we are already assured;

-1

thus a function which assumes the values ¢,(1), &.(2), ..., &. (v), .
z=1,2, ..., v, ... has certainly an increase greater than that of any
logarithmico-exponential function.

. . ev ()

(i) The series b 0’

if convergent for all values of @, has a sum /(#) whose increase is plainly
greater than that of any e, (#). Suppose that £—1 = 2<% Then

e\ Crv \ T exv (K exv (K -
e: Ek% " ey (]c(+)v) = v (k(+>v) = Oy (ls;(I)l_) vz 1)
But, by the Mean Value Theorem,
iy (B +1) =000 (£) + €hrv (9) 1101 (9) - & () e (),
where ¥ is some number between % and £ + 1; and so
v (b + 1) > €y (£) piv-1 (k) ... €, (£).
It follows that the terms of the series
°° e, ()
y= k e, (v)
are less than those of the series

1+ 3 1
v=1 61 (k) e (k) - epsva (B)’
which is plainly convergent, so that the original series is convergent.
It 1s obvious that we can in this way construct any number of functions

S (z) of the kind required.
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(ii) Let ¢ () be an increasing function such that ¢ (0)>0, ¢ > 2. We can
define an increasing function f, which satisfies the equation

(4.441) fo@=F{f @)= (),
as follows.

Draw the curves y=uz, y=¢ () (Fig. 5). Take ¢, arbitrarily on OF,; draw
&y R, parallel to O X and complete _
the rectangle @,@;. Join @, @ Y
by any continuous curve inclined P
everywhere at an acute angle to z Qj
the axes. On this curve take any
point @; draw QP, QR parallel P Q"
to the axes, and complete the P, S/
rectangle @@. When ¢ moves Qe
from €, to €,, ¢ moves from @, Y =<
to @,, say; and as we constructed P
¢’ from €), so we can construct ¢’
from ¢)'. Proceeding thus, wedefine #(0) Qi Rz
a continuous curve @€, ¢:@; ...

: : J0) Q R
corresponding to a continuous and Q
increasing function f(x). Then
f(z) satisfies (4.441). Forify =f(x)
is the ordinate of @, it is clear that o) X
fa (x) is the ordinate of €, which Fre. 5
is equal to ¢ (z), the ordinate of P.

Let us write f(2)=/1 (%) and f{f(#)}=/fn.1(2), s0 that @ is the point
S (0), fu+1(0). Further, let us suppose that v is the function inverse to ¢,
that ¥ (2)=v (2), ¥ {§ (@)}=v(x), ...; and that the equation of ¢,¢; is
0 (z,7)=0. Then it is easy to see that the equations of @, @1 and of
Qon + 1 @on + 2 aTE Tespectively

6 {‘Pn (%), ¥ (y)}=0, 0 {\l’n+1 (y)a Vn ('7">}=O

Suppose for example that ¢ (z)=e¢%, 0¢,=1, and that ¢,¢), is the straight

line y=}+«. Then the equations of Qg @on 1 and Of Qgpyy @on+ o aTE
Z'n.y=% + b, an=%+ln+ 1Y,

or y=tn_ (e lamr@)t=en_a{lacsz)V% =2, (),
and y=en{lamr2)NG =ty {(lng@) ™ = (2),
say. Now (§ 4.1)

27 <A< e Ay L K< e < 3 < €
and a function f, such that N\, < f<pu, for all values of n, transcends the
logarithmico-exponential scales.. Our function f is plainly an example*.

It is easily verified that A, A,z < ¢* and p,u, 2 > ¢ for all values of ». Hence

it is clear a priors that any increasing solution of (1) must satisfy A, < f< pn
for all values of x.

y=¢(r)

* For fuller details see Hardy, 9.
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This graphical method may also be employed to define functions whose in-
crease is slower than that of any logarithm or more rapid than that of any
exponential. It can be employed, for example, to solve the equation

$ (29)=2¢ (2);
and it is easily proved that the increase of a function such that ¢ (2%) < ¢ (»)
is slower than that of any logarithm.

4.5. The importance of the logarithmico-exponential scales.
We have seen that it is possible, in a variety of ways, to construct
functions whose increase cannot be measured by any L-function. It is
none the less true that no one yet has succeeded in defining a mode of
increase which is genuinely independent of all logarithmico-exponential
modes. Our irregularly increasing functions oscillate, according to a
logarithmico-exponential law of oscillation, between two logarithmico-
exponential functions; and the function of § 4.44 (ii) was constructed
expressly to fill a gap between two logarithmico-exponential scales. No
function has yet presented itself in analysis the laws of whose increase,
in so far as they can be stated at all, cannot be stated, so to say, in
logarithmico-exponential terms.

It would be natural to expect that the arithmetical functions which
occur in the theory of numbers might give rise to genuinely new modes
of increase; but, so far as analysis has gone, the evidence is the other

way. See §6.26.

v
DIFFERENTIATION AND INTEGRATION

5.1. Integration. It is important to know when relations of the
types /() > ¢ (), etc., can be differentiated or integrated*. For brevity
we denote

[r@a. ["s@a

(where a is a constant) by F'(x) and @ (z).

It may be well to repeat that f and ¢ are supposed to be positive,
continuous, and monotonic (at any rate for #> ,), unless the contrary
is stated or clearly implied. Some of our conclusions are valid under
more general conditions; but the case thus defined, and the corre-
sponding cases in which / or ¢ or both of them are negative, are the
cases of most importance.

* The problem was first considered generally by du Bois-Reymond, 1, 2, 4.
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Lemma. If ® >1, and /> H¢ for z >z, Z a, then x, can be found
so that F'>(H—-08)® for > : similarly f<he for x>z, involves
F<(h+8)® for w>a,.

For, if /> H¢ for « > x,, we have

F:ffdbfofdmﬂﬁ ¢dt=H<I>+L%fdt—H]:°¢dt.

Since ® > 1, we can choose 2, so that

é(ﬁ%fdt+f[/:°¢dt><8

for > x,; and the first part of the lemma follows. The second part
may be proved similarly. From the lemma we can at once deduce

Theorem 19. [f either F > 1 or ® > 1, then any one of the relations
I, <L, X XD oo

snvolves the corresponding one of the relations
F>"<I>) F'<(I), qu” F%@, Feod,
To this we may add

Theorem 20. If both / - Sdt, / ) b dt are convergent, then
S, < X X oo

tnvolve corresponding relations between
Fi= [T st o= g
€T X
The proof we may leave to the reader.

5.21. Differentiation. From Theorems 19 and 20 we deduce

Theorem 21. Iff>1or¢ >1,0r <1 and ¢ < 1, and if some one
of the relations >, <, X, =, ~ must hold between [ and ¢', then

> ¢ involves ' > @' ; and there are corresponding results for the other
relations.

In interpreting this theorem regard must be paid to the conventions laid
down in § 1.4. Thus if />>¢>1, " and ¢’ are positive, and f' > ¢'. But if
F>1>¢, ¢ is a decreasing function and ¢’ <0. In this case /' > —¢’, a
relation which we have agreed to denote by f'>¢". If 1> f > ¢, both /" and
¢’ are negative: the relation —f"< —¢’' would involve

_f:f’dt-<—/: ¢'dt

or f < ¢, and is therefore impossible; and similarly —f">< —¢'is impossible.
We must therefore have —f' > — ¢, a relation which we have agreed to denote

H, 3
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also by f'>¢'. The case in which <1, ¢=1, is exceptional ; any one of the
relations f'> ¢, etc. may hold in this case. Thus if f=1+e~% ¢=1/z, we
have /> ¢, f'<¢". The fact is that in this case f, regarded as the integral
of f’, is dominated by the constant of integration.

It is to be observed that the assumption that one of the relations
holds between /" and ¢’ is essential. We cannot snfer that one of them
holds; we cannot even infer that f/* or ¢’ is a steadily increasing or
decreasing function. Thus if f=¢® ¢ =¢® + sin ¢®, we have f' =¢” and
¢ =¢" (1 +cos ). Here fand ¢ increase steadily and /"~ f~¢; but
¢’ does not tend to infinity, and in fact vanishes for an infinity of values
of z. A.gain if ¢ =¢ (N/Q + sin x) + %mz’
we have ¢ =¢"(J2+sinz+cosz)+a
and ¢ > ¢° while ¢ oscillates between the orders of ¢® and 2. It 1s

possible, though less easy, to obtain examples of this character in which
¢’ also is monotonic.

5.22. Differentiation of Z-functions. If fand ¢ are L-functions,
so are ' and ¢, and one of the relations /" > ¢, /"=, f'< ¢
certainly holds (§ 8.2, Theorem 13). Thus in this case both differentiation
and integration are always legitimate* except when f X1, ¢ 1, or
JS<X1, ¢ X1

In what follows we shall suppose that all the functions concerned are
L-functions, or at any rate resemble L-functions in so far that one of
the relations /> ¢, /= ¢, f < ¢ is bound to hold between any pair of
functions, and that differentiation and integration are permissiblet.

Theorem 22. [f fis an tncreasing function, and f' > f, then f > 52,
I < f, then f< & Similarly, if fis a decreasing function, f > f and
S < S involve f < 2% and f > =% respectively. If f' =.f, then we can
Jind a number p such that f= o*® f,, where e=% < f; < €%,

The proofs of these propositions are almost obvious. Thus if / is an
increasing function, and /> /, we have

SIS >1, logf -z,
and so log f> Az for >, t.e. f>e%%, or, what 18 the same thing,
J > e~ The last clause of the theorem follows at once from § 3.5.

Theorem 23. More generally,if vis anyincreasing function, f'[f > |v
involves f v or f<v~8, according as f is an increasing or a decreasing
Junction; and f'| f< 0 [v involves f< 0 or f-v78 If f']| = [v, we
can find a number p such that f=v*f, where v=°< fi < 2%

* A tacit assumption to this effect underlies much of du Bois-Reymond’s work.
"~ + The results which follow are all in substance due to du Bois-Reymond.-
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When f 1s an increasing function, which tends to infinity with z, we
shall call f'/ f the type ¢ of f*: 1t being understood that ¢ may be re-
placed by any simpler function = such that ¢=r. The type of a de-
creasing function / we define to be the same as that of the increasing
function 1/f. The following table shows the types of some standard
functions:

FPunction ... Uz le o &

1 1 1

If f>¢, then f[f>=¢'/p. By making the increase of f large enough we
can make the increase of ¢=/"/f as large as we please. The reader will find it
instructive to write out formal proofs of these propositions, and also of the
following.

1. As the increase of f becomes smaller and smaller, f'/f tends to zero more
and more rapidly, but, so long as f->, we cannot have

]]i‘. < ¢ (2), f bdz convergent.

If on the other hand the last integral is divergent, we can always find f so
that £ > 1, £/f< ¢.

2. Although we can find f so that f’/f shall have an increase larger than
that of any given function of #, we cannot have

]]_i/ > ¢ ( f )y f ’ a?f%i) convergent.

If on the other hand the last integral is divergent, we can always find f so

that 7[>~ ¢ (f).

Thus we cannot find a function f which tends to infinity so slowly that
fIf<1/z* (a>1). But we can find fso that f/[f <1/zlzlizx (e.g9. f=l,x). We
cannot find 7 so that f//f > or f'>f1*%(a>0). But we can find f so that
T >1f (eg. f=eso).

3. If f>e.x for all values of %, f'[f satisfies the same condition, and

F > flflaf b f 1.

There are of course corresponding theorems about functions of a positive

variable # which tends to zero.

5.23. Successive differentiation. du Bois-Reymond i has given
the following general theorem, which enables us to write down the in-
crease of any derivative of any logarithmico-exponential function. We
write ¢ for f7//, as in the last section.

* du Bois-Reymond (1, 2) calls f/f’ the type; the notation here adopted seems
slightly more convenient.
+ In this case f cannot be an L-function (§ 3.4, Theorem 14). It is however sup-

posed to possess the properties stated at the beginning of this section.
! du Bois-Reymond, 2.

¢22P el 6

Type aft e ewex
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Theorem 24. (i) If ¢ > 1/ (so that f > 22 or f<&™2) then
S=EAZSe=00 . =0
(1) Ife<L1/a (so that 1 < f<a® or 278 < f<1) then
S = =2 = e

(1) If t1]z (so that f=a*f,, where z7% < fi < a®), then if p s

not integral either set of formulae is valid. If p is integral then
SEaf Zatf . Rk f W Z e fut g et ferd g

where t, 1is the type of 1, unless ;< 1.

(1) If¢>1/a, 1/¢<a and so ¢/£2<1; hence ¢/t <t =f"|f or

St <[t
Differentiating the relation /' 3< /¢ and using the relation just es-
tablished, we obtain
PR SRS

Thus the type of /' is the same as that of /. The argument may there-
fore be repeated, and the first part of the theorem follows.

() If¢<1/2, ' < f and so
af" +f' LS
which cannot be true unless 2/ = . Differentiating again we infer
xf/ll + 2fll _<fll,

whence 2/ > f”'; and so on generally*. Thus the second part follows.

(i) If ¢x1/x, f=a*fand ¢, the type of f1, satisfies ¢, < 1/z. Then

S = par o+ 2 Rk (o wh) Ear T

Similarly f”=a*~2f;, and so on. We can proceed indefinitely in this
way unless p is integral: in this case f® < £, and from this point we
proceed as in case (ii).

If wis an integer n, and f; =21, then /™31, but the theorem fails
for the higher derivatives. In this case f= 42" +0(2") = Aa" + ¢, say,
and we must begin our analysis again with ¢ in place of /.

Ezamples. (i) If f=eV® then t=2">1/z, and fOixz eV, If
f=-ellogf then t=(log z)/x > 1]z, and f = elog2) (log x)/am.

(ii) If f=(log )™, then ¢t=1/(xlog #) <1/z, and

SOt~ =) f=(log z)™ /™,
(i) If f=a?llz, t==1/x. Here
f=Zallz, =z, "= xlz, " Z]1 /2, ....

* More precigely zf”co - f', f"”e —2f", and so on.
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(iv) The results of the theorem, in the first two cases, can be stated more
precisely as follows. If ¢>-1/x, then

PSS
FPeo (=11 (u= 1)1 ffan,

If f is a positive increasing function, and ¢>>1/z, then all the derivatives
are ultimately positive. If ¢ <1z, they are alternately positive and negative.

If t <1/, then

5.3. Further theorems on integration. It is possible to give a finite
system of rules which enable us to determine the asymptotic behaviour of the
integral of any L-function. The results are naturally not essentially different
from those of § 5.23. We write

Pa= [ fod Fe=| rod
a X
according as the latter integral is divergent or convergent.

Theorem 25. If f > or f <z~ 8, then

Feo fHf'.
If f=x2f, where 178 < fi < 28, then
F patl
~ar1/t
unless a= —1, in which case further rules are required.

(1) If />, the integral up to infinity is divergent, and

[ [Faf g f@P @ [%,df
F- | rae= | r G- - [ ()
Now log f > log z, and so

DL oL () [ [ (h)

so that Fevf2/f. The case in which /< z~2 may be disposed of similarly.
(2) If f=2*f;, where a> —1, the integral up to infinity is again divergent;
and

F 2 d e +1 a*t 1 1 X Y d
~[epa=ER fw - A = o [
But.
! 1 ; x x
log f1 < log z, ffl—1<9_f’ zetl ' <z fy, / taﬂfl'dt-(/ tofide;
a a
whence the result. The case in which a <—1 is not essentially different.
When a= —1, further analysis is required, which will be found in the
author’s paper quoted on p. 21.
Another interesting problem is that of the behaviour of F when f=ge®¥, ¢
and y being L-functions. Let us suppose that ¥ >1 and ¢ >+, so that the
integral does not converge up to infinity*. Then the problem is solved by

* If yx<1, ¢*¥ tends to a limit, and the oscillating factor introduces no new
feature. If ¢ <y/, the integral up to infinity is convergent.
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Theorem 26. If > 1, ¢ >, then F is asymptotically equivalent to

PtV AR ] ¢V
Y14

where <I>~/x¢dt,

according as \r <I®, Yo AlD, or > 1d.
The details of the proof will be found in a note by the author*.

5.4. Some ‘Tauberian’ theorems. We pointed out in § 5.21 that
inferences from the order of magnitude of a function to that of its
derivative are essentially more difficult than inferences in the opposite
direction, and that special conditions are always required in order that
any such inference should be possible. The hypothesis of § 5.22—5.23,
that the functions concerned are L-functions, 1s of course an assumption
of a very drastic kind. In this section we abandon this hypothesis, and
prove some theorems of a more general and much more subtle type.
These theorems belong to the class which Mr Littlewood and the author
have called ‘Tauberian’.

Theorem 27 7. If zf (z) is continuous and increasing for x> a, and

F(z)= L fdteo Az (m>0),

then S (@) ~>mAzm
The converse inference would be an immediate corollary of
Theorem 19. .

We may suppose 4 =1, so that F'=a2"+0 («™). Hence, if 5 is positive
and less than 1, we have

Fa+n2)-F (2)= }'””m Fdt={(1+ gy —1} 2™+ 0 (&™)
=mya™ + 0 (n?2™) + o (2™),

where O (v*2™) is a function whose modulus is less than a constant
multiple of n*2™ for all values of # and » in question. But

e > 12 (2)
J e

since ¢/ increases throughout the range of integration. Combining this
inequality with the preceding equation, and dividing by »a™/(1+7),
we obtain

L@) <o (14 9) + i +0 (1),

wm—1=

* Hardy, 8 (6). + Landau, 2, 218 and 8, 116.
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where H is independent of 7, and of 4. If now we make #— w0, we find

A

SMm—1 ==

m (1 +9)+ Hy;
XL —o= o0
and this involves
lim ,(n 2

2 -0
since » may be as small as we please. Arguing in the same way. with
the interval (z — na, @), we obtain

@),

= m,

lim

X > 0

and these two inequalities embody the result of the theorem.

Theorem 28. If (1-2)f (x) is continuous and increasing jfor
O0<x<1, and

(5.41) F@)~ i (m>0)
when x — 1, then
(5.42) ' (@)~ a_m—g

We have only to write
1
x—m, S(@)=9(y)
in Theorem 27, and then replace y by 2.

Theorem 29*. [f f(z)=Sa,a" is a power series with positive co-
¢fficients, com)ergent Jor 0 =<1, then (5.41) involves (5.42).

Let @, + a, + ... + @, = A,, so that

f (a: A
g(z)= EA z" ) ( myTEE

Then (1 -2)g' (x)= A1 + (2A2— 1) z+ (84;—24,) 2% + ...
increases steadily, since the coefficients are positive. Hence, by
Theorem 28,

(m-+1)4
( ) (1 x)m+2;

, A
Theorem 30. If f(x) possesses a second derivative [f" (x), and
F=0(z), f"=0(aB), where B>—1, when & -, then
f=0{ztl+h)
If az B+2 the result is trivial, since /' =0 (2®*), by Theorem 19,
* Hardy and Littlewood, 2.
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and B+1=4%(a+B). We may therefore suppose that a <B8+2. If
0 <n <1 we have, by Taylor’s Theorem,
S (@+nz)—f (@) =nzf" (2) + s 22> f" (2 + Onz),

where 0 <6 <1; and so

:z:7m| +1/ (@) | + 3z | f" (93+977$)|<H<x;_1+ nxﬁ“) |

where H is independent of # and ». We may take *=2*"#7% since
this is certainly less than 1 when # is large; and then

| (@)| <2 Hat 4P,
which proves the theorem.
The theorem is not true if B8=—1: consider, for example, the case
JS'=a+loga. Itis one of asystem of theorems important in the theory
of infinite series*.

()| =L @E

5.5. Functions of an integral variable. There are theorems for
functions of an integral variable n, corresponding to those of §§5.1—5.4,
but involving sums

A=+, +...+a,
istead of integrals, and differences
Aa,_, = Oy — Qp4y

instead of differential coefficients. The reader will be able to formulate
and prove for himself the theorems which correspond to those of the
preceding paragraphs. Thus

C@n > by @y < by @y X by 0= by, g o by, tnvolve the corresponding

equations for A, and B, if one at least of A, and B, tends to in-

Jinity with n’;
and so on T,

5.6. Further developments of the Infinitarealeiil. The
functions f(« + a), f (az), ete. It is often necessary to obtain approxi-
mations to such functions as

Sl@x+a) flax)
f(.ﬁb‘) ’ f(m) ’ f(w+a’)'—f(x>)
where o is itself a function of zf. We shall assume that all the func-
tions which occur are L-functions, or at any rate that the theorems of
& 5.2—5.8 may be applied to them as if they were.

* See Hardy and Littlewood, 1, 2.
4+ This is a well known theorem of Cauchy and Stolz: see Bromwich, 1, 377;

Knopp, 1, 72.
+ du Bois-Reymond, 4. The substance of the theorems which follow is in the

main due to du Bois-Reymond ; but his presentation of them is inconclusive.
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Theorem 31. If a < f|f' then

S @+ a)
S (@)
We may suppose that />1 and ¢>0. If, in the first place, ¢=/"//<1,
we have
f——g”f(;)“) — eta)~1f(a) = { i ((Z: ))} =efat(z+a)l,
and ¢ (z+ o) < Kt (@), so that @ ¢ (@ + a) -0, which proves the theorem.
If¢>1, and T=1/t, we have

at(m+a) at(x)T< t(“/')/ 1+a T](Ww(‘*‘)al)}y

where O<a;<a<aq. But at<1, a/T-< 1, and 7"<1 (since 7'<1).
Hence @ ¢ (2 + a) = 0, which again proves the theorem.

In particular the conditions are satisfied if (i) 72 </ <a* and
a<zor (1) e84 < f<er% and a < 1.

Theorem 32. If la < flzf' then

Slaz)
f@)"~
This is a corollary of Theorem 31: we have only to write lz =y,
la=0b, and f(x) = ¢ (y).
In particular the conditions are satisfied if ({z)™2 < /< ({z)* and
g d<a<rorif z72 < f<a® and @ ~ 1.

We add some further results.
(1) If a < 1/f" then f(z+a)—f(z) < 1.
(2) If a < f'[f" then [ (z+a)—f(2) ~af’ (2).

These results follow from Theorem 31 and the formula

Fl@+a) D) 0 caca).

S (@)
The second result is true in particular if 1 < f< 8 and & < #, or if f > 2% and
a < f|f'; the forms of the conditions to be imposed on a may be deduced

from Theorem 24,

(3) Ifem AN L £ <L AV, then

Flf@l . [pU @ @)
F@ b e{ 7 @) } L

and, the limits of the two functions are the same: and if e~ 8NVU® L f L N Ua)
this limat vs unity.
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Suppose that f> 1, and let f(2)=¢ (Iz), a=F(x). Then
J) _ s (e +1ay— 1 ) — olad (o-+iay)/é (ix-+a)
f (=) '
where 1 < a; <a. The exponent is
¢ (lx+lay) 1P ()
¢ (lz+lay) {p (lx+Llay)”
Now a=f ()< % and therefore la; < la< Iz, and so, by Theorem 31,
I (lz+lay) ~ I (Ix)

if Ip < 2 or if f< eU®)* which is certainly the case. Hence the exponent
is asymptotically equivalent to :
Lp (u) ' (w)/p (u),
where u=lz+1la;. And 1 (/)1 if (IpP=<Xu, te if p=eAV% ar
<AV In this case f(ax) =f(x); and it is easy to see that if
S =< &N the symbol < may be replaced by ~.

(4) If F(a)=a¢ (2), and e =N < ¢ < SN, then

fo@)=ff (@) oxd? ..., fuovzd®, ...
5.7. Approximate solution of equations. We may say that
| y=v (2, %)
is an ‘approximate form’ of y if y» is a known function and » an unknown
function whose increase is subject to known limitations. Thus
P (urvl), el +u)x (u <1), altuex (v < 1)

are approximate forms of y=wxe®/lx, and represent the increase of y with
increasing accuracies. Another example of an approximation is given by the

formula
AR AC)

o f@) U fla)
valid if ¢ < fIf' < 1.

It is often important to obtain an asymptotic solution of an equation
f(#, y)=0, e to find a function whose increase gives an approximation to
that of y. No very general methods of procedure can be given, but the kind
of methods which may be pursued are worth illustrating by a few examples.

Ip (lz+1a))

Suppose that the equation 1s
(6.71) z=y«(y),
where ¥ =8 <« <% If the increase of « is so slow that x {y«x ()} <X« (%)

it is clear that
¥ = ok (y) = alx (2):
and if the increase of « is slow enough we may have y ~ z/« (2).
The conditions
e AN L () < ANW) e 3NW)  « () < SVW)

are, by (3) of § 5.6, enough to ensure the truth of these hypotheses; and then
y=wuz/k (), where %<1 (or u~1), is an approximate solution of our equation.
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-du Bois-Reymond has proved that more elaborate approximations, such as
ux
y= < @R’
have a wider range of validity. The more general equation z=%"« (y) can
clearly be reduced to the form considered above by writing 2™ for z and «™

for «.
In general, if z=¢ (y), the more rapid the increase of ¢ the more precisely
can we determine the increase of y as a function of #. Thus if £=ye? we have

{xz=y+ly and
y=lx—ly=lr(1-u),

where u ~ ly/lz ~llz/lz. This is a solution of a much more precise kind than

those considered above.
The reader will find it instructive to verify the following examples.

(1) If x=ye(ly)%, then y vae (lx)%.
(2) If x=ye(ly)%, then
yeoze{—(In)5+§ (x)).
(3) If w=y™ ()™ (ly)™ ... (Ly)™, then
g eom™Im glm qay=mifm g gymmelm

(4) If z=y/ly, then
2
y=x (Zx + l2x+l2—x> +0 {x (1) } .

lz (lz)?
The last example is of interest in the theory of primes.

VI
APPLICATIONS

6.1. Ix this chapter we give a brief sketch of certain regions of
analysis in which the ideas of which we have given an account are of
dominating importance.

6.21. Convergence and divergence of series and integrals.
The logarithmie tests. A series Su, of positive terms is convergent if

<X (0ln ... lymym)™ (L) ™10,
where a> 0, and divergent if

wy = (nln ... Ln)™
Here £ = 0 and /,n =n.

oo

An integral f J(#) da, with positive integrand, is convergent if

S (@lz ... by o) (L)',
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where a >0, and divergent if

S (zle ... L)
Similarly the integral / S (z) dz 1s convergent if
0

S<A/2){1(1)2) ... by (L)} {& (1)} 1,
where o> 0, and divergent if
F=)2) (D) ... L (1)}

These results are classical. The first general statement of the ‘logarithmic
criteria’, so far as series are concerned, appears to have been made by
De Morgan, 1, 325. The essentials, however, appear in a posthumous memoir
of Abel (2) also first published in 1839 : see also Abel, 1. The case of £=1 had
been dealt with by Cauchy, 2. Bertrand (1) arrived at De Morgan’s results
independently, and the criteria are very commonly attributed to him. The
first general and explicit statement of the criteria for integrals seems to be

due to Bonnet, 1.
For further information concerning the logarithmic tests, and the corre-

sponding ‘ratio-tests’ for the convergence of series, see Bromwich, 1, 29;
du Bois-Reymond, 3; Goursat, 1 (1), 403; Hardy, 1, 374; Knopp, 1, 117;
Pringsheim, 1 (310), 2 (77), 3; Riemann, 1.

6.22. Theorems analogous to du Bois-Reymond’s Theorem.
We should mention also certain theorems of a negative character, ana-
logous to du Bois-Reymond’s theorem of § 2.1.

Given any divergent series 3w, of positive terms, we can find a
function v, such that », <w, and 3v, is divergent ; 7.e. given any di-
vergent series we can find one more slowly divergent.

Given any convergent series 3w, of positive terms, we can find v, so
that v, > u, and 3w, 1s convergent; 7.e. given any convergent series we
can find one more slowly convergent.

(Given any function ¢ (n) tending to infinity, however slowly, we can
find a convergent series 3w, and a divergent series Zv, such that
V%= b ().

Given an Infinite sequence of series, each converging (diverging)
more slowly than its predecessor, we can find a series which converges
(diverges) more slowly than any of them.

There is no function ¢ (%) such that u,$(n)>=1 is a necessary
condition for the divergence of Zw,, and no function ¢ (%) such that
¢ (n)>1 and u,¢ (r)=<X1 is a necessary condition for the convergence
of Su,,. '

If u, is a steadily decreasing function of n, then nu, <1 is a necessary
condition for convergence; but there is no function ¢ (n) such that
¢ (n)>1 and ne¢ (n) u, <1 is a necessary condition.
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If however nu, decreases steadily, then nlog nu, =0 is a necessary

condition; and if ny (n) w,, where ny (n) > 1 and / %} 1, decreases
steadily, then
an
(mb @) [y) 10
1S a necessary condition.
If 3w, 1s divergent, and U,=1u, + uy+ ... + 4y, then 3 (u,/U,) is also
divergent; and if also u, < U, then

Uy | Uy Uy
71 + 72 + .+ Fn

See Abel, 1, 2; Bromwich, 1, 40; Dini, 1; Hadamard, 2; Littlewood, 5;
Pringsheim, 1 (353, 939), 2 (89), 3, 4.

For examples of series and integrals which converge or diverge so slowly as
not to answer to any of the logarithmic criteria, so that the logarithmic tests
are insufficient (§ 4.42), or to which the logarithmic tests are inapplicable,
see Borel, 4, 5; du Bois-Reymond, 3, 7, 8; Gilbert, 1; Goursat, 1 (1), 219;
Hardy, 3, (1), (2), (3), (6); Pringsheim, 1 (353), 3 (343), 9, 6; Thomae, 2.

~log U,.

6.23. Asymptotic formulae for finite sums. A closely connected
problem is that of the determination of asymptotic formulae for

Ap=ay+a,+ ... +a,

when the behaviour of @, for large values of n 1s known. The principal
weapons for dealing with this problem are (i) the theorem of Cauchy
and Stolz, that 4, ~ CB, if 2b, 1s a divergent series of positive terms
and @, ~ Cb,, (i1) the ‘BEuler-Maclaurin sum formula’

570) = ["F@)da+ C+1f )+ 217 ()= L2f" () + o
1 : :
and 1n particular (ii1) the theorem of Maclaurin and Cauchy that
FO+F @+ s ) [ F (@) da,

where f(z) is a positive decreasing function of z, tends to a limit when
n > 0,

For (i) see Cauchy, 1, 59; Jensen, 1; Stolz, 1; and for (iii) Cauchy, 2;
Maclaurin, 1 (1), 289. Proofs of either theorem will be found in any modern
text book of analysis or the theory of series; see Bromwich, 1, 29, 377 ; Knopp,
1, 68, 286. For further developments see Bromwich, 2; Dahlgren, 1; Hardy,
3(4),8; Norlund, 1. The literature of the general Euler-Maclaurin sum formula
is too extensive to be summarized here ; see Bromwich, 1, 238, 324; Norlund,

1, 2; Pringsheim, 2, 102; Seliwanoff, 1, 929.
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Among the most important results which follow from these theorems

are
§+1

1*’+2s+...+n*r\).;2 (s>—1),

+1
s s S ”’s+1
15+ 2°+ oo+ 1 —mwé(—s) (-1 <s5<0),
and generally
ns+1 B

n
8 __ — 1, -1 _?' 8—2i4+1 _
oy - IEDT 1> 2" £(=9)

Here s 1s positive and not integral, {(—s) is the Zeta-function of Rie-
mann, and the summation with respect to ¢ is continued till we come
to a negative power of n. Again

1+—;—+...+712—10gn~A,

ala+1)B(B+1)

+ + ... t0 m terms
1.y 1.2.y(y+1) e,

T'(y) netB—y

P(a)P(B)a+B y (a+B>7),
I (s )
or NI‘(Sn)i—IF‘(,BS logn (a +B=7).

In connection with the last result see Bromwich, 4; in the earlier formula
4 is Euler’s constant.

The most important formula of this kind is
logl+log2+...+logn—(n+3)logn+n~}log(2n),
which, 1n the form
nleon™ g~ J(2m),
constitutes Stirling’s Theorem. Another formula of the same kind is
119238 gt ~v Bpi® Hin iy = dn®

where B is a constant defined by the equation
log v

logB=T1710g27r+T177+ L E

The literature of Stirling’s Theorem is also very extensive; see Bromwich,
1, 461; Brunel, 1; Nielsen, 1, 92; Whittaker and Watson, 1, 251, 276. As
regards the constant B see Barnes, 1; Glaisher, 1, 2; Kinkelin, 1.

6.24. A proof of Stirling’s Theorem. Stirling’s Theorem, as
stated in §6.23, may be proved in an almost elementary manner*; but

* For such a proof see, e.g., Cesiro, 1, 221, 395; Jolliffe, 1. The principal
difficulty of an elementary proof is naturally the determination of the constant ,/(2x).
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it will be more 1instructive here to give a proof depending on the re-
presentation of I' (n+ 1) as a definite integral. The method employed,
the principle of which may be traced back to Laplace*, is that which,
when extended to the field of the complex variable, is known as the
‘Methode der Sattelpunkte’ or ‘method of steepest descents’t.

We suppose = positive and large, but not necessarily itegral. In
the integral

T'(n+1) =/ e “atdz
0
the maximum of the integrand occurs for # =n. We therefore write

(6.241)
@ (1=-m)n (142)n n ®

I‘(n+1)=J:/ :f +f +f + | =Ji+Ji+ I+ Sy,
o Jo (

(1-7)n 1+9)n on
say, where 0 <9 <1.
In J, and J; we write 2=n(1-y) and 2=n(1+y) respectively.
Observing that the functions ¢¥ (1 —%) and ¢¥ (1 +y) each decrease
steadily as y increases from 0 to 1, we obtain

(6.242)
Fimwen [ 91— gp dy <aee (-t e B,
(6.243) !
Jy = ni+ f "o (14 )t dy < e (g (14 )P = o By,
say ; here F) and nE3 are less than 1. And if we apply the same trans-

formation to J; as to J;, and observe that ¢~ (1 + y) also decreases from
y =1 onwards, we find

(6.244)
«© n—1 r®
Ji=n"le " f o™ (1+y)ldy <n"e ™ (g) / eV (1+y)dy
1 1

_ 3 a1 2)“
—26n € <6 .

From (6.242), (6.243), and (6.244) it follows that

(6.245) lim 2™ "3 (J, + J,+ J) = 0.

In J, we write again z=n(1+y). We have then

nlogz—ax=nlogn—n—ny+nlog(l +g/)=nlogn—n——m/2——
2(1+ 6y

where — 1 <6 <1. Hence J, lies between

ntl,—n [ ny _ 'n+£ -n / —'wf‘
n"*e /_ne{ 51 - n)z}dy 1-nn N2 . dw,

* Laplace, 1, 88, T Watson, 1, 235.



48 APPLICATIONS

where {= l—i—n \/ (7—27’) ,

and the corresponding expression in which 1 -7 is replaced by 1 +7.
The limit of the integral when n, and therefore ¢, tends to infinity is
N7 Hence

(6.246)
lim n TR, 2 (1-n) (@), Lim PR L A (1+19) J(2m).

From (6.245) and (6.246) it follows that
(1—7) J@r) =2 limn ™ ¥ T =Tmn™ "~ 2" = (1 +n) J/(2n).
But 7 is arbitrary, and J is independent of . Hence

(6.247) lim " "3 J = J(2m),
which is Stirling’s Theorem.
As a corollary we note that
Plata) [+ a7 s,

T(n+b) (n+b)t0"%

6.25. A general result for L-functions. The results of Section 5
enable us to obtain a general formula for 4, whenever a,, 1s an L-function
of n and 3a, is divergent.

Theorem 33. If a, is the value for x=mn of an L-function a(z),
and Za,, is divergent, then

(6.248)

- (6.251) Ay,~a(n)
if a (@) > e?, _
(6.252) AnN/lna () dw
if a(z) <%, and
(6.253) Anrvta—e;a/lna (z)dz

if a () = b (x), where 6% < b ()< .

Suppose first that @ (#) > €%, so that ¢’ > a. Then, if we suppose, as
we may do without loss of generality, that @ (#) increases from & =1,
we have . . .

Agr= ?‘. a(v) < fl a(x) dxw{—(;% < a(n),
25. Hence 4, ~a(n). ‘
pose @ (z) < ¢>, so that o' <a. Then

" a(@)da- / " fa()-a(e)}do= / | (v-a)a (r)da,
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where v— 1 <r<v. Buta'(r)~a' (v), by Theorem 31; and so
a-c<a (v)<a(v)=a,.
It follows that @, ~c¢, and 4,~ C,, which is (6.252).
Finally suppose a () = ¢**b (z). Then

Ly_l{a (v)—a () dz=0(v) [’_ l(e‘“' — ) dz + fyy_ le“” {b(v)—b(x)} dz
=B+,
say. Here b (v)—b(z)=(v—-2)b'(r)<b'(v), and so
, Yy e b (v)<ev b (v) =a,,
while B =(1- Lo “ae).

Hence

ay—¢,~1—
and (6.253) follows.

It 1s also possible, by using Theorem 26, to obtain formulae for 4, when

ap= fnei‘i’", where f and ¢ are L-functions subject to certain limitations; but
the results are more complicated and less general. It is easy to see that

comprehensive results are not to be expected here. The series 3¢ for
example, behaves in a very intricate manner, depending on the arithmetic
nature of the number a*. But, if the increase of f, and ¢, is sufficiently slow,

A, will behave like the integral /n 7 () €™ qu, and the series = a, will be
convergent if < ¢'". ’

6.26. Formulae involving prime numbers and arithmetical functions.
It is known that, if = (n) is the number of prime numbers not exceeding 7, '
and p, is the nth prime, so that = (#) and p, are inverse functions, then

(6.261) 7 (n) e
More precisely
(6.262) w(m)= / log ¢+0 (n "Al\/(lnlln)> Lin40 (ne—Ad(lnlln))+,

7

Tog 7’ Py~ log n.

where 4 > 0. If the hypothesis of Riemann concerning the zeros of the Zeta-

function ¢ (8) is true, the error term may be replaced by O (n#*?) and indeed
by O (ynln). On the other hand the order of the error is certainly not less
than Vnisn
o (")

* Hardy and Littlewood, 3 (2). For a discussion of-the series Tn-be4%®, where
0<a<1, see Hardy, 8

t The classical formula has an error term O {ne~4~ ()], For the more precise
result stated here see Liandau, 5, 6 ; Littlewood, 7.

1 Littlewood, 6; Hardy and Littlewood, 4.

H. . 4
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It is easily proved by partial integration that
n dt n n 21n (k—1)1n n
2 Jogt " (P Tyt oy +0{<ln>’f+l}
for every value of £; while ¢—4v(niln) tends to zero more rapidly than any
power of In. Hence the right hand side of (6.263) is a genuine approximation
to o (n) for any value of %.

The order of magnitude of a sum of the form

z fp)
p<n

may, with certain reservations, be found by replacing the nth prime by » log n.
Thus

(6.263)

1 lp
S —e~vbz, 2 Lolr, = lpesz
p<zlP Sk p<az P ’ p<xp ’

while 3 }% is convergent. For a comprehensive account of the theory see

Landau, 1.

We quote some additional examples of asymptotic formulae for arithmetical
functions. We write m, () for the number of numbers, less than #, composed
of just v factors (repeated or not); @ (x) for the number of numbers with no
repeated factor; R (z) for the number of numbers of the form 2%23%... p%
where a3 =a, = ...; p (n) for the number of partitions of #; and p, (n) for the
number of partitions of # into perfect 7th powers. Then

i) -1
Wv(x)'\’(V_ll)!x( lx‘z *’ Q(x)‘\’%"',

. l .
log £ () 2% /() o) g eV B,

Pr (n)~(2w)_%(r+1) \/<7Tr1) /cn;'lT'l ge {(r+1) /cn%} ,

’ r
where k= {1 r (1 +1> ¢ (1 +1)}’+1
7 r r

and ¢ (s) is Riemann’s Zeta-function.

6.31. Power-series. The theory of integral functions. The
radius of convergence £ of a power-series

(6.311) S () =Saa™
1s given || by
1 —, X
i n
Yo nhnio| Ay ™.

The series is convergent for all values of z if Y| a,|—0, e if
| @, | <e 2" In this case f(2) is called an integral function.
* Landau, 1, 208, 211. t+ Landau, 1, 582.

t Hardy and Ramanujan, 1. § Hardy and Ramanujan, 2,
| See, e.g., Goursat, 1 (1), 443.
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The three most important characteristics of an integral function are
measured by

(1) a,=]a,|, the modulus of the nth coefficient;

(i1) M (r), the maximum of | /()| on the circle |z | =1r;

(i) y, =] ¢x |, the modulus of the mth zero, in order of absolute
magnitude.

It 1s known that M () is a steadily increasing function of 7, and that
M (r) >4, except in the trivial case (which we ignore) in which /()
is a polynomial®*. A function for which 2/ (r) < ¢™ is called a function
of finite order, and we shall consider such functions only.

The principal problem of the theory is to determine the relations
between the rates of increase of 1/a,, M (r), and y,. Those which hold
between the first two functions are the simplest, and we shall confine
our attention to them. 'The theory of y, is complicated by the ¢ Picard
case of exception’, arising from functions which, like ¢®, have no zeros,
or whose zeros are scattered abnormally over the plane. The increases
of the three functions may be measured by ‘indices” defined as follows+.

The p-index p of f(2) is the greatest number £ such that

(6.312) " a, <nite
for every positive € and all sufficiently large values of . It is plain that
p Z 0, since a, — 0. It may happen that (6.312) is true for all values of
p; in this case we say that the u-index is infinite. The v-index v 1s the
least number £ such that :
(6.313) M(r)<ette
for every positive € and all sufficiently large values of 7. The p-index p
is the least number ¢ such that

s 1

—ynf +e

is convergent for every positive ¢, In particular these conditions are
satisfied if 1 1

v—39 v+8 58 =8

Bt < Yoy < nw, L M) < " e < <P
or if 1 . in
Z(a>mwnm,hMﬂ)wvh,hﬂv;.

* For the second proposition see Goursat, 1 (2), 92. It is curiously difficult to
give a reference to a direct and explicit proof of the first. It is included implicitly
in one of the classical proofs of the fundamental theorem of algebra (see, €.«
Hardy, 1, 433) and in the familiar theorem that a potential function cannot have a
maximum at a point of regularity.

+ Vivanti, 1, 228,

42
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The fundamental theorems of the subject are (i) that v=1/u, it
being understood that this means v=0 when the p-index is infinite, and
(11) that, with certain reservations, p=v.

6.32. Proof* that u=1/v. (1) We suppose n> 0, and we prove first
that v>1/u. We denote by M (7) the maximum of e for =0, 1, 2, ....
Thent M (r) > M (r) for all values of ». It follows from the definition
of u that

(6.321) Y ay>n"re
for every positive e and an indefinitely increasing sequence (n;) of values
of n. If n has one of these values,

(6.322) a, 7™ > (rn=Hem,

The right hand side, considered as a function of a continuous variable
n, attalns a maximum
% (’u : : ?‘m) )

where m = 1/(u + €), for

(6.323) n = 1r"/e.
If r has such a value that (6.323) is one of the integers n;, then
M(¢)>M(fr)>e<’l%€rm).

This is true for a sequence of values of » surpassing all limit, and m
1s any number less than 1/u. It follows that v = 1/p.
(i1) To obtain an upper bound for M (r), we observe that
if rfoen <rnTEte < f
: (6.324) n Z n, = (2ry™,
where m’ = 1/(n — ¢€), and r is large enough. Thus

np—1

(6325) M()='S aur+ S ay® <nM(r) + 3 9-n
. My 0

=nM (r) + 2 < 20, M (7),
if r is large enough. But
(6.326) M (r)=Maxa,r" = Max(rnr+)"=¢ <’L ; : 9‘“") .
From (6.324), (6.325), and (6.326) it follows that
’ M —€ ’
M(r) <2 (2™ ¢ <7 rm>

for all sufficiently large values of . Here m’ is any number greater

than 1/u. Hence v = 1/g, and so v =1/u.
* The proof is modelled on that given by Lindelsf, 8. t+ Goursat, 1 (2), 92.
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The fundamental idea of the proof which precedes 1s that ¢Ae increase
of f(z) is measured, with sufficient accuracy for the determination of
the indices, by that of its greatest term. In the exponential series, for
example, the greatest term is that for which #» =[], and the increase
of this term 1is ¢*/./=.

We have assumed p positive and finite. A slight variation of the
argument shows (@) that v=0 when p is infinite, and (b) that /() 1s
not of finite order when u=0.

6.33. Special results, If we make more drastic assumptions about the
coefficients a,, we can naturally obtain more precise results about f(z). Thusif

{n ()™ ... (L) = O g, < () B (Gen) B 8
then e {r* (10 ... ()P =0 < M () < e {r” (@) ... (Gr)Petd),
and conversely. If
Han=n"1" X (n),
where _ e NI L\ (n)< SV

then log f (@) ‘“71@ @\ (9.

As examples of still more accurate and special results we may quote the

following :
s %N \/ <2_7T> pl/2a glale) wl/“’
n ew )

1-a)f2 (1-a)/2 eaxlla o Nle‘”l/“
’ T'(an+1) a
logm)p/(p—l)

9—
Ee_npﬂw\/{ o }<logx>2p—_p2€(p—1)(—p—
plp-D)\ p ’

where a >0 and in the last formula 1 < p <2, and £ - « by positive values.
These results may of course be used to give an upper limit for the modulus
of the particular function considered when z is not necessarily real, and so
for M (r).

General accounts of the theory of integral functions are given by Borel, 2;
Vivanti, 1; Bieberbach, 1; Valiron, 1. The second edition of the first work
contains a very valuable note by Valiron on the latest developments of the
theory, and the second work a very complete bibliography up to 1906. Particu-
larly important memoirs (beyond those on which Borel’s account of the theory
is based) are those of Boutrouxz, 1; Lindelof, 2; Pringsheim, 7; Valiron, 2, 3;
and Wiman, 1,2, 3. For more precise and special developments, such as those
quoted at the beginning of this section, see in particular Le Roy, 1; Lindelsf, 3;
Littlewood, 1, 2, 3, 4; and Mellin, 1. For the theory of integral functions of
infinite order, see Blumenthal, 1.

6.34. Irregularly increasing functions defined by power series. Power

series with gaps. The theory of integral functions suggests a method of
much interest for the construction of irregularly increasing functions.

x" 1 (
b WN:/?L (2m)

)
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Suppose that ¢ (z)=Sa,2" is an integral function with positive and de-
creasing coefficients, and that, for a given z, w (z)=a,2" is the greatest term
of the series. In general one term will be the greatest, but for particular
values of z, say &, &, ..., two consecutive terms will be equal¥.

As v increases, the index v of @ () increases, and tends to infinity with #:
it thus defines a function » (#) such that

v(z)=1 (&<o<&iv1)
At the point of discontinuity &;, where v (z) jumps from ¢—1 to ¢, we may
assign to it the value . When » is thus defined for all values of z, w (z)
defines a function of # which tends continuously and steadily to infinity
with # ; and it may be expected that the increase of @ will give a fair approxi-
mation to that of ¢.

Now let f@)=2a, ., *",
where x (n) > n; and let p(x) be the function related to f as w (x) is to ¢.
The laws of increase of @ (x) and of p (#) may be expected to be very much
the same, for p (x) is defined by a selection from some of the terms from afl
of which w (2) was selected. The increase of f(«) clearly cannot be greater,
and may be expected to be less, than that of ¢ («); but it cannot be less than
that of p (#). Hence we may expect relations of the type

pRw<f<¢

The more rapidly we suppose x (n) to increase, the lower in the gap between
w and ¢ will f sink, and, if we suppose x to increase with sufficient rapidity,
we may expect to find that @ XX f, so that the increase of f is completely
dominated by that of one variable term. We shall then have

f (x) = AN () ‘an(x)’
where & (z) is a function of »# which assumes successively each of a series of
integral values /V;, so that

N(z)=N;, (#22 <2i49)
But, as x increases from z; to z;,;, the order of aNz,xNi, congidered as a
function of z, may vary considerably, since %;, though depending on the
interval (#;, 2;,1), does not depend on the particular position of # in that
interval. We are thus likely to be led to functions whose increase is irregular
in the sense explained in § 4.41.
Suppose, for example, that a,=n"" so that (§ 6.33)

z\" 2z
N=s (% miihalh W7
=3 (5) ~ /(22 e

. 1+l .
Here &=1 (1 +?7) ~ et,
and it is easily shown that @ (x) < e¥e.

Now let x (»)=2" so that
2‘".

4
f(x)=2ﬁ,,=2”m

* We ignore the possibility of more than two terms being equal.
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say Then v;_;=v; if 2=2¢*1 so0 that £;=2¢*1 and N;=2¢ for
%+l < g < Qi+2,
For this range of values of #, v; is the greatest term ; when £=2t+2 v;=v; ;.
Further, it is not difficult to show that f(z) < (#)=v;, the behaviour of
f(z) being dominated by that of its greatest term*. If we put z=2"T1%¢,
where 0 < 6 < 1, we find _
[ (@)X o= 0¥ e,

where a=(14+6)2" 1% This is a maximum when 1+6=1/(log 2), when it
is equal to 1/(elog 2)="53.... Hence the increase of f(z) oscillates (roughly)

between those of 2332 and 2&®
Another example of an irregularly increasing function defined in a similar

manner is
o=z B,

the mcrease of which oscillates between the increases of e*/y/x and
PPt S

These examples are of course typical of a large class of functions.

6.35. Power-series with a finite radius of convergence.
When the radius of convergence of the power-series (6.311) is finite, it
may be supposed, without loss of generality, to be 1. The necessary
and sufficient condition for this is that lim /| a,|=1; this is true in
particular if @, is positive and e7°7 < a,, < €.

Suppose in particular that «, is positive and that 3a, is divergent,
so that /()= o when #—=11. Then a large number of important
theorems have been proved which embody relations between (@) the
increase of A, =a,+ @, + ... + &, as n— o and (b) the increase of /(@)
as x—1.

The most fundamental theorem is

Theorem 34. If a, and b, are positive, and A, ~ B,, then
(6.351) S(@)=3a,2"~g(2)=3b,a"

In particular this s so if @, ~ b,8§.

* We may say roughly that in general feop, that is to say, ffp—>1 as £—=>@
through any sequence of values not falling inside any of certain intervals, as small
a8 we please, surrounding the values ;. At a point &;, f/p is nearly equal to 2.

+ Hardy, 8 (3).

1 Bromwich, 1, 130

§ Bromwich, 1, 132. The theorem is due to Cesaro, 2.
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We have
Fz)= f(> =3Ad,2" G(z)= g() =3 B,2",
and 1t 1s enough to prove that ' (z)~ G (2).
Given any positive ¢, we have B, (1—¢)< A, < B, (1+¢) for nZ N(e),
say; and
N-1 w ©
F(2)=3A,2"+3A,2" = Fy(x)+ 3 4,2"
_ 0 N N
lies between
Fy(z)+(1—¢) %ann, Fy(z)+(1+e¢) IEanm”;
and therefore between
~By+(1-¢) G(z), An+(1+¢) G(2).
eztim @) g F@)
Leslin g =g =1

for every positive ¢, which proves the theorem.

Hence

We have, for example,
r'(l1—p) 2 r'(n+1-p)

(Er e T Bl
say, and b,~nP=a,, by (6.248)* Hence
z» T(l1- p)
2o a=ays (@<L
Similarly
F(V)I‘(a+3—7) 1

Fa, By y, ) > I (a)T (8) (1—z)e+B~7 (a+B>19),

J.r (a+RB) ( 1
Plo a4 pet i ()
Of further results the following is typical: if

A onP{In oo Ly 2 (U)o (b 4 1),

then
F(l—p) 1 1 1 q 1 q) —t
f(x)N(l—x)l”” {Zl—x"'lm'll—-x<lm1—x> '“<lm+"m> }

if p<1, ¢ +1: but

O N R Ry

if p=1, ¢g<1. Thus
x N r(l—p) < 1 \—¢
— ll—x) (p < 1),

e (lay ~ (T —a) =P

* Appell, 1.
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As specimens of further results of this character we may quote

mw
x+x4+x9+-.. N% /\/<m>,

. 1 1
T+t +2%+ '"Nl?ul(l_z) (@>1),

Sarz™eoe {i z%%} (a>1),
S en/in g =eq {uf(1 — x)} (ueo1).

Many similar results have been established about series other than power
series: thus
z" 1
2 Uy~ <—1 - x) )

™ 1 1
zl—xnwl—zl<l—x>'

As an example of a more precise result we may quote the formula

For accounts of these results, and extensions in various directions, see
Barnes, 2; Borel, 4; Bromwich, 2; Hardy, 12; Knopp, 2, 3, 4; Landau, 4;
Lasker, 1; Le Roy, 1; Pringsheim, 8.

6.41. The increase of real solutions of algebraic differential
equations. Suppose that the differential equation

(6.411) Sz, y,y) =2 42™y"y?=0
possesses a solution ¥ =y (#) which is real and continuous for z> z,.
The problem is to specify as completely as possible the various ways in
which y may behave as 2 - w.

This problem was first attacked by Borel (7), who proved that the
equation cannot have a solution % such that

y> o = oy (2)

for values of # surpassing all limit. Borel also stated the corresponding
theorem for equations of the second order, viz. that no continuous
solution can exceed ¢; (#) for values of # surpassing all limit; but his
proof is incomplete, and no rigorous proof has yet been found, though
there can be little doubt of the truth either of this or the corresponding
general theorem for equations of any order.

Later Lindelof (1) returned to the questions raised by Borel, and
proved a much more precise result, viz.: if the equation (6.411) ¢s of

degree m in x, then

y < eAwm+1

Sor some A and for > x,. PFurther, he proved that either |y|<¢* for
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2>, or ¢ ° <|y| <e®* for a positive p and for 2> #,. The solutions
of the first class may oscillate, but those of the second are ultimately
monotonic, together with all their derivatives.

It 1s possible to prove a good deal more than this about the equation
(6.411)*. Here however we consider only the special equation

(6.412) y'=P(z,9)Q @ y)
where P and @ are polynomials. We prove first that %' is ultimately of
constant sign, so that every solution is ultimately monotonic.

Suppose the contrary. Then the curves y =y (), P =0 intersect at
points corresponding to an infinity of values of 2 surpassing all limit.
But P =0 consists of a finite number of branches, and so y =y (#) must
intersect at least one of these infinitely often.

Now the branches of P =0, which extend to infinity in the direction
of the axis of 2, consist of (i) a finite number of straight lines y = ¢;,
and (i1) a finite number of branches y = ¥, (s) along which y ultimately
increases or decreases. And, in the first place, ¥ =y () cannot cut
y= Y,(«) infinitely often. For suppose, for example, that ¥, is ulti-
mately increasing, and that £ and S are two successive points of
intersection . Then y =y (#) crosses y= Y, () at B and S, and in each
case from above to below, and this 1s plainly 1impossible.

We have next to consider the possible intersections of y =y (2) with
the straight lines (1), and we may suppose z so large that all intersections
with branches (ii) have already been exhausted, so that %' can vanish
only at the intersections we are considering. Then y cannot have a
maximum or minimum; for at such a point 4" would change sign, while
P would not, since the line (i) through the point would be the tangent
to the point. Hence y = y () crosses the tangent and, having crossed it,
it cannot return to it without passing through a maximum or minimum.
It follows that there is at most a finite number of the intersections in
question. Thus ¥ is ultimately monotonic.

6.42. We can go further and prove the following lemma.

Lemma. Any rational function
H(z, y)= K (2, y)/L (2, y)
15 ultimately monotonic along the curve y =1y (), unless L =0 is a solution
of the equation (6.411). ;
We have
dd _od Pod U
de oz Qday W’
* Hardy, 10. See also Boutroux, 1, 217.
+ There must be successive points, for all intersections are isolated: see Hardy, 10.
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where U and W are polynomials, and d/dz implies differentiation along
the curve y =y (). If dH/dz is not ultimately of constant sign on the
curve, it must vanish or become infinite infinitely often on it. In the
first case the curve must have an infinity of intersections with at least
one of the finite number of branches of /’'=0. This branch C may,

for sufficiently large values of #, be represented in the form

(6.421) y=Axm + Aygn+ ...,

a convergent series of (not generally integral) descending powers of z;
and, 1f 8/8z refers to differentiation along O, then

(6.422) yI:%:Aoaox%'1+Alalw“l‘1+

Again, along C, R (z,y) is an algebraic function of #, which may, for
sufficiently large values of 2, be expressed in the form

(6.423) B = Byxbo+ Byabr + ...,
another series of descending powers; and, unless the series (6.422),
(6.423) are identical, we shall have 4, > R or y, < R at all points of C
from some definite point onwards. From this it follows that, at the
points of intersection, C always crosses ¥ =y () from one and the same
side to the other and the same side, which 1s plainly impossible.

On the other hand, if the series (6.422) and (6.423) are identical, we
have 3, = R, and U =0 is a solution of (6.411). In other words, H is
constant along v =y ().

There remains only the possibility that

dH /,dK dL\ /.,
(LK)
should become infinite infinitely often, as we describe y =y (2). This
cannot be true owing to A or L or
Ak K oK dy
de ox oy da
or dL/dx becoming infinite, and so can only occur if L vanishes in-
finitely often. But then we can show as above that L =0 is a solution
of the equation (6.411). Thus the proof of the lemma, is completed. As
a corollary we see that any rational function H (z, y, y') is ultimately
monotonic, unless its denominator vanishes identically in virtue of (6.411).

6.43. We can now obtain very accurate information concerning the
increase of the solutions of (6.411). We write (6.411) in the form
Qy' — P =0. The ratio of any two terms is of one of the forms

Az™ y'n’ Ax™ ynyl,
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where 4 1s a constant, and 1s ultimately monotonic; and so, between any
two terms X;, Xj;, there subsists one of the relations

XX, XXX, X<X,
It follows that there must be one pair of terms at any rate such that
X, = X;. If both or neither of X;, X; contain y', we obtain at once

(6.431) ye~ Az,
where s 1s rational. If one only contains ', we obtain a relation
(6.432) Yy ~ Aa™.

Here four cases present themselves. If m#—1, n#—1, we obtain a
relation of the type (6.431). If m#—1, n=—1, we obtain
(6.433) y~ A (logz)",
where p 1s an integer. If m=—1, n#—1, we obtain a relation
log y ~ Aa?,
(6.434) y = gd2?(A+e),
Here p may be supposed a positive integer, as <1 if p is negative or
zero*, Finally, if m=—~1, n=-1, we obtain
log y ~ A log ,
(6.435) y=adre,
This last form of » includes both (6.431) and (6.433) as special cases,
since in the latter case y = #=. We have thus proved
Theorem 35. Any continuous solution of (6.411) is wltimately
monotonic, and of one of the jforms
edaP(te)  pdte
where p s a positive integer.
It is possible to go a good deal further. All derivatives of ¥ are
ultimately monotonic, and y satisfies one of the relations

Yy NAxa'en ((E), :)/ NA (wp log y,v)l/q’
where II () 1s a polynomial and p and ¢ are integers.

For fuller developments see Hardy, 10. For analogous investigations of
equations of the second order, for which the possibilities are much more com-
plex, see Fowler, 1, 2. These memoirs contain many additional references to
the literature of the subject.

6.5. Oscillating Dirichlet’s Integrals. The theory of Fourier
series, when developed according to the ideas initiated by Dirichlet,

* p ig clearly at most equal to 7+ 1, where r is the degree of (6.411) in & : this, of
course, agrees with Lindelof’s result quoted in § 6.41.
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depends on Dirichlet’s integral
sin Az

(6.51) JA) = f—— f(@)dz (£>0),
which has, under appropriate conditions, the limit 4/ (+0) when A > oo,
A very interesting problem in the theory is that of finding asymptotic
formulae for J (A) when _
F@)=p (@)ée®,

p and o are L-functions, and ¢ — o when # - 0. This problem was
first attacked by du Bois-Reymond (6), who enunciated a number
of striking theorems, but whose analysis is very inconclusive, and so
obscure that it is almost impossible to distinguish between what he
proved and what he did not*. The problem was reconsidered more
recently by the authort, who obtained more definite results, and these
results were afterwards completed in various respects by Kuniyeda 1.

In stating these results we assume throughout that p < ¢, this being
the necessary and sufficient condition for the existence of the integral
J (M). There are three cases which have to be distinguished, those in
which

e, @exil). o)

and the main theorems are as follows. The proofs are too elaborate for
reproduction here.

Theorem 36. If o <I(1/x) and p =270 (x), where 2° <6 <273
so that a =1, then
JN)=0Q7) (a=-1),

J(AN)~~T(—a)sinarp <%> N (—1<a<l),
TM~AT(3) (e=1)
where T ()= [) A,o (t) e dt

and —T (- a) sin yam is to be replaced by %= when a=0.

Theorem 37. If o ~bl(1/x) then
JA)=0Q) (a=-1),
J(\) =T (—a—b3)sin } (a + b)) = p (%) FTUN (~1<az1)
* du Bois-Reymond asks only whether J (\) does or does not tend to a limit, and

does not attempt to find asymptotic formulae in the case of oscillation.
+ Hardy, 11. I Kuniyeda, 1
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Theorem 38. If I(1/z) <o < (1/2)* and p < xd’, then

J(\)=0 @
f p<X@Jo"|d, and
~ (B-mi _p(0)
if w\fo"|d'<p<Lad'. Here B=N+o(0), and 6 is determined as a
Sunction of A by ¢ (6)+A=0.

These theorems are stated in the form finally given to them by Kuniyeda.
It should be observed that they are still not quite complete. No asymptotic
formula has been obtained when ¢ > (1/2)4, and no account is taken, in
Theorem 38, of the range zo’ p < o'*. There is also room for a more
accurate determination of the first formula of Theorems 36 and 37.

Kuniyeda has also investigated the integral A (A) in which cos Az appears
instead of sin Az, the results being of the same character. This integral
appears in the theory of the trigonometrical series conjugate to the Fourier
series of f(x), and in the theory of power-series on the circle of convergence.

Apart from the work of du Bois-Reymond, special cases of the problem had
already been considered by Darboux, Hamy, and Fejért. In particular Fejér
determined the asymptotic formula

1
W(em)
for the coefficients in the power series

f@)=1—2x)Pe1-2)=3q,am

6.61. Arithmetic applications. The classification of irrational
numbers. We conclude with a brief sketch of some of the most
important applications of the theory in arithmetical directions. These
applications bear primarily on problems connected with the classification
of irrational numbers.

An algebraic number of degree k is a root of an irreducible equation

(6.611) S (@)= ayd + @+ ...+ =0,
in which the coefficients are rational integers without common factor. If
a,=1, & 1s an integer. A number which is not algebraic is franscen-
dental.

In what follows we confine our attention to real numbers. The
aggregate of algebraic numbers is enumerable, and there are therefore
transcendental numbers in every interval of the continuumj. The

n~ &3P in (2 Jn+in —dpr)

Uy,

* Bee Kuniyeda, 1, 35,

T Darboux, 1; Hamy, 1; Fejér, 1, 2.

T Cantor, 1. For accounts of the relevant parts of Cantor’s theory see Borel, 1;
Hausdorff, 1; Hobson, 2; Jourdain, 1,
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theory of aggregates establishes in this manner the existence of tran-
scendental numbers, but does not suggest directly any method for
constructing them. Such a construction was first effected by Liouville*,
by means of the following theorem.

Theorem 39. If x is an algebraic number of degree k, and plq is
a rational number not equal to xt, then there is a number M= M (),
independent of q, such that

(6.612) pi, 1

Tql” Mg
Suppose, as plainly we may, that there is no better approximation
to #, with denominator ¢, than p/q. Then p/q differs from @ by less

than 1/¢, and | /' (%) | has, in the interval |y — 2| = 1/¢, an upper bound
3+ M independent of ¢. But

rE)=r®)-r@=L-2)rw

Z
4

9 7
where ¥ lies between # and p/q, and so
22/ G)
x—=|> = — 1.
¢ 17\

As | f(p/g)| is a rational number whose denominator is ¢* and whose
numerator is at least 1, the theorem follows. It is plain that

z _g I = k1+1

for all sufficiently large values of ¢.

Liouville’s theorem shows in effect that ¢¢ is ¢mpossible to approximate
to an algebraic number by rationals with more than a certain accuracy.
On the other hand 1t is easy to write down particular irrationals which
possess rational approximations of any degree of accuracy whatever.
Suppose for example that ¢, is an increasing function of », integral
for every integral n, and let

2=10"%+10"%+ ... + 10" 4+ ...,

If p./qn 1s the sum of the first n terms of the series, so that ¢, =10"¢%»,
then

(6.613)

q

0<z _Pn_ 10~ Par1 410 " Prte 4 ... < %10_¢"+1
n

* Liouville, 2.

t This provision is naturally only necessary when k=1,

T We have certainly, for example,

tM=klao|(lz[+1)F 1+ o+ |ap].
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and

(6.614) <10, -

_Pn -
9 Qn b/

In
where x, = @pia/bn. If xn =0, (6.613) and (6.614) are contradictory,
so that z is transcendental. We may for example take ¢, =n .
Cantor’s theory shows that transcendental numbers exist, and
Liouville’s theorem enables us to produce examples of them. To prove
that a particular number, arising independently in analysis, is tran-
scendental, or even irrational, is in general a far more difficult problem.

It has never been proved, for example, that ov2 g or Euler’s constant
v are Irrational.

There are a few classes of numbers, such as /2, J#, &2, ¢, logy; 2, ..., whose
irrationality is classical: see for example Hardy, 1, 6, 380, 387. For the
irrationality of m, first proved by Lambert (1), and =2, see Perron, 1, 254;
Vahlen, 1, 319. The problem of proving that J2 is not expressible by any
finite combination of quadratic surds is famous historically : see Enriques, 1;
Hudson, 1; Klein, 1. For an elementary proof that e is not quadratic, see
Vahlen, 1, 325. The transcendentality of e was first proved by Hermite (1),
and that of = by Lindemann (1); full accounts of these problems are given by
Enriques and Klein, and also by Hessenberg, 1; Hobson, 3; Perron, 2. See
also Maillet, 1.

6.62. In the preceding construction, there is naturally no special merit in
the number 10. We may use any other scale; and we may also employ other
representations of irrationals, for example by continued fractions. The number

11

PR
will certainly be transcendental if @, increases with sufficient rapidity, for, if
Pn/qn is the nth convergent, a,’ the complete quotient corresponding to a,,
and g,'=a,'qn_1+gn-2, We have
_p__n = :;l < ! 59

In|l Gn@'n+1  Fni19a

and, in order to obtain a contradiction with (6.613), it is only necessary to
suppose that a, 1 > ¢,2 or, what is equivalent, that ¢, > ¢,8. It is easily
proved that this is so whenever @, ,; > @,2. Thus we might take

=1, ag=20=2; ..., Qy41=2%,

When k=1 or £=2, Liouville’s theorem is, in a sense, final: it is not
possible to replace the g* on the right hand side by any lower power of ¢.
When £ > 2, more is true: thus Thue (1) proved that

_b
| .> Mg£k+1+e
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where M =M (z, ¢), and Siegel (1) that
P 1

? 9™ MgPVE

where M= M (z). The index assigned by Siegel’s theorem is better if £ > 11.
The problem of finding the best possible index is unsolved, except when £ is
1or2.

When £=2, the continued fraction for z is periodic, so that a,= 0 (1). Itis
natural to ask whether anything can be said about the order of «, when z is
an algebraic number of higher degree. It is easy to deduce from Liouville’s
theorem that a, < ¢; (an), where a is a number depending on £, and similar
deductions can be drawn from Thue’s and Siegel’s theorems. What can be
proved in this way amounts to very little, and it is very unlikely that it is
anywhere near the ultimate truth.

>

6.63. Although so little is known about the order of magnitude of a, for
particular classes of irrationals, very interesting results have been found con-
cerning what may be called its ‘usual’ order of magnitude. We may say that
x has usually the property P, or that P is usually true, if the set of values of
z for which P is false has measure zero. If then ¢, is an increasing function
of n, and we write ¢, =%, or ¢,=d,, according as = (1/¢,) is convergent or

divergent, then a, <k, (n> ng)
is usually true, and Ay < dy, (n>n,)

is usually false*. Thus a, < (In)? is usually true, and a,, <nlnis usuallyfalset.
It is easily proved that, if

(6.631) }x_?_’ <1

for an infinity of values of ¢, and ¢,=4£,, then a,> %, for an infinity of values
of ni. Hence (6.631) is in this case usually false.

We may ask generally for what irrationals (6.631) is infinitely often true.
The results known in this direction are as follows. If ¢, is a constant C,
andC =< /b, then (6.631) is always true (for an infinity of values of ¢). If

WH< C=2 2
then (6.631) is true except for irrationals equivalent§ to
1 1
a=ﬁ ]j cene
If 2 \/2 < C < 3, then (6.631) is true except for the numbers equivalent to one
or other of a finite number of quadratic surds. If ¢ = 3, it is usually true, but

the exceptions are non-enumerable. It is still usually true if ¢, is an increasing
function whose increase is sufficiently slow; but it is usually false when

* That is to say, it is usually true that a, >d, for an infinity of values of n.

+ Borel, 9; Bernstein, 1.

T Here k, is some function of n such that = (1/k,) is convergent. It is not the
same function of n that kg is of q.

§ I.e. numbers (aa+ b)/(ca+ d), where a, b, ¢, d are integers and ad — be=1.

H. 5
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¢o=Fky. For fuller information see Borel, 5; Bohr and Cramér, 1; Grace, 1;
Heawood, 1; Hermite, 1; Hurwitz, 1; Markoff, 1; Minkowski, 1; Perron, 2.

Yet another closely allied problem is that of the distribution of the numbers
(nx), where z is irrational, and (#)=wu —[«], in the interval (0, 1). The funda-
mental theorem, due to Kronecker, is that the numbers lie everywhere dense
in the interval. There are many memoirs concerned with this theorem and
its extensions. See Behnke, 1; Bohr, 1; Bohr and Cramér,1; Hardy and
Littlewood, 3; Hecke, 1; Kronecker, 1, 2; Lettenmeyer, 1; Minkowski, 1;
Ostrowski, 1; Weyl, 1.

6.64. Applications to the theory of convergence. Liouville’s theorem,
and the other theorems of which we have spoken, have many interesting
applications to the theory of convergence of series.

The typical problem is that of the convergence of the series
_ Pn
|sin nmz |’
where ¢, is a decreasing function of » and « is irrational. If p,/g, is a con-
vergent to x, then

(6.641)

|sing, mz | < = ,
Tvsr i1 @y

where the 4’s are constants, and the increase of a,,;, regarded as a function
of ¢,, may be as rapid as we please. It follows that (6.641) 7s divergent, for
appropriate values of x, however rapid the decrease of ¢, may be.

If z 1s an algebraic number of degree £, then, by (6.612),

|Sln7l7Tx|>F

where B is a positive function of x only, for all values of n. Hence (6.641) is
convergent whenever ¢, <7~2 and a>k: this result can naturally be im-

proved upon by the use of Thue’s and Siegel’s theorems. Thus
n-2-8

sin nnz |

is convergent for all quadratic #, and
—én
e

| sin nr |

is convergent for all algebraic #. The 2 in the first of these results may in
fact be replaced by 1, but a more elaborate proof is needed. It also follows
from the results of § 6.63 that (6.641) is usually convergent if $Z,¢, is con-
vergent, as for example if ¢p,=¢~2(log ¢)~*% when we may take £,=¢ (log ¢)%

The series = 2" cosec nwx may, according to the arithmetic nature of z,
represent an integral function of z, or a function regular inside a circle which is
aline of singularities of the function ; or again it may diverge for all values of z.

The theory of the non-absolute convergence of such a series as = ¢,, cosec nrz
is naturally more intricate.

For fuller information see Hardy, 5; Hardy and Littlewood, 3 (3); Lerch,1;
Riemann, 2; Smith, 1. Analogous questions concerning integrals are discussed
by Hardy, 3 (5).



APPENDIX

SOME NUMERICAL ILLUSTRATIONS*

1. Table of the functions log x, log log %, log log log z, ete.

x log « logg x logz © logs logg @
10 230 0-834 -0-182 — —_—
108 691 1-933 0659 — 0417 —_—
106 13-82 2626 0966 - 0035 —
1010 23:03 3137 1143 0134 —2011
1015 34-54 3549 1-265 0235 —1-449
10%0 4605 3830 1-343 0-295 — 1221
1030 6908 4235 1-443 0367 - 1003
1060 138156 4928 1695 0-467 — 0762
10100 230-26 5439 1693 0-527 —0641
101000 2302-58 7742 2-047 0716 - 0334
1010° 2303 x 103 14-650 2-685 0-987 ~ 0013
101010 2303 x 107 23-860 3172 1-154 0-144

2. Table of the functions =, e, e’ etc.
z ex €% e3x €4z
1 2718 15:154 3,814,260 101,856,510
2 7-389 16182 585 x 10702 —
3 20085 528 x 108 102 206X10° —
5 | 148413 2:85 % 1064 101 2éx10% —
10 22026 9-44 x 10905 —_— —_—

The function log z is defined only for # >0, logex for £ > 1, logsx for x > ¢,
logsx for 2 > e*=¢ey, and so on. The values of the first few numbers ¢, e;, e, ...
are given above, viz. e=2718, e;=15154, e;= 3,814,260, ¢;= 101,656,510,

* The tables in this appendix were calculated by Mr J. Jackson.

5—2
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3. Table to illustrate the convergence of the series

[ ] ] 1 =] 1 @
—_— —_— — n
(1) ?nln (Un)?” 2) ?n ({n)2* (3) ?ns' ) ?x )
() 3. 6) 3+ (7) 32, 8) 3n-m,
o N 1 0 1
Number of terms required to
: calculate the sum correctly to
Series Sum 2 10 | 100 1000
decimal places
|
1 3843 10314x1086 - e —
2 211 7:23 x 1086 | 1086x10°
3(s=1'1) 10-58 1033 10118 101013 1010013
3(s=1'5) 2612 160,000 | 16x10% | 16x 1020 | 16 x 102000
3(s=2) 3m?=164493 200 2 x 1010 2 x 10100 2 x 101000
3(s=10) 1-0009846 1 11 1093 x 1011 | 1-093 x 10111
3(s=100)| 14(1-27x10~%) 1 1 10 1213 x 1010
4(x="9) 10 73 247 2214 21883
4(x="3) 2 9 36 336 3325
4(x="-1) 10/9 3 11 101 1001
e—1=1-718282 5 13 70 440
6 1291286 3 10 57 386
7(x="9) 3234989 8 15 46 148
7(x="5) 1564468 3 6 19 58
7(x="1) 1-100100 2 4 11 32
8 1062500 2 2 3 4

The phrase ‘calculate the sum correctly to m decimal places’ is used as
equivalent to ‘calculate with an error less than 4 x 10-™’. In the case of a
very slowly convergent series the interpretation affects the numbers to a con-
siderable extent. The numbers would be considerably more difficult to calculate
were the phrase interpreted in its literal sense.

Such a series as 3 (s=100) is of course exceedingly rapidly convergent oz
first, 7.e. a very few terms suffice to give the sum correctly to a considerable
number of places; but if the sums are wanted to a very large number of
places, even the series 4 (#="9) proves to be far more practicable.
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4. Table to vllustrate the divergence of the series

69

1 1 1 1
(1) loglog3+loglog4+'" @ log2+log3+
(3) 14 +—+ (4) 142+ 5+
N gtate.
1 1 1 1
(%) 21og 2 + 3log gt ©) 3log 3loglog 3 + 4log4loglog4’
Series Number of terms required to make the sum greater than
3 5 10 100 1000 108
1 1 1 1 116 1800 26 x 108
2 3 7 20 440 7600 15 x 107
3 b} 10 33 2500 25 x 108 2:5 x 101
4 11 82 12390 10% 1043108 10°43%10
5 8690 | 13 x10% 101300 105104 — —
6 1 60 to 70 1010100 — — -
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