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WELCOME ADDRESS

Ladies and Gentlemen,

the local organizers welcome you to Germany, to the city of
Aachen, to the Rheinisch-Westfdlische Technische Hochschule

and to the Logic Colloquium '83

It makes us happy that so many scholars from countries all

over the world have come together here to exchange information,
to renew and strengthen old connections and to form new ones,.

1f you have any problems please contact the information desk

or anyone of us.

Barbara Heuflen
Susanne Kemmerich
Walter Oberschelp
Michael M. Richter
Britta Schinzel
Wolfgang Thomas

Christiane Weinand (Secretary)
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CONGRESS BUILDING

All lectures will take place in the Karman Auditorium.
Lecture rooms are FO 2, FO 3, FO 4, SFo 3, SFo 4, SFo 9
and SFo 10.

INFORMATION DESK

The information desk is in the entrance hall of the
Karman Auditorium.

OPENING HOURS 900 _ 1300 ;nq 1530 _ 1900,

TELEPHONE NUMBER 80 - 4299

NoTIce BOARD There is a notice board beside the information
desk where you can find actual information.
It may also be used for notices of the congress
participants to each other.

BOOK EXHIBITION

There is a book exhibition in front of the lecture room FO 4
which is organized by Augustinus-Buchhandlung, Pontstr. 66,
Aachen.

MEALS anp REFRESHMENT

i) There is a snack-bar in the congress building which offers
snacks, pastry, coffee, tea, soft drinks.
Opening hours: Mo - Fr 9OO - 1800

Sa 1030 - 1290,

ii) There are two cafeterias of the university one of them

in the Hauptgebdude (just opposite to the Karman Audi-
torium)

which offers one menue, several short meals, and breakfast



in the morning.

Opening hours: 80O - 1130 and 1200 - 1530.

The other one you find in the Auditorium Maximum
(Willnerstr.). It offers two menues at noon and

breakfast in the morning.

00 _ 1,00 45 30

Opening hours: 11 and 11 - 1577,

iii) The student mensa you find at Turmstr. 3

(two menues at 1,80 DM and 2,50 DM).

iv) There are a lot of restaurants in the vicinity of
the congress building
(Templergraben, Pontstrafle, Annuntiatenbach, Markt),
which offer good and cheap menues.
Vegetarian restaurants:
Reuterhaus, Pontstr. and Zobra the Buddha, Romerstr.

TRANSPORTATICN

Public buses (ASEAG) may be used from the hotels to the congress
building (get off at "Technische Hochschule, Templergraben').
You will find a map with the routes at the notice board beside
the information desk.

Tax1 PHONE NUMBERS
55 10 00, 55 10 55, 2 10 00, 22 00 O.

WORKING FACILITIES
LiBRARY

The Mathematics Library is open to the participants of the
Logic Colloquium. The library is situated in the second
floor of the Hauptgebiude, (just opposite to the congress
building).

30

Opening hours: 8 - IZOO

and 1300 - 1777,
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XEROXING

There are a lot of commercial copying shops near the
congress building (for instance: Annuntiatenbach,
Templergraben).

VARIOUS FACILITIES

Banks
Deutsche Bank, Pontwall 2
Stadtsparkasse Aachen, Pontstr. 137

PusLic TELEPHONES
There are public telephones on the right side of the
Hauptgebdude (opposite to the congress building).

Post OFEICE

The nearest post office is at the corner of Templergraben

and Hirschgraben.

PARKING

There is a big free parking place at Bendplatz.
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1

EXCURSIONS anp  SOCIAL PROGRAM

RECEPTION IN THE TOWN-HALL

At Monday, July 18,

1630 _ 5,00

2177, there will take place

a reception in the town-hall.

A welcome address will be given by Prof.Dr.W.Kruse,

Erste Blirgermeisterin of the city of Aachen.

Excursion TO MonscHAU

Monschau is a 900 year-old pretty town in the North Eifel

Nature Park on the fringe of the Hohes Venn. It has many

faces composed of dignified patrician's houses, winding

lanes and picturesque views.

We have planned a walking-tour in the environ of Monschau

and a stroll through the little town.

Time:

Starting-point:

Return:

Fare:
Registration:

Guipep City Tour

Wednesday, July 20, 1500

Hauptgebiude, Templergraben 55
30

18 or

21°° for those of you who want to
have supper in Monschau

5 DM

If you want to book this excursion
please enter your name in the list

" Excursion to Monschau ' at the in-
formation desk till Tuesday, July 19,
17°° and pay the fare.

If you want to stay at Aachen on Wednesday afternoon you

are invited to take part in a guided city tour walking

through the old city of Aachen. You will see the historic



core, the cathedral which has just been included in the
UNESCO 1list of the most important monuments of the
world, and the townhall where German kings were crowned.

Time: Wednesday, July 2o, 1430

Starting Point: Haus Léwenstein, Markt, opposite to
the town-hall

Fee: 2 DM

Registration: Please enter your name in the list

"City Tour" at the information desk
till Tuesday, July 19, 17°© and pay
the fee.

4, GuiDED ViIsiT oF THE CATHEDRAL AND THE TREASURY

You will see the Cathedral with its octogonal Palatinate
Chapel which numbers among the culturally most important
monuments of the world. The Treasury contains one of the
most precious church treasures this side of the Alps -
with its Shrines of Charlemagne and of Mary, the Lothar
Cross and the famous Charlemagne Bust.

Time: Wednesday, July 20, 16°

Starting Point: Westside of the Kreuzgang (cloister}
of the Cathedral

Fee: 3 DM

Registration: Please enter your name in the list

“Cathedral and Treasury' at the in-
formation desk till Tuesday, July 19

17°° and pay the fee.

5, UrRGAN -RECITAL

Thursday July 21, 20°°

in Adalbertkirche, Kaiserplatz
given by

Ulrich Peters
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Baroque works:
. . th . .
1. Ferdinando Richardson, (18 century) : Variatio
2. Girolamo Frescobaldi, (1583 - 1643): Capriccio sopra il cuccho

3. antonio Vivaldi, (1678 - 1741): Concerto in d-mwoll
bearbeitet fir Orgel von J.3. Bach

Big Organ:

4. Hendrik Andriessen, (born 1892): Thema met variaties

5. Johann Sebastian Bach, (1685 - 1750): Dorische Toccata und Fuge, BWV 538
6. Felix Mendelssonn-Bartholdy, (1809 - 1847): Prdludium und Fuge in d-moll

7. Olivier Messiaen, (born 1%08): Jesu accepte la souffrance

Admission free
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OPENING SESSION

Monday, July 18, 930

Karman Auditorium, FO 4

General Welcome
Prof. Dr. M. M. Richter
Chairman of the DVMLG

Address
Prof. Dr. W. Eversheim
Prorektor of the RWTH Aachen

Address and Opening of the Colloquium
Dr. Jansen
Oberkreisdirektor and Official Representative
of the EUREGIO
which has the patronage of the Logic Colloquium
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SCIENTIFIC PROGRAM.
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INVITED LECTURES

SERIES ON REcursioN THEORY

R. 1. SOARE Degrees of Models of Arithmetic
U. of Chicago
Tuesday July 19, 950 - 10%0, Fo 4
S. S. WAINER The H;— Approach to Subrecursive Hierarchies
Leeds
Wednesday July 20, 930 - 1020, FO 4
C. JOCKUSCH 1-Generic Degrees and Minimal Degrees
Urbana
Thursday July 21, 939 - 1029, o 2
P. HINMAN Finitely Approximable Sets
Ann Arbor
Saturday July 23, 930 - 1020, FO 4
SERTIES oN COMPUTATION AND LoGIC
D. RODDING Some Logical Problems (and Results)
Minster Connected with a Modular Decomposition
Theory of Automata
Tuesday July 19, 10%0 - 1130, Fo 4
Y. GUREVICH Logic Tailored for Computational Complexity
Ann Arbor
40 30

Thursday July 21, 10 - 1177, FO 3



H. R. LEWIS Logical Syntax and Complexity
Harvard U.
Friday July 22, 1040 - 1130, FO 3
SERIES ON SET THEORY
W. H. WOODIN Aspects of Determinacy (I-1V)
Harvard U.
Wednesday July 20, 10°0 - 1139 Fo 4
Thursday July 21, 10%0 - 11°°, Fo 2
Friday July 22, 10 - 110, Fo 4
Saturday July 23, 10%C - 113%, Fo 4
SERIES ON DECIDABILITY IN FIELD THEORY
G. CHERLIN Decidable Theories of Pseudo-Algebraically
Rutgers Closed Fields
Monday July 18, 11°0 - 1240 o 4
A. PRESTEL Decidable Theories of Real Fields
Konstanz
Tuesday July 19, IISO - 1240, FO 4
V. WEISPFENNING Decidable Theories of Valued Fields
Heidelberg

Wednesday July 20, 1150 _ 1240’ FO 4

M. ZIEGLER Undecidability of Theories of Local Fields
Bonn Thursday July 21, 1150 _ 1280 gq 4



S. FEFERMAN
Stanford

P. HAJEK
Prag

W. HODGES
Bedford C. London

J. MOERDIJK
Amsterdam

M. B. POUR-EL
U. of Minneapolis,

Minnesota

C. THIEL
Erlangen

19

FM T

Between Constructive and Classical Mathematics

Friday 22, 9°9 - 1020, Fo 4

A New Kind of Partial Conservativity and
a Strengthening of Gédel's Second Incomplete-
ness Theorem

50 _ .40

Thursday July 21, 11 12°Y, FO 3

The Model Theory of Locally Finite Groups

S0 _ 140

Saturday July 23, 11 FO 4

Monoid Models for Choice Sequences

Saturday July 23, 10%0 - 1139 g0 3

Analysis and Physics from the Viewpoint
of Computability: Banach Spaces, Linear
(nerators, and Eigenvalue Problems

Monday July 18, 10%° - 1139 Fo 4

The Explicit Philosophy of Mathematics
Today

Friday July 22, 1150 - 1240, FO 4



EVENING LECTURES

Y. N. MOSCHOVAKIS
U, of California,
Los Angeles

D. SCOTT
Carnegie-Mellon U.,
Pittsburgh

20

Abstract Recursion Theory and the Semantic
Specification of Algorithms

Tuesday July 19, 200 - 20°0, Fo 4

Logic and Computing

00

000 - 2190 ko 4

Friday July 22, 2
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SPECIAL SESSIONS

GENERALIZED QUANTIFIERS AND ToporoGical Mopet THEQRY
organized by J. Flum
00 30

Monday July 18, 16 - 187, SFo 3

Lectures start at every full and half-hour.

J. C. MARTINEZ ALONSO (Lwlw)t-Equivalence for TS—Spaces

Madrid

H. LEIB Beth's Theorem for Syntopogenous

Bonn Structures

A. RAPP Some Results on Logics with Malitz

Freiburg Quantifiers

P. H. SHMITT Decidability of the L(Q,)-Theory of

Heidelberg the Class of all Ordered Abelian
Groups

Y. KAKUDA Some Results and Problems Concerning

Kobe, Japan Set Theory with a Filter Quantifier

NONSTANDARD ANALYSIS

organized by K.-H. Diener
Tuesday July 19, 1600 - 1830, SFo 3
Lectures start at every full and half-hour.

K.-H. DIENER Which Set Theory for the Working

Koln (Nonstandard) Mathematician?



H. W. BUFF
Herisau, CH

Sh.-Ch. LIU
Taiwan

B. BENNINGHOFLN
Aachen, lowa City

A. SOCHOR
Prag

BooLEAN AIGEBRAS

organized by S. Koppelberg

Thursday July 21,

H. DOBBERTIN
Hannover

A. MARCJA

Florenz
R. BONNET
Paris

P. YTEPANEK
Prag

22

w-Konservativitdt der Nelson-Mengen-

lehre

A Proof Theoretic Approach to
Non-Standard Analysis (continued)

Application of Superinfinitesimals
to the Generalized Riemann Integral

Models for Alternative Set Theory

Boolean Algebras an Vaught Monoids

Analyzing Elementary Theories by the
Boolean Algebras of Definable
Subsets of their Models

Sur les algebres de Boole d'intervalles

Automorphisms and Embeddings of
Boolean Algebras
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Locic vERSUS COMPUTER SCIENCE
organized by E. Bbrger
30 30

Friday July 22, 15 ~ 187, SFo 3

Lectures start at every full and half-lour.

H. G. CARSTENS Criteria for Unsolvability in

Bielefeld

G. GERMANO
Pisa

A. WASILEWSKA

Easton

P, H. SLESSENGER
Leeds

M. D. DAVIS *
E. WEYUKER

New York

E. DAHLHAUS

Berlin

* speaker

Recursive: Graph Theory

Functional Semantics without
Recursion and Calculability on
the Integers

Programs, Automata and Gentzen
Type Formalizations

On Subsets of the Skolem Class T
of Exponential Polynomials

A Formal Notion of Program-Based

Test Data Adequacy

Combinatorial Characterisation
of Spectra
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SECTIONS

Recurs1oN THEORY

Chairman: B. Benninghofen

Monday July 18, SFo 9

1609 J. N. CROSSLEY*; J. B. REMMEL
Clayton Clayton
Recursive Equivalence, Undecidability and
Co-Simple COTs

169 K. AMBOS-SPIES
Dortmungd
Contiguous Degrees and Lattice Embeddings
in the R.L. Degrees

1700 D. SPREEN

Aachen

Effective Operators in a Topological Setting

* speaker
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Chairman: J. Moerdijk

Monday July 18, SFo 10

1690 P. RODENBURG
Amsterdam
Correspondence Theory for Intuitionistic
Logic

1030 Ch. KREITZ*; K. WEIHRAUCH
Herdecke Hagen
Theory of Representations as a Basis for
Constructive Analysis

* speaker

HoN- d

Chairman:

Tuesday July 19, SFo 4

1530 A. VINCENZI

Savona

Some Good Properties of Modal Model Theory

00 B. BORI¥IC

Belgrad

On an Intermediate Propositional System
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30 M. FONT

Barcelona

Monadicity in Topological Pseudo-Boolean
Algebras

00

17 J. CZELAKOWSKI

Kedzierzyn

! Some Remarks on Finitely Based Logics

1730 J. HAWRANEK

Wroctaw

On the Degree of Matrix Complexity of
Johansson's Minimal Logic

00 G. K. GARGOV

Sofia

Some Properties of Probability Logics

SET _THEORY [
Chairman: F, R. Drake

Tuesday July 19, SFo 9

1600 E. KRANAKIS*; [. C. C. PHILLIPS

Heidelberg Minnesota

Partitions and Homogeneous Sets for
Admissible Ordinals
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30 J. K. TRUSS

Paisley

16

Cancellation Laws for Surjective Cardinals

00 A. URSINI

Siena

Some Problems in Set Theory

1730 J. BAETEN

Minnesota

Filters and Ultrafilters over Definable
Subsets of Admissable Ordinals

1800 K. CIELSIELSKI

Warschau
Extensions of Invariant Measures on

Euklidean Spaces

* speaker

PEANO ARITHMETIC

Chairman: H. G. Carstens

Tuesday July 19, SFo 10

1620 R. MURAWSKI

Posen

A "Negative' Result on Trace Expansions



28

1630 P. LINDSTROM

Goteborg

On Faithful Interpretability in Theories
Containing Arithmetic

00 R. KURATA

Fukuoka

A Simple Proof for a Statement which is
Equivalent to Harrington's Principle

1730 7. MIJAJLOVIC

Belgrad

Definable Points in Models of Peano Arithmetic

1800 Z. ADAMOWICZ

Warschau

Some Results on Weak Systems of Arithmetic

PROOF THEORY

Chairman:

Thursday July 21, SFo 4

1690 % W. SIEG
New York

A Note on Kénig's Lemma
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30

00

30

00

29

J. DILLER
Miinster

On the Reduction of ID1

P. SCHROEDER-HEISTER

Konstanz

Natural Deduction Calculi with Rules of
Higher Levels

U. SCHMERL

Miinchen

Diophantine Equations in a ¥ragment of
Number Theory

E. WETTE

Hennef

1977 Wrociaw Abstract Renewed:

Control for the Exhibition of Inconsistent
Numbers
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Gieneral MopEL THEORY

Chairman: V. Weispfenning

Thursday July 21, SFo 9

1690 #  C. CHERLIN; H. VOLGER*

New Haven Tibingen

Convexity Properties and Algebraic Closure
Operators

1659 K. L MANDERS

Pittsburgh

Model Completeness in Geometry

1700 W. ZADROZNY .

Heidelberg

:ﬁ Introducing Partial Reflection

1730 Z. RATAJCZYK

Warschau

Traces of Models on Initial Segments

00 D. MUNDICI

Florenz

Higher Model Theory and Inverse._Systems

* Speaker
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Lo TER S
Chairman: D. Spreen

Thursday July 21, SFo 10

Implicit Definitions on Finite Models:
with Applications to DATA BASE Theory

00

16 M. E. SZABO

Montreal

Star-Deterministic Parallel Programs

1630 Y. LU

Nanjing

Some Applications of Boolean Form to
Analyse and Manage Large Data Sets

1700 B. MIKOLAJCZAK

Posen
Proving System Properties with Help of
Logic Functions
1730 Th. STREICHER
Linz
A Solution for the Definability Problem

for "Deterministic' Domains

18% J. MAKOWSKY
Haifa



32

SeT THEORY [

Chairman: E. J, Thiele

Friday July 22, SFo 9

1600 1. JUHASZ

Budapest

Point-pickung games and HFD's

1630 A. KRAWCZYK

Warschau

Note on Random Reals

1790 A. PELC

Warschau

Universal and Maximal Invariant Measures
on Groups

1730 W. BUSZKOWSKI

Posen

The Axioms Essential in Ackermann's Set
Theory

800

1 Ph. WELCH

Oxford

1
ZS-Wellfounded Relations and the

Core-Model
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MopEL THEORY AND GROUPS

Chairman: M. Ziegler

Friday July 22, SFo 10

1690 P. H. SCHMITT

Heidelberg

Model- and Substructure Complete Theories
of Ordered Abelian Groups

1630 : W. LENSKI

Mosbach

Elimination of Quantifiers for the Theory
L of Archimedian Ordered Divisible Groups
in L(Qq)

1790 R. L. SAMI

Kairo

Group Actions and the Vaught Conjecture

1730 Z. CHATZIDAKIS

New Haven

Model Theory of Profinite Groups Having IF

00 S. THOMAS

London

18

Large Universal Logical Finite Groups
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SECTION OF |ATE PAPERS

Friday July 22, 16°9 - , SFo 4

00 K. SEITZ

Budapest

Grouptheoretical Problems in
Mathematical Logic
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ABSTRACTS
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NAME ¢ K. Ambos-Spies

UNIVERSITY: Dortmund

TITLE OF THE TALK:__ Contiguous Degrees and Lattice

Embeddings in the r,e.-Degrees

SECTION: Recursion Theory

ABSTRACT:

An r.e. {Turina) degree is centcaucus if it contains only one
r.e. weak truth table (wtt) degree. Ladner and Sasso (1975) observed
that contiguous degrees can be used to translate results about r.e.
wtt-degrees to ones about r.e. Turing degrees.

We precent some new results on the existence of contiquous degrees,
from which we deduce some new facts about the algebraic structure of
the r.e. Turing degrees. E.g. we cbtain the following embeddability
criterion for finite distributive lattices: Such a lattice L is em-
beddable in an initial segment R{:a) of the r.e. degrees by a map
which preserves the least element iff the maximum number of elements
of L which form pairwise minimal pairs is not greater than the maximum

number of degrees in R(<a) which are pairwise minimal pairs.
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NAME : Irving H. Anellis
UNIVERSITY: Hamilton,Ontario
TITLE OF THE TALK: A New Proof of the Strong Version of the

L'o'wenheim-Skole}n Theorem

By Title
SECTION:

ABSTRACT:

Let Q be full quantification theory and let FQn be the axioms of Q. We present each
formula of Q in a Skolem Normal Form conjunction, If FQn allows, for every ﬁnite k,

a formula F o " which is k-satisfiable and is asgociated to the conjuncts of ’.'an

then F e is consistent. Now to a formula F1 of Q 1-satisfiable, we conjoin an
exhaustive list of formulas FZ,...,FH-1,Fn for Q consistent, and to each conjunct assign
a value of i. By Herbrand expansion, eliminate all quantifiers and asgign value § to

constants replacing variables in the scope of quantifiers. If no F" is a denial of

AN

P in the conjunction, the conjunction is 2-satisfiable.
n
For Q‘ a8 standard model for Q, we obtain F X k-satisfiable, and associate to k some

1
element n of N'= L0, ,+,*>. For 1 conjuncts in FQ& nk, we obtain a value n~, anc
k
n,.

assoctate T, to E(n®)=m, for p® max(N) and m the value of n®. fThus, if F N i is
Q
k
n
k-satisfiable, it is TLI j-satisfiable if to F k ye replace some term
Uy
iﬂl with Fnl and associate m to “Yyyae
ng kJm 0

(r=w)
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NAME : Jos Baeten

UNIVERSITY: Minnesota

TITLE OF THE TALK: Filters and ultrafilters over definable subsets

of admissible ordinals

SECTION: Set Theory I

ABSTRACT:

1e search for a (countable) recursive analogue of a measurable cardinal leads

> a study of filters and ultrafilters over certain definable subsets of a

sountable) ordinal, using the hierarchy of constructible sets.

>nnections with admissability are explored, and we find that the existence

Pa normal (ultra)filter is stronger than the existence of the same type
(ultra)filter. We look at the analogues of certain classical filters,

imely the co-finite filter and the normal filter of closed unbounded sets.

>ntrary to intuition, any (normal) filter of a certain type on a countable

rdinal can be extended to a (normal) ultrafilter of the same type.
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NAME : B. BENNINGHOFEN

UNIVERSITY: AACHEN

TITLE OF THE TALK: APPLICATIONS OF SUPERINFINITESIMALS

TO THE GENERALIZED RIEMANN INTEGRAL

SECTION: NONSTANDARD ANALYSIS

ABSTRACT:

If ¢ = [a,b] »R is a standard Riemann integrath function,

a =X <Xp <. <X E b, vi <« n x, ;& X, A &5 € [xi,x

i+l then

] 1+1]'

a n-1
[ ot) dt~ 2 (x1+1-xi)-(ci). In order to get an integral which inte-
b i=0

grates all derivations, we consider a restricted set of infinitesimal
part1t1ons We require that c € {x. ,x1+1) and [x; ,x1+1] c HR(Ci
where LR denotes the super- monad Us1ng these partit1ons we obtain
the generalized Riemann integral. Using the theory of superinfinitesi-
mals it is very easy to see that this integral has the following proper-
ties:
(i) ¢: [a,b) =R continuous A = [a,b], card A L b
¢' exists on [a,b]\A. Then ¢' is integrable and ¢(b) - @(a) = f @'(t) dt.
(i1) The generalized Riemann integral is an extension of the Lesbes%ue
integral and the Perron integral.
We also define a fuction which does not have a generalized Riemann in-
tegral. The following theorem whieh was also proved by different methods
gives us more general examples:

Theorem
If ¢, |o] have generalized Riemann integral on {[a,b] then ¢ € zg(a,b).

This theorem does also hold for a generalized Riemann-Stieltjes integral.

Theorem x

¢: [a,b] -+ IR has a generalized Riemann integral ®(x)} := [ »(t) dt.
Then ¢ is continuous and we have: a

v =9 a.e.

The above theorems also hold for the Perron integral.
But it is an open question whether the generalized Riemann integral is
a proper extension of the Perron integral.
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NAME : R. Bonnet

UNIVERSITY: Claude Bernard, Lyon

TITLE OF THE TALK: SUR LES ALGEBRES DE BOOLE D' INTERVALLES

SECTION: Boolean Algebra

ABSTRACT:

Rappelons qu'historiquement, les algébres de Boole interviennent en
logique (Lindenbaum~ Tarski), théorie de la mesure, et plus récemment en

théorie des ensembles et en topologie.

Dans cet article, on va exposer quelques aspects relatifs aux algébres
de Boole d'intervalles. On commence (§ 0) par expliciter la dualité "algébres
de Boole - espaces Booléiens" (M.Pouzet, voir aussi Ch.Charretton et M.Pouzet) ;
il est & noter que !'espace est "concret" et que 1'on n'utilise pas 1'axiome
de 1'ultrafiltre et donc pas 1'axiome du choix. Le § 1 sera consacré aux
algebres de Boole dénombrables (théorémes de Mostowski-Tarski ; Mayer-Pierce,
Ketonen) et un résultat (non encore publié) concernant le théoréme de Tarski
sur 1'équivalence élémentaire, dans le cas des algébres dénombrables. Enfin
dans le & 2, on développera les algébres rétractives (Rubin), les types

d'isomorphie (en utilisant les idées de Shelah) et les algébres rigides.
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Branislav R. Boricic
NAME . _

UNIVERSITY: Belgrad

TITLE OF THE TALK: On an Intermediate Propositional System

SECTION: Non-classical Logics

ABSTRACT:

By giving a positive solution to the pro-lem posed in @I
we have shown (v. ﬁl) that the sequence of intermediazte propositi-
onal systems KLC, (n2 1) contains three different sstems only:
the classical propositional calculus NLCy, Dummett’s system NLC,
(v. B]) and the system NLC3. e will consider the completeness,
separability and decidability of the last system.

iote that HLC3 can be axiomatized by adding the formula
Cy: ({4>3) »D) > (((B=>C) D) =>(((C~*4)—=D) D)) as an axiom
to the Heyting propositional calculus H. IH+c3 is the positive
implicational calculus (v, &]) extended by Cx.

Treorem 1. JH+cz is characterised by all Kripke

frames (¥,R) (i.e. partially ordered sets) with property
(%) (vxr.‘,'rz € X) (xRy V yRz V zRx).
Theorem 2. Htcy (i.e. I'LCy) is characterised by all

Kripke frames with property (¥).
Conseqguence. Htes is a conservetive extension

of ThH+e4.
Having in mind that the condition ( %) ie absolute (v. [{b,

we have:

Theorem 3. H+cs is characterised by the class of
all finite Kripke frames with (¥ ).

In other words, H+c3 has the finite model property. Hence,
by result of Harrop Eﬂ, we have:

Theorem 4. H+c, is decidable.
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YT LT LAY
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h] T, . Torifié, A4 note on some intermediate tropociticrzl
I8

cele:ls, Jui {40 appear).
Eﬂ .. Chureh, Introduction to mathematicel leric(Vol. 1),

Friverte Uris, Iress, rrinceton 195¢€,

ﬁ] o, Dummett, L propositional calculug with denumereble
metriz, JSL, Vol. 24(1959), pp. 96-107.

B] D. 1i. Gabbay, Semantical investigations in Eeyting’es
intuitionietic logic, D. Reidel Publ. Comp., Dordrecht 1981.

ﬁ] R. Earrop, On the existence of finite models arn” deci-
sion rrocedures, Proc. of the Cambridge Phil. Soc.,Vol, 54(1958),
pp. 1-13.

-E] E. G. XK. L8pez-Escobar, Implicational logics in natural
deduction systems, JSL, Vol. 47(1982), pp. 184-186.
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H.W. Buff
NAME:

ders
UNIVERSITY: erisau

W -K ivitd
TITLE OF THE TALK: onservativitdt der Nelsonmengenlehre

Nonstandard Anal i
SECTION: re Analysis

ABSTRACT:

Die Nichtstandardmengenlehre von Nelson (Edward Nelson:
Internal Set Theory, a new approach to Nonstandard Analysis,
Bull AMS 83(6), 1977 ) ist eine Erweiterung von einer
"gewshnlichen" Mengenlehre, zB von ZFC. Zusdtzlich zur zwei-
stelligen Relation € ("ist FElement von") wdhlt Nelson ein
einstelliges (undefiniertes) Pradikat st ("ist standard")
und formuliert drei Axiomenschemata (T), (I) und (S).

(T) besagt, dass das Universum aller Mengen eine elementare
Erweiterung des Teiluniversums der Standardmengen ist, (I)
gewdhrleistet die Existenz von Nichtstandardmengen, welche
bei Robinson fiir "concurrent relations" von Fall zu Fall als
neue Objekte relativ widerspruchsfrei dazugenommen werden
diirfen, und (S) ist ein Aussonderungsschema fiir Standard-
mengen.

Lésst man das Auswahlaxiom weg, so ldsst sich (aus ZF+(T)+
+(I)+(S) ) immerhin noch eine abgeschwdchte Form des Auswahl-
axioms, namlich der Kompaktheitsatz, herleiten.

Die vorliegende Arbeit zeigt, dass sich das volle Auswahl-
axiom nicht aus ZF+(T)+(I)+(S) herleiten lisst:

Jeder Satz der Sprache {e},welcher aus ZF+(T)+(I)+(S)
herleitbar ist, ist in allen () -Modellen von ZF+Kompakt-
heit (natiirliche Zahlen vom Ordnungstyp () glltig.
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NAME: W. Buszkowski

Posen
UNIVERSITY: \

. - . )
TITLE OF THE TALK: The Axioms Essential in Ackermann’s Set

Theory

.
SECTION: Set Theory I

ABSTRACT:

Scott [6] proved that the theory ¥ witbout the axiom of extensioa
ality is interpretable in Z, hence it is congiderably weakar than «F.
Here we show that after simultaneous droppi@g-tbe axiom of extensiona
ity and the axiom of heredity from Ackerm;nn'u set theory A (cfs Acke
mann [1)) one still obtains a system equivaleat (up to interpretation
to 4., The remaining axioms of A appear to De essential.

The logic of A is first-order logic with fdentityj the non-logicai
symbols are £ (membership) and S (a monadic pradicacte), The iundividus
variables x, y, z (also with indices) range over the purs classes;
S(x) means "x is a set",

By A (resp, B) we denote any (resp. S-free) forzula of Ay oy X an:
string of individual variablesy by (Vf)k, (3§)P, ir, where ¥ is a pri
mitive or defined monadie¢ pradicate, we denote the gquantitfiers regi-

ricted to P and the relativization of 4 to P, respectiveiy.

We now liat the axioms of A (they bave no free variaola):

(BE) Va,y(Ve(zéx«r2¢cy) — x = y) (extensionality),

(H) Vx,y( s(x) & y€ x — S(y)) (heredity),

(8) Vx,y( S(x)¥ Vz(zey — z €x) ~>» S(y))s (subset),

(CE) VY( Vx(‘A_ — 3(x)) —» 3y Vx(xe y > 4)) (class existeace),

(SE) (V'x')s( Vx(B — 5(x)) —> (fiy)S Ve(xe y e B)) (set existence).
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NAME : _ H.-G. Carstens - P. Padppinghausg

UNIVERSITY: Bielefeld - Hannover

TITLE OF THE TALK:Criteria for Unsclvability in

- Recursive Graph Theory

Logic versus Computer Science
SECTION: —

EBSTRACT:

We are interested in recursive aspects of the theory of countable graphs,
in particular in giving counterexamples obstructing recursive solutions
{or graph theoretical problems. For iin:tance we look et arni.nite patis

matchings, colorings, or Ramsey-sets,

Most constructions of counterexamples 1in the literature are strikingly
similar diagonalizations which work as follows. With every algorithms

one associates an infinite subgraph of the graph to be defined and thinks
of the e-th algorithm as working on the e-th subgraph. With different
stages of the computations one assocliates growing finite subgraphs of
these infinite subgraphs,i.e. to stage zero a "start graph' and to stage
n+l a "cable graph' extending the graph for stage n . Whenever one of
the algorithms, szy the e-th one, has computed sufficiently manv values
a "trap" is built inte the e-th subgraph obstructing these values as

part of a solution.

We mimic this constructions in an abstract framework, giving general
theorems which reduce the work of defining a counterexample to the

"finite geometry", i.e. the task of drawing a start, a cable and a trap.

By this we give "the crs2nce of the counterexamples" and everything

else 1s routine which we have done here once and for all.
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Z. Chatzidakis

NAME :

UNIVERSITY: New Haven

TITLE OF THE TALK: Model Theory and Profinite Groups
Having IP

SECTION: Model Theory and Groups

ABSTRACT:

We refer to EDM]for the basic definitions and facts about co-model
theory and profinite groups having IP. By developing the analogue of sta-
bility theory for these groups, we obtain some structure theorems.

Definiti n;ELﬂ. Let H be a profinite group. A universal embedding cover
(VECT for H is a profinite group G having IP with a continuous epi
6 G—H such that every diagram

G
v 48 where ¥ is a continuous epi and J has IP
J — H
can be completed by a continuous epi G —» J to a cormmuting diagram

Theorem 1 1 Let G be a profinite group having IP. Then Th(S(G)) is
w ~stadle.

Theorem 2 s+ Every profinite group has a UEC, unique up to topological
isomorphism.

The study of saturated models gives us the following

Theorem 3 » Let K3 X,,let Gy be the profinite completion of the
discrete free group on K generators. Then G, is topologically isomorphic
to the free profinite group on 2% generators.

Theorem & 1+ Let (K; ),y be a Tamily of fields whose absolute Galois
groups are free. Then the absolute Galois group of any ultraproduct of
the K;'s is also free.

We also interpret the notions of multidimensionnality and DOP. As a
corollary we get i

Theorem 5 + Let T be the theory of the free profinite group on x.
generators.
1)There is a model G of T, and a diagram
G
4 where both maps are continuous epls, and A is a finite

G— A group,

which cannot bi completed .
2) There are 2% (non topologically isomorphic) models of T of cocardina-
lity x .

[CDN] G.Cherlin, A.Macintyre, L.van den Dries, Decidability and undeci-
dabilizy theorems for PAC fields, Bull. Amer. Math. Soc. &4 (1981),
lol-1ok.

[HL] D.Haran, A.Lubotzky, Embedding covers and the theory of Frobenius
fields, Israel J. Math. 41 (1982),181-202.

e -
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NAME ¢ G.L. Cherlin and H. Volger

New H Tiibi
UNIVERSITY: ew Haven / Tibingen

TITLE OF THE TALK: Algebraic Closure Operators and

Convexity Properties

SECTION: General Model Theory

ABSTRACT! 15 1962 M.0.Rabin has given a syntactic charac-
terization of those elementary classes which are closed

under arbitrary intersections. Extending results of D.M.R.

Park in 1964 we are able to give a syntactic characteri-
zation of those elementary classes which are closed under

intersections of descending chains , thus solving a problem

left over from the early sixties.

More cenerally , we consider convexitv (=intersection)

properties for partially ordered sets of models and embed-
dings for a given partial order P . Our methods are based

on a rnew set of algebraic closure operators , which are

algebraic in the following sense: A given substructure A
of a structure B is being closed under the additicn of
finite A-definable subsets. In the case of arbitrary inter-
secticns resp. intersections of aescending chains we can
show that the corresponding convexity property is equiva-
lent to heredity w.r.t. closed substructures for an apprec-
priate closure operator. This leads to a syntactic charac-
terization in both cases. However , the characterization
in terms cf the closure operator seems to be more useful.
In adéition , we can show that these are the only convexi-
ty properties.

More cenerally , we replace embeddings by embeddinhgs
w.r.t. a oxven set of formulas. In the general situation
there can be at most «+2 convexity properties. In the case
of elenentary embeddings there is exactly 1 convexity pro-
perty. hHowever, the syntactic characterization of this con-
vexity property remains an open problem.

AMS-Clascification: 03 C 40,52

Key words: Preservation theorem, Convexity (=intersection)

property, Algebraic closure operator
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NAME ! Krzysztof Ciesielski

UNIVERSITY: Warschau

TITLE OF THE TALK: Extensions of invariant measures on

Euclidean spaces

SECTION: Set Theory 1

ABSTRACT:

A measure on a set X is a non-negative, extended real valued function m defined on
a ¢’-algedbra M of subsets of X containing all singletons, such that: m({x}) =0 for
any x8X, n(X)>0, m (U %) = Z m(A.n) for pairwise disjoint sets A_ from ML

néw nea n

A measure is: C@=finite iff X is a countable union of sets of finite measure; semiregular
iff every set of positive measure contains a set of positive finite measure; uni;/ersal
iff it is defined on P(X). If G is any groun of bijections of a set X, a measure m
defined on a (“~algetra N of subsets of X is G-ipvarianmt iff g[2Je ML and m(g[.t.]) = m(%)
fer anvy g G an~ .Lém.

The fcllovins mesi’t- vers cttained by K. Ciesielski and A, Pelc, Thr fjwct trenrer
rrovides a scluticr o7 ¢ rrotler of Sierpirski:

Tre~rem 1.7 1ot G Yr 27 Four of jsometries of the Luclidean space T . ib-¢f ~evtnizr o°F°

translations. Ther everv ¢ =finite G-invariant measure on ' has a rrorer extom-icrs, e
particular there ic no raximal Geinvariant extension of the Lebesque measure o~ i

For semiregular measures the situation is different:
Theorem 2. Let G be anv pgrour of isometries of the Euclidean space F". The followine ar
eguivalent:
/a/ there existr ¢ ree) velued meacurable cardinal % such that x¢ 2“’,
v/ there existc ¢ uriversz) semiregular G-invariant measure on F‘r.

‘c/ there exists ¢ maxire! seriregular G-invariant measure on .
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J.N. Crossley and J.B. Remmel

NAME :

UNIVERSITY: Clayton

TITLE OF THE TALK: Recursive Equivalence, Undecidability
- - - - and CO-Simple COTs

SECTION: Recursion Theory

ABSTRACT:

We continue work published in our Recursive Equivalence and
Undecidability, I {Proceedings of South-East Asian Logic Conference,

Singapore 1981, ed. C.T. Chong).

<w and <: are the orderings on constructive order types (COTs)
given by A <w B (A <: B) if there exist representatives A€ A
and B € B and a one-one, partial recursive order preserving map of
A onto an initial (final) (not necessarily r.e. separable) segment

of B.

THEOREM 1. (i) The theory of constructive order types with < and
*
< as its only non-logical constants 1s undecidable and recursively

isomorphic to second order arithmetic.
Y *
(i1) As for (1) with <w and <H replacing € and <.

THEOREM 2. (1) Each of the following theories with < and <* as
the only non-logical constants is undecidable and recursively iso-
morphic to second order arithmetic: (a) co-ordinals, (b) quords,

(¢) quasi-finite COTs, (d) losols.
* %
(11) As for (1) with < and <w replacing < and <w'

A COT A 1is said to be co-simple if there exists A € A where

A as a set (of natural numbers) is immune and its complement is r.e.

THEOREM 3. The theory of co-simple COTs (a) with + and (b) with <
*
and < Qi its only nqn-logical constants is undecidable.
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NAME : Janusz Czelakowski

UNIVERSITY: Kedzierzyn

Some remarks on finitely based Logics
TITLE OF THE TALK:

SECTION: Non-classical Logics

ABSTRACT:

There are many nonequivalent definitions of sentential
logios. Some logicians prefer to call a logic any invariant
(i.e, closed under substitutions) set of formulas that is
aaditionally closed under some explicitly given rules of
inference. Thus the term (1ogic‘ is understood here es
(logical theory), i.,es as gz set of sentences that tell us
what is logically true much the sazme as say laws of physics
tell us "truth" about physical phenomena. This attitude is
shared by people working in modal and intermediate logics.

But logic is also viewed as a tool that serves us to draw
valid conclusions from valid premises. According to this -
standpoint, logic is a set of valid inferences, not just valid
formulas. The difference is essential: the notiorn of a valid
formula can be defined in terms of vzlid inferences buti, in
general, not vice versa., Thus we face tvwc different
riethodological perspectives. The onme that dominates in FPolish
vritings is inferential. The irferential approach wzs originated
by Alfred Tarski inﬂihe thirties with his works on deduotive
systems and concequence operation, and thern continued by Zo$,
Suszko, Rasiowa, Wéjcioki, to mention only a few names. Ve

shall follow this line.



51

Elias Dahlhaus
NAME :

Berls
UNIVERSITY: erlin

TITLE OF THE TALKFombinatorial Characterisation of Spectra

Logic .
SECTION: gic versus Computer Science

ABSTRACT:

Scholz(¥) defined spectra as sets of the finite cardinalities

of the models of a fixed first-order theory.Asser(4) published

~he complement closure of spectra as an open problem,and Fagin(}) and
Jones and Selman(Y) described connections between spectra

snd NP.Motivated by the NP-completeness of CLIQUE,I will

zive following characterisation of spectra:

(Gn:ne N):((Vn,En):neW) is called a system of equality graphs:iff

i)there exists a natural number » , s.t. for each natural number n:
M -
Vn:=(n) :=&(xo..x“_q):xo...x‘_1<n and for 1£J:xi%xj}
and
ii)there are Ty-eeTpS {0...»—1}2(equality colours),s.t. for
each Tj:(i,k),(i',k')e Tj implies(i/Ai' and kFk')or(i=i' and k=k')
(partial bijection property), and for each natural number n:
{(xo'"x“—1)'(yo"y9-1)}¢En iff there is an equality colour Tj’
s.t.for each i,k{Vy :
X, =3y iff (i,k)e ’1“j or
for each i,k¢w:
Y%y iff (i,k)GTj
ZHEOREM: ScN is a spectrum iff there is a system of equality graphs
(Gﬁ:nél) and a polynom P and a natural number k,s.t for

allmost all nei:
ne S iff Gn+k has a clique of cardinality P(n)(see also

Dahlhaus(Q))
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2efereﬂ$ps:1)AsseftDas Representantenproblem im Pradikatenkalkiil
der ersten Stufe mit Identitit,ZML 1(1955),252-63.
2)Dahlhaus:Doctoral Dissertation,FB 20,TU(D83),1982.
3)Fagin:Generalized First Order Spectra and Polynomial
Time Recognizable Sets,SIAM-AMS Proceedings,Vol.7?,
. 1974 - -
Q)Jones/Selman:Turing Machines and the Spectra of First
Order Formulas,JSL 3%9,139-50(1974)
%)Bcholz:Ein ungeldstes Problem der symbolischeén Logik,
JSL 17(1952),p.160.
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M.D. Davis und E. Weyuker
NAME :

UNIVERSITY: New York, Courant Institut

! i f P -Based Test
TITLE OF THE TALk: A Formal Notion of Program-Based Tes

Data Adequacy

i sus Computer Science
SECTION: Logic ver P

ABSTRACT:

Computer programs are generally certified for use after they have performed
successfully on a particular set of inputs called the test data. Implicit in
this procedure is the idea that it makes sense to speak of a particular set of
test data as being adequate for a particular program. We propose and study a
formal notion intended to explicate this idea., Our first attempt is to regard a
finite set T as adequate for a program P if P is extensionally equivalent to all
programs "shorter' than P that produce the same outputs as P on 1Inputs from T,
But a diagonal construction shows that most programs will fail to have a test set
adequate in this sense. This result calls attention once again to the
pervasiveness of diagonal constructions made possible by self-reference. This {s
not the first time that these theoretical considerations have had their effect on
efforts to guarantee the quality of software. We avoid the diagonal construction
by modifying our definition of adequacy by eliminating from the class of
“shorter"” programs with which P is being compared, all programs that (in a sense
which we make precise) have parts extensionally equivalent to P. We show that
with this modification, our notion of adequacy subsumes several adequacy notions
used in practice, that lower and upper bounds are obtainable on the size of the
test data needed for adequacy, and that our notion leads to a suggestive notion

of critical elements which must be present in every adequate set of test data.
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K.-H. Diener
NAME :

KoTn
UNIVERSITY:

Which Set Theory for the (Nonstandard)
TITLE OF THE TALK:

Mathematician?

SECTION: Nonstandard Analysis

ABSTRACT:

The classical approach to Nonstandard Analysis is based on higher-
order structures and their enlargements. This involves the use of a
type-theoretic language and the "construction" of specific enlarge-
ments in every particular case. To avoid these disadvantages, E. NELSON
(Bui1.Am.Math.Soc. 83 (1977), 1165-1198) and K. HRABACEK (Fund.Math.

98 (1978), 1-19) suggested various extensions of first order ZF set
theory, providing a unifying framework for nonstandard mathematics

with “built-in" nonstandard elements for every infinite set.

In this talk we compare NELSON's and HRABACEK's set theories and dis-
cuss their advantages and disadvantages. Furthermore, we will formu-
late and investigate a version of a NELSON type set theory avoiding
some of the difficulties of NELSON's original system.
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NAME : Justus Diller

UNIVERSITY: Minster

TITLE OF THE TALK: On the reduction of ID1

SECTION: Proof Theory

ABSTRACT:

In the standerd reduction of ID, to IDI(W), the theory of

]
well-founded recursive trees, there remains a gap concerning
arithmetic comprehension (with second order parameters) which

is used to reduce ID, but cannot be imbedded into ID](W) by

1
relativization to Rec(W). We close this gap as follows,

For fF a class of formulae, let F-VYE be the schema VXF(X) ~ F(G)
for F(X) €EF and arbitrary G, F -VE is the corresponding schema
with no second order parameters in F(X) besides X. It is well

known that (H:_—VE) = ID] and (BIpr)_F-E?_—VE for functions,

which is Ya3R(ax) - vx3lyG(x,y) - IxR(G(x)) for primitive-re-
kursive R(s) without second order parameters and arbitrary G.
However, the following seems to have escaped notice.

- o

Proposition. (BI__) = (L

PT 1 -_VE)

“-VE for functions) = (H:

(and the same without the superscript .

The essential step (E?:VE for functions) F n:-—VE is due to
H.D, Wunderlich from Minster and makes use of first order

identities only. This yields

]_ -
ID, € (m,-VE) = (BI_ )7 g ID (W)
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NAME : Hans Dobbertin

UNIVERSITY: Hannover

TITLE OF THE TALK: Boolean Algebras and Vaught Monoids

SECTION: Boolean Algebras

ABSTRACT:

Let BAK (¢ infinite cardinal) denote the monoid, under
direct sums, of all isomorphism types of Boolean algebras
with cardinality s « . In [1] it has been shown that for
each «k there exists a greatest Vaught monoid V of
sum rank « , unique up to isomorphism.

THEOREM 1. ([1]} BA_ =V .
© W

EZK. denoting BA'< factorized by its greatest Vaught re-

lation, is a Vaught monoid for «k > .

THEOREM 2. B4 =V .
©, ©)

PROBLEM. 1Is FA’K =V, true for «x > ¢,?

I conjecture an affirmative answer, at least under suitable

set-theoretical assumptions.

Reference

[1] H. Dobbertin, On Vaught's criterion for isomorphisms
of countable Boolean algebras, Algebra Univ. 15 (1983),
95 - 114.
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NAME : - J.M. Font

Barcel
UNIVERSITY: ona

Monadicity in Topological P -
TITLE OF THE TALK: y pological Pseudo-Boolean Algebras

Non-classical Logics
SECTION:

ABSTRACT:

The problem of selecting an intuitionistic analogue of modal system S5
(and the one of finding good criteria for this) has been deeply studied by
G. Fischer-Servi, after an initial setting of R.A. Bull, in the case where L and
M are both primitive operators and neither of the equations L = "M and M = 73L7
hold.

We investigate the algebraic consequences of applying the Godelian pro-
posal (take L primitive and define M as 7 L™) to an intuitionistic base. Topolo-
gical pseudo-Boolean algebras are the algebraic models of the intuitionistic ana-
logue of S4. 1n our work we examine several (algebraic or logical) conditions
classically used to reach 85 from S4, that is, monadic Boolean algebras from topo-

logical ones. So we are approaching the concept of monadicity in pseudo-Boolean

algebras.
We find six "equivalence classes" of conditions
MTTMpe> TMp (von Wright 1951) H M(p AMq) €>MpAMq  (Halmos 1955)}
A 1(pAMg) implies “T(Mp A Mq) (Davis 1954)

L77Lp «% Lp (Wajsberg 1933, Monteiro 1971, and credited to G&del 1933 by

B < LMp > Mp (Lewis and Langford 1932) Prior, possibly erroneously)

p —> LMp (Becker 1930) 3 Mp-»q implies p->Lg
C{Lp—=>0q) ¢> (ln—>1a) (Beth and Nieland 1965) }

Semisi 1o (4almos, Monteiro) ; MLp <> Lp
ngp - . LALpvlp  (Bull 1965) }
E [L(pv Lc) > (LnsLg) (Monteiro) }
F{Thc closc. #lem ~ts form a subalgebra (Halmos, Davis) }

an. t(he following implications between them : D<~—r—?:_
L

We also prove several algebraic properties of the sub&‘"3 asses of topologi-
cal pseudo-Boolean algebras that naturally arise. Most of these properties have a
strong intultionistic character, for instance those concerning dense elements and
regular elements; others gradually approach classical properties such as duality

between open and closed elements via negation or the structure of filters.
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G. Germano

NAME :

UNIVERSITY: Pisa

TITLE OF THE TALK: Funtional Semantics without Recursion
and Calculability on the Integers

SECTION: Logic versus Computer Science

ABSTRACT:

Functional semantics of programs and calculability.
Semantics of while independently from recursion and fix-point theory.
Iterative calculability on natural numbers revisited. Iterative
calculability on integers and computational induction. Extending the
Church-Thesis to functions on integers.



59

NAME : Petr Hajek

UNIVERSITY: Prag

TITLE OF THE TALK: A new kind of partial convervativity
SECTION: Invited lecture

ABSTRACT: Pi is Peano arithmetic, PA, = PA + {c S, n natuml}
(PA with = constant for a non-standard element). A A —formile
@(x) is (2c,c)—conservative if, for each A-formule ¥(x),
pa + (2% > W(c) implies Pagt W(e). Similarly for

c
'(22 ,c)-concervativity etc.

—
Theorem 1. There is a Qﬁ such that both @ and -1@
c

is (22 yc)=concervetive.

Theore:n. 2., The set of sll (22c,c)—conserv;tive formules
ie TT-g—comolete.

Theoren %. There iz 2 @ such thst P}.C#é (2% g
q; is (2c,c)—conservstive.

Thecrew 4. The formula —1Con(x) saying (roughly)

"beneath x, there is a proof of contradiction in PA" is
2.C
2

(22 ,C)=conservative.

Fact. 45 is (2%,c)-conservative iff for each non-standard -
I.F P4 and each b € Li = N there is a L'k P. containing b,
identicel vith L bemesth b and such that M° k ®(2°). Sizilsrly
for 22C, etce.

Corollery. For each II = P4 and eech b € I = I there is

a I.° k= PA containing b, identicel with I benezth b end such
2.b
22

that in 1I'” there is a d € 22 which is & proof on corntradict-
ion in PA}‘
Remark. The work of Paris and Dimitracopoulos was the

wain inspiration for obtzining these results,.
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NAME : Martha Harrell

UNIVERSITY: St. John's, New York

TITLE OF THE TALK: Solved and Unsolved Problems in Axiomatic

Geometry

SECTION: By Title

ABSTRACT:

Euclid's ElLemnents, the most iLnfluentiol primer of all times ond
fomous, iLnter alio, for Lte axlomotic method, had its iLroge tarnished
omonc mothemoticiors by ne. develogments Ln geomekry ond logle beginning
iLn the 16th C, with forerunners cf iron-Euclidean ceometri. The security
of fundorentol principles of geometri os well os of oxio~s ond rules of
inference thereof, ho_ever, may cell be ouvestioned in the context of such
developments os Non-ztuclideon georetries, lLocol and globol dSifferentiol
geometry together uith applicotions in theories of relotivity, the discovery
of ond recponses tc porodoxeS of set theort ond Godel's iLncompleteness
results.

I will discuss tuwo solved crobtlems, brieflu, and two relatec un—
solved predblems, in the rerolning ollotted time. The solved problens ore:
(L) the stotus of Euclid's Porallet Postulote ond (Ll) the status of
extendec function cclculi ond certoln ossocloted higher-order Logic(s);
emphosis here Ls uoon Umplicotions for the security of geometry ond conteri-
buticn to the two uvnsclvec c~otle~s | will consider next. The unsolvec
protlems to be discussed ore: (L) thot recarding theor. of order in geo-
metry onc (LL) the questicr wheter ceometry L LN some woy on extensicn of
orithmetic, especiclly uhere aritn-etic, onc thus such pcrts dependent
upon Lt os aloetro en¢ ancl.sis, holcs pricrit. onc superior strenoth.
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NAME : Jacek Hawranek

UNIVERSITY: Wroclaw

)}

On the degrees of matrix complexity
TITLE OF THE TALK:

of Johansson's minimal logic

SECTION: Non-classical logic

ABSTRACT:
This paper is a contributior to the subject of matrix se-
mantics, as originally presented by lo$ and Suszko[ﬁ] and deve-

loped by Wdéjcicki [3]ﬂh]. By sentential logics we shall understand

any pair (L,C) , where C is & consequence operation on & senten-
iiel lzrouage L ani @ 1, 1 is an absolutely iree algebra o¢f Ffor-
mules generated by & denumerable set of sentential variatles,
¢. ¢ ic zzructural, that is eC(X)€ C(eX) for all XL anc ee 2nd(Ll).

peir =(i,D) is callec a matrix for L provided that A is or
zlgebre similzi to L znd the set D of designated elements is o
subset of a, Every such M determines & structural consequence
operation Cn. given t; the followirng formula: ol & CnM(X) iff for
each veluation h€ Hom(Z,¥) , if hi€D then ha € D. If K is a class
of matrices for I, we define Crny, as Zollows:

c.‘x(x}=ﬂ{9j;i(1): nex‘g, for ell X<&IL,

i.e., Cn. = izif{\;‘n‘:: }-:ex'g .
£ class K is ctrongly zdequuie for C if C=an. “nen K is countzble
anc each mexber of I is countable, ther. C is said to nave &

countable semantics,

One of the main methodological questions in matriﬁ semantics is
the adeguacy problem: Given = logic (L,C) under what conditiors
on C, logieal or syntictical in nature, does there exist 2 matrix
/or a class of matrices/ strongly adeguate for C ?
The class K= {(L,C(X)) : XQL”S is called the Lindenbaum boundle

for C,. “ ..
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NAME ! W. Hodges

UNIVERSITY: Bedford College

THE MODEL THEORY OF LOCALLY FINITE GROUPS
TITLE OF THE TALK:

SECTION: Invited Lecture

ABSTRACT:

A survey, leading up to Simon Thomas' characterisation of
the wl—categorical locally finite simple groups as the Chevalley groups

over algebraically closed locally finite fields.
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NAME @ Carl Jockusch

UNIVERSITY: Urbana

TITLE OF THE TALK: 1-Generic Degrees and Minimal Degrees

SECTION: Invited Lecture

ABSTRACT:

The following theorem ( joined with C.T. Chong }
will be discussed:

No l-generic degree below Q bounds a minimal de-
gree.

Also a new notion of genericity for r.e. sets
will be introduced. Degrees of sets generic in
this sense are not involved in nontrivial infs of
r.e. degrees, i.e. are nonbranching and strongly

noncappable.
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NAME : 1. Juhasz

UNIVERSITY: Budapest

TITLE OF THE TALK: Point-picking Games and HFD's

SECTION: Set Theory II

ABSTRACT:

Let X be a topological space, P a property of subsets

P

of X and a an ordinal number. We denote by Gu(X) the fol-

lowing two-person game (played by players I and II): A round
of a play consists of I <choosing an open (non-empty) set
OCX and then II choosing a point x€0 . A round is played
for each ordinal less than a . Player I wins if the set of
points chosen by II has property P . In this talk, the re-
sults of which were obtained jointly with A. Berner, we are
mainly interested in the properties:
P = D (dense) , P = SD (somewhere dense) ,

P = ND (non-discrete)

A sample of results:

Theorem 1. If «x is a cardinal satisfying W=y and

X 1is a T, space then I wins GE(X) if and only if
(i.e. X has a = -base of size =k ).
Theorem 2. If X is T3 then 1 wins GiD(X) ilo=zT

only if .no(x) <w , where

no(x) =min{n(G): ¢ #GCX open}

Theorem QQ If X dis.an HFD then 1 wins GDZ(X) . (Not=
w
that 7(X) >w for an HFD!)

<K
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Theorem 4. (CH) There is an HFD space X such that 11

wins Gl:D(X) and GfD(x) for each a<w? .

Theorem 5. (¢) There is an HFD space X for which neither

I nor II wins Gz(x) or ¢Px) .
w

HFD's are special types of hereditarily separable spaces
introduced in [HBJ] to construct S spaces. CH implies that

HFD's exist but they 4o not exist e.g. under MAm . Thus the
1

question arises whether T, spaces X satisfying the conclusions
of theorems 3-5 exist in ZFC.

Another gquestion we could not answer is whether a T3 space
X could exist such that I wins GE(X) but II wins Gg(x)
for each BR<a , where a 1is a countable ordinal different from

2

w .

References

[ BJ] A. Berner and I. Juhadsz, Point-picking games and HFD's

(in preparation).

[HJ] On hereditarily o ~Lindel6f and a -separable spaces, II,
Fund. Math. 81 (1974), 148-158.
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E. Kranakis _ I.€.C. Phillips
NAME :

Heidelberg : .
UNIVERSITY: , Minneapolis

Partitions and Homogeneous Sets for
TITLE OF THE TALK:

Admissible Ordinals

SECTION: Set Theory 1

ABSTRACT

Several reflection and partitipmproperties of admissible ordinals

are studied.Let x=wx>0 and n>0; cf' denotes the Zn(L“) cofinality of

®;the partition symbol , ):n (w -):B)m means that every En(LK) partition

of (-d™ into two pieces has a homogeneous set I (i.e, [I)™is included
in exactly one of the two pieces) which is Z‘(L.) definable.Below fo-
1llow some of the results obtained.
Theorem 1 Ifk is 2n+1 admissible and L, satisfies the power set axiom
then Ki(’( ‘Zn+1)2-
Theorem 2 If 1is Z admissible and I satisfies the power set axiom
and cfP7y =W (j>1) thenK (K-ZIHJ)?
An examble can also be given which shows that the cofinality hypothe-
sis of theorem 2 can not be omitted.

The symbol ¢x'n (x -—X) (reans that for any *<x and any partition
of a nn(L") subset of kinto« pieces there is a homogeneous set of ty-
pe Kk which is a subset of X.

Theorem 3 The following statements are equivelant (i)k is 2 W2 admi-~

ssible (ii)c¢k n (K) (K (1ii)ex t (x "sn )(K' where S g“ <K:1&<HLK

Theorem 4 IfK X:1ﬁ (K—SK)“and LK satisfies the power set axiom then

isl n+3 reflecting.

]

K



67

NAME: Christoph Kreitz und Klaus Weihrauch
UNIVERSITY: Herdecke (Hagen)
TITLE OF THE TALK: Theory of Represenfations as a Basis

for Constructive Analysis

SECTION: o Intuitionistic Logic and Constructive

Mathematics
ABSTRACT:

Many mathematicians familiar with the constructivistic objections (Brouwer [1])

to classical mathematics concede their validity but remain unconvinced that there
is any satisfactory alternative. Even Bishop's famous approach [2] is not really
accepted mainly because of problems with its foundation.

The basic idea of our approach is that real world computers as well as mathematic-
ians can only operate on names and not on "abstract" elements of a set M . We
choose F:= NN N as the (standard) set of possible names, and the naming or
representation is a (partial, onto) function &: F-->M . On F a very nice
theory of continuity and computability can be developed. These concepts are
transferred by & to M . Thus, our approach generalizes the recursive analysis
of the Polish school (Grzegorczyk [3]), where only computability is studied. Using
appropriate representations of R , of open, closed, bounded, or compact subsets
of R, different "effective" versions of- theorems of classical and also of
constructive analysis can be proved. Concepts like those of "located sets" or
"complemented sets" from Brouwer's approach find their natural counterparts in our
theory. A function which is constructive in Brouwer's sense generally is easily
computable, if appropriate representations are used, if it is not constructive or
not computable in recursive analysis it is not even continuous in most cases.

Thus in most cases discontinuity is the deeper reason for noncomputability or non-
constructivity.

Obviously the choice of the representation & of a set M is crucial. Natural
representations & of a set M are usually defined by considering a canonical
construction of M (e.g. Cauchy compietion). A good representation of a topological
space M should have several natural topological properties. The decimal represent-
ation 6D of R 1is topologically bad, which implies that addition is not even
continuous (relative to 6D }. However, for any separable To-space M, there is
an open and continuous representation & which is maximal in the class of all
continuous representations of M. In addition a good representation should satisfy
some computability properties. Standard representations of Zm', R (Grzegorczyk
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[3]), effective cpo's (We@Qrauch and Schdfer [4])) and effective metric spaces
(Weihrauch [5])) are of this kind. For example, the computable LP-functions (Pour
E1 and Richards [6]) are the computable elements w.r.t. a standard representation
of the (separable metric) space L¥. The approach also is appropriate to study
computational complexity (Ker-I Ko [7]).

In summary, the approach studies continuity and computability w.r.t. represent-
ations using classical logic. The philosophical part of the theory is reduced to
the selection and justification of the “reasonable” representations and the
interpretation of the results.

References

[1] BROUWER, L.E.J.: Zur Begriindung der intuitionistischen Mathematik 1,I1,11I,
Math. Annalen 93 (1924), 244- 258, 95 (1925), 453- 473, 96 (1926), 451 - 489.

[2] BISHOP, E.: Foundations of constructive analysis, McGraw-Hill, New York, 1967.

{3] ABERTH, 0.: Computable analysis, McGraw-Hill, New York, 1980.

~

[4] WEIHRAUCH, K.; SCHAFER, G.: Admissible representations of effective cpo's,
TCS 26 (1983) (to appear)

[5] WEIHRAUCH, K.: Computability on metric spaces, Informatik-Berichte Nr. 21,
Fernuniversitdt Hagen (1981}).

[6) POUR-EL, M.B.; RICHARDS, 1.: LP-computab11ity in recursive analysis, Jechnical
Report University of Minnesota (1983).

[7] KO, K.; FRIEDMAN, H.: Computational complexity of real functions, TCS 20 (1982)
323- 352.
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NAME: __ - Reijiro Kurata

UNIVERSITY: Fukuoka

TITLE OF THE TALK: A Simple Proof for a Statement which is

Eqivalent to Harrington's Principle

SECTION: Peano Arithmetic

ABSTRACT:

§1. Introduction.

Throughout this abstract, we shall let T denote the theory defined in
2.1 of (PH). Harrington Principlen(H) means that, for any k, n and r inw,
there exists an M such that M3 (k) (1.1 in [PH]).

Paris and Harrington proved in [PH] that

(H)¢— ConTe> RFNy is provable in PA,

where RFNy, 1is the reflection principle on PA for f,—formulas.

In the following, we shall show that ConT can be easily verified from
some property of limited formulas, and we can also obtain PA + RFNy-ConT
by formalizing this proof.

§2. Determined Partition.
DEFINITION. A partion P: [w]“—)Z is said to be determined iff

(1) there exist function seguence 6‘1, 52(x1),...,ﬂn(xl,...,xn_l)
such that P(al,...,an) = constant for all al<a2 ...<an, ﬁ’l« al, 62(a1)-< az...
...ﬁ‘n(al,.. . 'an-l) < an.

(ii) For any i (1£1i< n) and fixed cl""'ci—l in w, the partition

n-i+l .
lai. ..lanP(cl. LTI .an) : [w] = 2 has property (i).
(Note that the value of constant in (ii) dependson cl,... ,ci_l.)
We write i :[w]n—)2 for the partition associated a formula ¥ of T

with n-free variables.
LEMMA 1. For any limited formula Y(a,...a_ ), partition || is determined

and §. . . can be taken primitive recursive functions.
J isi¢n
553. Consitency of T
LEMMA 2. Suppose that finite number of partitions P.,. /By s [uf]n-} 2 are all
determined, then for all cardinal k< x., there exis% a homogeneous set H
with cardinality k for all Pl"" P, simultaneously.
THEOREM. Let S be a arbitrary finite subset of T, and k be the maximum index
i of ¢, occuring in &. Then, there exist ¢ ,...,c,_ 1in & such that
<l¢' , t 0, Cgre-C » 1s a model of S. Moreover, by_ formalizing -
this proof, we also obtain k
PA +ConPA »Con({S) and,
PA+RFNE t ConT.
1

Reference
{PH) J.Paris and L.Harrington, A Mathematical Incompleteness in Peano Arithmetic,
Handbook of Mathematical Logic, 1977.
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NAME : H. LeiB

UNIVERSITY: Bonn

]
TITLE OF THE TALK: Beth's Theorem for Syntopogenous

Structures

SECTION: Generalized Quantifiers and Topological Model Theory

ABSTRACT:

A.Csaszar introduced the notion of a "syntopogenous system”
(A,I<) to give a unified treatment of topological, uniform and
proximity spaces. Here I is a non-empty directed family of bi-
nary relations on P(A) - "topogenous orderrelations"” - satis-
fying certain gquasi first-order conditions. I is a basis for
the system

£ 1= {olos= ? for some 1¢e¢l) , where for 1< P(A)2

% := ((B,C)| BeD, E=C<=A for some (D,E)ect}

A first-order language L is extended to talk about structures
(G,I) with arbitrary £ fP(P(A)Z). The extended language Lz has
new atomic formulas teX and allows restricted higher-order
quantification as in el 0(1+,..) or F(X,Y)er v(X+,Y_,...)

(i.e. 1 must not occur negatively in ¢ ..). L[-formulas express
<

the basis-invariant properties of I .

Theorem:
Let T be a theory in L_ such that t° is a directed system and
contalns a non-empty eiement in every (U,L)E T. Then

T defin_es the system [< implicitly if and only if

. ; < o s
T defines (a basis of) the svstem I explicitly.

It is not clear if the theorem can be generalized by dropping
<. . . "

the assumotion that I ic a directed syster in every (O, 1)E T,

Difficulties and some positive results 1n this direction are

1ndicatecd.
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NAME : Wolfgang Lenski

UNTVERSITY: Mosbach

TITLE OF THE TALK: Elimination of Quantifiers for the Theory
of Archimedian Ordered Divisable Groupé in L(Qg)

SECTION: Model Theory and Groups

ABSTRACT:

For n>1 let 03 be the Ramsey quantifier in the 4 -interpretation.
Let L(QS). n>1, be the logic ebtained from first order logic by adding
the following formation rule: If ¥ is a formula and Xys--euX, are distinct
variables, then ng1,...,xn‘f is a formula. The Ramsey quantifier is
defined in a structure Ol as usual: Ok 08x1,...,xn‘f iff there is a
subset M of {0t[ with card(M) > ¥,, such that for all distinct 3gre-erd e M
ﬂ#?[a1 - ,an].

Let now be DOG the theory of divisiole, ordered abelian groups in the
language LG: {+,—,0,<}. In L(QB), n»1, we can distinguish by means of the
Ramsey quantifier the case of an archimedian ordering from the one of an
non-archimedian ordering: There exists a sentence Y of L(Qg), n> 1, which
is valid in & model Of of DOG iff O is archimedian ordered.

Define ADOG:=D0G v {HL that is ADOG is the theory of archimegian crdered
divisiGle abelian groups.

It is shown that ADOG admits elimination of quantifiers in L(Qg) for n>»1:

Theorem: ADOG admits elimination of quantifiers in L(QB) for n>1.

From the decidability of D0G we get
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Corollary: ADOG is decidable in L(le for n>1.

Further let TZ=Th(Z,a) be the first order theory of Z-groups in the
languege Ly= {+,-,0,1, = (n>1),<} . By T, we denote the theory of -
archimedian ordered Z-groups. With the same method as used for ADOG an
analogous result can be provec:

Theorem: TAZadmits elimination of quantifiers in L(Qg) for ns1.

Just as for ADOG it follows from the decicdability of TZ

Corollary: TAZis decidable in L(Qg) for n> 1.
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Harry R. Lewis
NAME :

Harvard
UNIVERSITY:

LOGICAL SYNTAX AND COMPLEXITY
TITLE OF THE TALK:

SECTION: Invited Lecture

ABSTRACT:

What is the effect of syntactic form on the strength of
logical lanquage? We examine predicate logic and strive to
distinguish the impact of guantificational structure from that
of truth-functional form. Alternating automata are used to
establish lower bounds on the complexity of the satisfiability
problem for several classes of Krom (CNF-2) and Horn Formulas.
Apgiications of the methods to complexity theory and to logic

programming are mentioned.
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Per Lindstrom
NAME &

Steh
UNIVERSITY: Goteborg

On Faithful Interpretability in
TITLE OF THE TALK:

Theories Contaihing Arithmetic

Peano Arithmetic
SECTION:

ABSTRACT:

S is (X-)faithfully interpratable in T, S< 7 (g < x'n), i? there is an

interpretation £ of S in T s.t. for every <]0 yif T2 (and we X),
then S (»— ¢ . (A1l theories considered are r.e.) lLet
T{S} - {c\o : dm?f Prg m(?{)e; s t—q:} .

Generalizing a result of Feferman, Kreisel, and Orey (i-consistency and
faithful interpretations, Archiv f. math. Logik w. Grundif. 6 (1960), 52 -
63) we prove the following

THTOR™™, If T is an extension of P(eano arithmetic), ¢~ (x) numerates S
in T, and T Con__, 4hen § é_T{S}T.

Two of the more interesting corollaries of this result are the following.
Let A, P be essentially reflexive extensions of P,

COROLLARY 1, s & xd iff 5 is interpretable in 4 and X & A£S}.

COROLLARY 2. 4L Biff AT =» BL U for every T € ?('? and B o
= Ao for every O €& Z?.

Corollary 1 can be applied to study the set of interpretations in A in
terrs of the premordering fiA defined by:

f =g iff {C{: hr fq = I“r IS 36{3}.

Corcllery ¢ can be used to develop a theory of degrees of Tziinful interprei-
atility analogous tc the theory of degrees of interpretability (V. évejdar,
Degrees of interpretetility, Comnent. Math. Univ. Ceroliree 1% (1978), 785 -
€13. P. Lindstrdm, Smé\Q‘esults on interpretability, Proc. of the 5th Scand.
Logic Symp., Aalborg 1979, 329 - 361 and Or certain latiices c¢f desreez cf

interpretability, to appear, ).
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NAME : Shibi-Chao Liu

UNIVERSITY: Taiwan

TITLE OF THE TALK: A Proof Theoretic Approach to

Non-Standard Anaiysis (continued)

SECTION: Nonstandard Analysis

ABSTRACT:

This talk is based upon my previous paper "A proof-theoretic appraocch to
non-standard analysis with emphasis on dietinguishing between constructive
and non-constructive results" in [The kleene Sympoeium, 1980]. I first give
a sketoch of the main points of that paper but in a newly reorganized form
with some new materials which were not contained in my previous paper, end
then sdd more remarke and reflections on this subject. I think that such a
proof-theoretic appraoch to non-standard analysis is worth to be further
developed either theoretically or in its applications.

We start with the assumption that the axiomstic set theory ZF ie consis-
tent. For each intuitive natural number i, let "' to denote the set defin-
able in ZF according to the following recursion 3 0 = 0, G410 - 47 oA }.
By Goedel's technique end the fact that the law of excluded middle holds in
ZF we can show that there exists a set definable in ZF, which we denots by
00, such that (1) ZP F oo € w, and (11) o0 € i’ is unprovable in ZF for
i = 0O,1,... + Hence ZF can be extended to a coneistent theory ZF¥* by adding
as new arioms the sentences '0'< 00, 17< 00,2 < ©00y.+s . Since the real
field B, the rstionml field Q, the set of integers C, th.ii%f natural numbers
w gand the following relation and operations x < y, x +y, X.y, < , -x, l/x
are all defirable in ZF, they are elso definable in the extension ZF* by the
same formulas as in ZF, We further introduce the notation & by 3 - 1/00.

By non-gtandard enalysis I mean the discipline of metamathematics about ZF*
especially when the notion of convergence defined in terme of oo or g for

real functions (namely functions from B to R) is involved.
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NAME ! Yizhong Lu

UNIVERSITY: Nanjing

Appli i
TITLE OF THE TALK: Some Applications of Boolean Form to

Analyse and Managé Large Data Sets

Logic versus Computer Science
SECTION: 9 P

ABSTRACT:

In (1) and (2} the authors give some algorithms to calculate some
complex Boolean functions and analyse some large data sets. The paper
discuss some exceptional cases and some new results which can be analysed
and managed effectively by recusion theory and Boolean form, The main
results Iin the paper are

1. A effective algorithm to calculate the exceptional cases of the
algorithm in (1) and [2) was found.

2. The representing function of decision predicate of tree-structure
consistency is a weak elementary function (3).

3. A tree-structure is consistent iff B = 0,

4. The calculation of B is very quick and minimizes the space

necessary for calculating B.

References

1. Y. Capasso, A, Circella and 8. Silvestri
2. N. Armenise, G. Zito, A, Silvestri, E. Lefons, M. T. Pazienza,

and F, Tangorra
2, J. P, Trembly and R. P, Manohar

4., Robert R, Korfhage
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NAME : Kenneth L. Manders

UNIVERSITY: Pittsburgh / Utrecht

TITLE OF THE TALK: ' odel Completeness in Geometry

SECTION: General Model Theory

ABSTRACT:

It follows directly from an examination of the quantifier structure of
the classical interpretations-coordinatisation resp. coordinate based
geometry - between geometries and fields that

(1) Th{P¥*(k): k T} is mode! conplete iff T is:

(ii) ThR{AY(K): k= T} is model complete iff T is,
where Pl(k) is projective n-space over k formalised as point set with
collinearity relation, and AL(k) is affine n-space over k, but formalised as
point set with quaternary parallelism relation abl|l cd. |f we formalise affine
spaces with collinearity relation and restrict to fields of characteristic
zero, as assumed henceforth, the relation abllcd is never existentially
definable, and model completeness fails. (Embed A™(k) in Pl(k); any finite
subset of P%(k) can again be embedded in A {k).)

We characterise all embeddings among affine collinearity spaces, and show
(writing PX(T) for Th {P*(k): kI= T) and similarly A" (1)):

{iii) AY(T) has the amalgamation property iff T has;
(iv) PZ(T‘) is the model completion of AZ(T) iff T‘ is the model
completion of T.
Analogous results hold for the language of ordered fields and the correspon-
ding geometric languages and higher dimensions.

These facts are of interest because of the suggestion that mode) com-
pletion may be a metamathematical correlate of the conceptual and geometrical

unification and simplification obtained from the embedding of affine in

projective space. .



78

NAME ! A. Marcja

UNIVERSITY: Florenz

TITLE OF THE TALK: Analyzing Elemantary Theories by the

Boolean Algebras of definable Subsets and their Models

SECTION: Boolean Algebras

ABSTRACT:

let T be a countable conmplete first order thecry; for every MET let P(M) be
the Boclean algebra of M-Gefinable subsets of M.

Genera)l Problem: classify elementary theories by isomorphism types of (M) with M

countable (or of fixed power).

Definition 1

T is pseudo lk’ -cateacrical 1f and only if there is only one :isomorphicm tvpe.
o —2=focrica.

Theoren }
1. I T as H]—ca&egorical then T is pscudo So—caugorical.
2. Every countable atomic Boolean aloebra is iscrorphac to B(M), with M countable

model of & countable superstable pseudo /\'o—caLegorical theory.

Defamition 2
For T as atove and w-stable we call Cantor-Ze~dixson spectrus of T (CB~Spec T)
the set, ordered lcxacographica-1lly, of the Canior-Bendixson types (o )
for MET [M| =4

e %)
o
Reduced Problem. Find what subsets of ml-(O) x w~{0} are CEB-spectra of a counta-
ble complete -stable theory.

Theorem 2 (Tofialori)
Let X c w - {0) xw-{0} such that

-min X2 (3,1)
there exists max X = (A,1), X a limit ordinal
-{a+2 :Foiae2,8) €Xx) is cofinal in A,

then X ir a CB-spectrum.

Theoren 3

Let T be an u-stable theory such that : (),1) € CB-Epec T {W.1.0.g. the prime
model M of T 1s tne only one of CB type (1,1)) and M= MoIa] ta ¢ My} has
CB-type {a,d) > {(1,1}.

1. 1f there exists a naxamal CB-rank B of definable subsets of M_ disjoint from
Mo, then there exists a O-definable equivalence relation E on the models of T,
having in M, anfinitely many classes of finite unbounded size.

2. 1f @ > 1 then
1} B=a
22} /B = My-kg
i1y {1, )} e {ta,nd) : n€ w-{ON{tas1,1))C CB-Spec T.
3. 1f d=1 and B=a then again
i} a/E = Mi-Mg
11 {a,n}ela,nd) cn€u-10}Ju {tas!, 1N CB-Spec T

4. 1f d=1 ,csuccessor, f+ |=athen E ad-its in My
of CeE-rank B.

‘o :nfinitely reny classes

5. Id ¢=1 anda 1s lizit there is a countereranple to 1.
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J.C. Martinez Alonso
NAME :

UNIVERSITY: Madrid

TITLE OF THE TALK: (Lwlw)t ~eqivalence for T3 Spaces

SECTION: Generalized Quantifiers and

Topological Model Theory
ABSTRACT:

In [17 the Lt-theory of a T3 topological space is characterized by using
the topological notion of the type of a point.looking at the behavior of

convergence we refine the notion of type and in this way we are able to
prove a characterization of the (Luﬂw)t-theory of a wide class of spaces.

References
{17 J.Flum-M.Ziegler. - Topological Model Theory. Lecture notes in Mathe

matics n. 769,
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NAME : Z. Mijajlovic

UNIVERSITY: Belgrad

TITLE OF THE TALK: Definable Points in Models of Peano

Arithmetic

SECTION: Peano Arithmetic

ABSTRACT:

In the paper it is applied the Priedman analyzis of embed-

dings of models of Peano arithmetic and their standard systems,
The intersectioné of all E:Zelementary submodels, and the inter-
section of initial segments of countable nonstandard models of el-
mentary arithmetic are described in terms of definable points in
these models (Mc Aloon’s minimal r]ipoints). As a consequence,

Z:—elementary extensions of the standard number system w are
characterized.

If ¥ is a model of Peano arithmetic let Ag denote the set
of all A} -definable elements in M, and let ﬂ: denote the set
of all [} -defgnable points in M. If X ¢ M let J(X) denote the
initial segment of I{ generated by X. Further, let Qg be the inter-
section of all initial segments I of M which are E:Z—embedded
into M, and I £ K.

N M, _ M
Theoren J(A x+l) = ainy = Q

Corollary 1. For every ke w there is an initial segment
J ©_M such that J = ¥ and J# M. ’

= o

x
Corollary 2. For any countable model of Peano arithmetic the fol-
lowing are equivalent:
M M
Mw <_, ¥, (2) 4 =2, (3) Qp= w .

K}
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NAME : B. Mikolajczak
UNIVERSITY: Posen
Provi : :
TITLE OF THE TALK: roving System Properties with Help of

Logic Functions

SECTION: Logic versus Computer Science

ABSTRACT:

This paper is a comparative study of results achieved during
iast years in the area of application of logic functions to pro-
ving different properties of csystems; especially with respect to
ciscrete systems used in computer science. The special empnasis
is poseda onto the problem of proving computvztional compiexity
results ror discrete systems by reducing them to respective pro-

blems for logic functions. As models of discrete systems we uset

deterministic and undetermirnistic automaton, alternating automaton,

Turing machine, Petri net and directed acyclic graph.
%e have analysed the investigation with help of logic functions

such system properties likes controllability, intractability,

deadlock, and different graph properties. Especially it has been

shown:s

i) proving the existing of cliques in a graph representing

cliscrete systenm, ‘
1i) proving coioracillity properties ot & graph describing

alscrete systeu,

iii) representing some classes of logic functions by deterministic

ara urdetvermiristic automata,
iv) representirg arbitrary logic functions by Turing machine,

V) represerting of some classes of logic functions by acyclic
directed graphs with special application for proving time-
spece tradeoff results for the systenm,

vI) proving the reaucibility of liveness problem for Petri rets
to the problem of satisfiability of logic functions.
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Moerdijk, I.
NAME :

Universiteit van Amsterdam
UNIVERSITY!: -

i hoi nces
TITLE OF THE TALK: Monoid models for choice seque

Invited lecture
SECTION:

ABSTRACT:

The theory of choice sequences that seems to have received most
of the attention so far is the theory .CS of Kreisel and Troelstra,

which includes axioms like

analytic data Aa + 3F (aeim(F) &VBeim(F) AB)
continuous choice VQBBA(%B) + 3FVaA(a,Fa)

(where «,8 range over choice sequences, and F over lawlike continuous

operations on choice sequences).

We will discuss a model for the theory CS obtained using a notion
of forcing over a monoid of continuous functions from Baire space
to itself.

Using a similar model, we show that an axiom of continuous choice

as above is consistent with the principle of spreaddata
Ao + 3 spread S (aeS &VBeS AB) ,

(roughly, a spread is a closed subspace of the space of choice
sequences), which seems closer to the original theory of Brouwer

than the axiom of analytic data.
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Roman Murawski
NAME :

UNIVERSITY: Posen

TITLE OF THE TALK: A "Negative" Result on Trace Expansions

SECTION: Peano Arithmetic

ABSTRACT:

Let PA denote Peano arithmetic end A2 the second order arithme-
tic., GBdel has shown that PA is incomnlete, Hence it is natural to
investigate its extensions. ln particular we may consider the fol-
lowing "second order generated" extension

(payh2 - {oel(Pa): Ao} .

It can be shown that N is & model of (PA)A2 iff there exists
¢ model M such thet =X and - is Aé-expandeble, i.e., there is
e family X < P(I) suckh that (¥ ,K,€) F A5, this fact justifies
the study of Ag-expandability of models of PL (for nore details on
Ag—expandability cf. our survey paper (3}]).

In recent years much attention was payed to the study of possib-
le A;—exnansions of exvandable models of PA, In particular expan-
sions of initial segments of a given model of PA were studied -
cf. e.g. [1] and [4]. In the last paper we have considered so call~
ed trace expansions, i.e. given a model M F PA and its A;—expan—
sion (3{M,M,e ) consider initial segments I SeM such that
(¥ynl,le) F A;. Using indicators we have proved several facts
about such segments and its expansions. but the situation is not
80 nice as these results could suggest. Namely we have the follow-

ing "negative" reeult which generalizes e result of rostowski [2).
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TLZUXES. Let # be a countable nonstandard model of PA which is
expandable tc a model of A; = AE + CUNSTR having a full substitu-
table setisfaction class S such that S(Ag). Then there exist an
extension F, of Ii and an AE-exoansion & = (JEM1,M1,6 ) of K, such
that

t, = M,
(¥ n ,kE, €) non E A;.
"

Models I, and % are constructed using nonstandard Skolem ultra-
powers, Teking a particular ultrfilter we get that traces on M of
sets of X% do not form an expansion of M, By construction we get
Mec M1 but M is not an initial segment of M1. The assumption that
the satisfaction class S is substitutable can be weakened to the
following conditions: 19 5 is substitutable to the axiom sclieme
of induction and 2% the comorehension scheme for atomic formulas
containing the predicate S holds.

References

(1) L.Kirby, K.McAloon, R,Murawski, Indicators, recursive satu-
ration and expandability, Fund.Math., 114(1981), 127-139.

[2] &.Fostowski, A contribution to teratology, Hjdpamnste Aonpocst
auedph M kotuku , Hougka, Hoboudupx 1973, 189~ 196,

[3] R.Murawski, On expandability of models of Peano arithmetic
1,I11,111, Studia Logica 35(1976), 409-419; 35(1976), 421~
4313 36(1977), 181-188.

L4] R.Murawski, Trace expansions of initial segments, to.appear.
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NAME : Andrzej Pelc

Warschau
UNIVERSITY!:

TITLE OF THE TALK: Universal and maximal invariant

measures on gloups

SECTION: Proof Theory 11

ABSTRACT:
A measure on X is a countably additive @ -iinite non-negative
extended real-valued function defined on a ¢ =-algebra of subsets of X

and vanishing on singletons. A measure on X is universal iff it is

defined on P(X). If H is a subgroup of a group G then a measure m

on G is H-invariant i11 m(hA) = m(A) for any m-measuraple set A
and any ne€&hl.

v .. e . .
Thw 1. /farazisvilii, Erdos, Mauldin, Ryll-Nardzewsxi, Telgarsky/

If H 1% an uncountavle savgroup oi a group G then tnere is no
universa: H-invariant measure on G,
Tnm 2.

I H is a countable subgroup of a group G tnen a universal H-invariant

measure exists on G iff lGl) a real-valuea measurable carainale.

Thm %,

I1 H is &n uncountapvle abelian 3ubgroup 01 a group G then every

H-lnverianl mecsure on G hag & proper H-invariant extersiol.

Tan &.

Lel = 0f & Cuanilav.€ 2UL.10.0 CI & group 5,

a/ I: ¥ ir & Grredt dur 01 I.nil€ ETOups OY Eroudps 1s0..0rpaic 1o (Z,+)
truern gvery acn-universal l-invariant measure on G has & proner
F-1uVallant exiension.

b/ If G nas measurabple cardinality and Y does not have proper subgroups
ci 1inite index tnen tnere exists & non-unuiversdal “-inveariant

measure on G without proper F-invariant extensions,
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A. Prestel

UNIVERSITY:

Konstanz

TITLE OF THE TALK:

Decidable theories of real fields

SECTION:

Invited Lecture

ABSTRACT!

Summary: A field F which admits at least one ordering is

called real.
endowed with
field can be
space occurs

decidability

The set XF of all orderings can be naturally
a Boolean topology. The notion of a real closed
generalized in such a way that every Boolean

as order space X of such a field. The

F
of subclasses of such generalized real closed

fields then reduces to the decidability of the corresponding

classes of Boolean spaces. We will mainly concentrate on decidable
classes of real fields arising in this way. Other decidable

classes will be mentioned.
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NAME : Andreas Rapp

UNIVERSITY: Freiburg

TITLE OF THE TALK: Some Results on Logics with Malitz

Quantifiers

SECTION: Generalized Quantifiers and Topological

Model Theory
ABSTRACT:

In [ﬂ] Magidor and Malitz introduced the quantifiers Q%
(n21,420) and, more generally, Qi for s a finite sequence
of positive integers. They posed the problem of determining
the hierarchy of expressive power of the logics L(Qi).

This problem is solved by the following

Theorem 1. For all ordinals « and all sequences s and t:

L(Qi)ﬁ L(QE) if and only if s<t.

Here < 1is a suitably defined partial ordering: for

§ =@yee-m 7 ot ={m,,...,m”, where 0 ym.> 1, put s<t

iff there is a 1-1 fumction £:{1,...,k} j;{ﬂ,..,l} such
that ny 5lnf(i) for all i< k. Theorem 1 generalizes a result
of Garavaglia and Shelah that, for all « and n, L(Qﬁ:q)
is strictly more expressive than L(QB). The proof uses
tecniques similar to those employed by Geravaglia in [2].
Along the same lines a guestion raised by Malitz in [3]

can be answered:

Theorem 2. For eache«21 and each n there is a structure
Ot such that the L(QF)-theory of Oih , is decidable
2

n,x
whereas Qs L(ngq):theory is not.

Some further results concerning eliminability of the

quantifiers Q2 are discussed. '
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NAME ! Z, Ratajczyk

UNIVERSITY: Warschau

TITLE OF THE TALK: Traces of Models on Initial Segments

SECTION: General Model Theory

ABSTRACT:

Let ICZM denotes thal I is & proper initlial segment
of ¥k 1A, closed under addition and multiplicalion. Lel
AE(M) denotes the family of all A -definable subsels of il.
Let Ryl = i XAl : Xe Af M)} . the second order stlructure

(RMI,I, €,+, %) is called a trace of ¥ on I and is denoled
shortly by (RMI,I ).

Lefinivion 1. Lel 5 be lhe theory in second order language

of ari.melic consisiing of the following axioms: BX, i.e.
colleclion schema for 2 -{ormulas wilh class parameiers;
!

L5-Ch i.e. couprenension schesa for 41—formula.s wivh class

—~

perazevers, Y17 i.e. Tonis jenmna for vinary trees.
'roposivion 2. IF T is a theory -nd |k 1AgT chen for

every IceM, (RMI,l)}: N,~T™S, where [T, is the firs. level
{ "leeune-loslowski hierarchy.

sheorewm 3. If (% ,u,) E NaTwotexp,(F 1) is counvavle,

satisfies ﬂ_—oversmll and T is r.e. vhen chere existis s mo-
‘)

-

. . A Y o
del Iy such chatv [ C. ¥, and (HMZL‘. 2y (' roy ).
“orollarys. If - is r.e. . 21 4, then
RS TND T A (S T N = .,i 1s closea unuer e,.ponenuation$. ) o=
~ ~:
oA = D+ exu.
~heorew §. 7 . 1% ,... 1s counvable, .ner vhere exists &
Temily 5 T P(,..) such vhae (%, 0 B IS - AL -Cn + TLT,
v \ LR ~_4

Sorollary 6. If Ll',\

ex1sts“r‘h model [f';, such that L FI‘Z and L . is a sexiregular

is a couniable model for l')Z|'»hen vhere

initial sepument of 14
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NAME : Pieter Rodenburg

UNIVERSITY: Amsterdam

TITLE OF THE TALK: Correspondence Theory for Intuitionistic

Logic

SECTION: Intuitionistic Logic and Constructive

Mathematics
ABSTRACT:

The main reason why Kripke semantics has been a usefool toecl for
the study and classification of intermediate logics, lies in the correspondence
it establishes between such logics and properties of partially ordered sets.

We can, so to speak, visualize what a formula says about the way knowledge
grows". For example, (p » q) Vv (g » p) expresses that the different stages
through which our knowledge may develop are linearly ordered; 1p v 171p
that there is a last stage.

Now of course, via the semantics, every formula says something about p.o. sets.
The interest of the above examples lies in the simplicity of the properties
defined. In particular, they are first order, and the gquestion arises whether
all formulas of inturtionistic |propositicnal) logic define first order properties.
The answer is negat:ve. Some examples will pe given, and their nature discussed

1n the light of various restrictions on both p.o. sets and formulas.
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UNIVERSITY: Minster

TITLE OF THE TALK: Some Logical Problems Connected with a

Modular Decomposition Theory of Automata

SECTION: Invited Lecture

ABSTRACT:

In the context of a theory concerning networks of automata which
has been developed to a certain amount of interesting results

we shall present some logical problems arising in & natural

way from this context. The fundamental "basis-problem™ is un-
solved up to now, but there are some partial results, Concerning
"normed network constructions", we consider two different
approaches which make it possible to study decision problems

for first order languages handling these normed constructions,
Next, it is possible to use network constructions for the repre-
sentation of some recursive functionals: this can be extended

to the characterization of a class of functionals of arbitrary
finite type. Finally, the "loop~problem" for networks can be
considered in the context of the P-NP-problem: a new result

is presented in comparison with an older result which can be

formulated entirely in terms of network constructions,
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REFERENCES.
M. Makkai, An example concerning Scott heights, to appear.
D. E. Miller, The invariant ﬂ; separation principle, Trans. A.M.S. 242, (1978).
G. Sacks, On the number of countable models, to appear.
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Ramez L. Sami
NAME :

Kairo
UNIVERSITY:

Group Actions and the Vaught Conjecture
TITLE OF THE TALK:

SECTION: Model Theory and Groups

ABSTRACT:

Vaught's conjecture {(that a sentence of Lwlm has countably many
» .
or 2 ° isomorphism types of countable models) is known to follow from
the following conjecture in descriptive set theory:

(*) 1If G is a Polish topological group and J: GxS — S is a continuous
action of G on a Polish space S , then there are either countably
or perfeatly many orbits (that is: there is a péifect Pc S, no
two distinct members of which share the same orbit.)

This is known to be true for locally compact or abelian polish groups.

Assume below that J is a A; group action, where both G and S are
X

recurcsively pnresented.

or in S;let {x) denctsz the orbit of x.

o
Proposition 1: For any xeS , [x] is gw§02
Theorem 2: Let U <€ S be §:invarian§. If for all xe U,{x] is H&¥ , then

U has countably or perfectly many orbits,

In the model theory case, gi invariant subsets are none other than

Plew classes of countable models; one can improve Thm. 2 for this case:

Theorem 3: Let U be a Pcwlw class of models (with universe w) If for all
]
xeU, [x]is §w¥.2;hen U has countably many or perfectly many orbits

Remarks: 1) Prop,l generalizes a known fact in model theory (See[S]).
The proof here however is less elaborate than the special case (which
uses Scott sentences).

2) Theorem 2 was proved by Steel [5] under the hypothesis: Vx(x# exists).
Makkai [1) gives a proof of a weaker statement (in effect strengthening

0
the hypothesis to:[x] is Jyx ,for all x eU.) Our proof builds upon [3] .
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NAME 2 UTf. R. Schmer}

UNIVERSITY: Minchen

TITLE OF THE TALK: Diophantine Equations in a Fragment of

Number Theory

SECTION: Proof Theory

ABSTRACT:

We study the following problem: Given a diophantine equation,

is it possible to find out whether or not this equation can be
proved impossible in the fragment Zo of classical first order

arithmetic in 0, S, +, ., and open induction.

Using proof-theoretic methods we prove the following: Let

r(xl,..,xn):s(xj,..,xn) be a diophantine equation in the

variables EPERTEE Then
le..xn[r(xl..xn)#s(xj..xn)] is provable in ZO iffr
JceN v(il..in)elil'.xn PR R ) ms (R R I X X))
Kere Iii'-Xn:{O,i,..,c—l,x1+c}x..x{O,l,..,c—l,xn+c), 1+N[x1..xn]

is the set of polynomials in x <Xy with coefficients from N

1
and absolute coefficient #0, and r(il..in)-s(il..in)| 14N[..]
means that r(il..in)—s(il..in) - understood as a polynomial

from Z[xl..xn] - devides some polynomial in 1+N[x1..xn].

This characterization still holds when the functions P (pre-

decessor), sg, and Eé (sign and cosign) are added to Zo'

—
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P.H. Schmitt
NAME: !

UNIVERSITY: Heidelberg

TITLE OF THE TALK:Decidabi]ity of the L{Q,)-theory of the

Class of all ordered Abelian Groups

SECTION: Model Theory and Groups

ABSTRACT:

The language L(Q,) arises from ordinary first-order logic by
adding the quantifier Qux with the interpretation that Q‘X*f is
true in a structure M if the set of elements a ¢ ¢ satisfying
M k¢ (a) has at least cardinality &, .

Theorem 1 : The L(Q.)-theory of the class of all ordered Abelian

groups is decidable for o= 0 and o« = 1 .,

In the course of proof for this theorem we need as an auxiliary
result:
Theorem 2 : The L(Q.)-theory of the class of all comrlete linear

orderings is decicdable for « = 0 and « = 1 ,
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. P.H. Schmitt
NAME :

UNIVERSITY: Heidelberg

TITLE OF THE TALK: Model- and Substructure complete Theories

of ordered Abe]ian.Groups

SECTION: Model Theory and Groups

ABSTRACT:

In his pioneering paper [1] Yuri Gurevich associated with every
ordered Abelian group G for every n=z2 a coloured chain ( i.e.
a linear order with additional unary predicates) Spn(G) , called
the n-spine of G and proved:

G = H if and only if for all n=22 Spn(G) = Spn(H)
Thus for every elementary class «H  of ordered abelian grou~s there
are theories ’I‘n in the language of n-spines , such that

G €M if and only if for all n22 Spn(G)P-Tn

Main Theorem: If for all nz2 Tn is model com~lete (substructure
complete) then A  is model complete ( resp. sub-
structure comrlete) in a certain definitional extension

of the language of ordered groups.



96

NAME : P. Schroeder-Hejister

c
UNIVERSITY: Konstanz

TITLE OF THE TALK: Natural Deduction Calculi with Rules

of Higher Levels

SECTION: Proof Theory

ABSTRACT:

Natural deduction calculi, as introduced by S. Jadkowski
and G. Gentzen, differ from Hilbert-type calculi as well as
from sequent calculi in that assumptions may be discharged
with the application of inference rules. An inference rule
in such calculi can be stated as

r, Fl

LI Al

A

where the I''s are (possibly empty) sequences of formulas
indicating the assumptions which may be discharged. This con-
cept of a calculus can be generelized in the following way:

In the first step one allows not only formulas but also rules

as assumptions. If a rule R which does not belong to the basic
inference rules of the calculus considered, is used in & deri-
vaticn of & formula A, then A is said tc¢ depend on R. Ir the
secornd step one defines inference rules which allow one to
discnarge assumptions which are themselves rules. This leads

to thne concept of rules of arbitrary (finite) levels: A
level-O-rule is & formula, a level-l-rule is & rule not allowing
one to discharge any assumption (like rules in Hilbert-type
systems), a level-(m+2)-rule is a rule allowing one to discharge
assumptions which are level-m-rules. An example of a level-3-
rule is

A=B
A+B C
C
where '»' is the implication sign and A=B is & linear notation
for the level-1-rule % . This level-3-rule is equivalent

to modus ponens. With the help of level-m-rules for arbitrary
(finite) m, a general schema for introduction and elimination
rules for n-place sentential connectives and quantifiers is
definable, thus yielding a natural deauction system for logical
operators in & generalized sense. Derivations in this systen
are normalizable. Furthermore, the {(functional) completeness

of the standard intuitionistic operators 'al, fv!', !'s1 tdl,
'V' and '3' can be proved. The syster is not suitable for the
interpretation of modal calculi without modifications. So the
meaning of level-m-rules is somewhet different from the meaning
of sequents of higher levels used by K. DoSen ("Logical Con-
stants', Ph.D. thesis, Oxford 1980) for the interpretation

of various logical systems including mocdel and relevant logics.
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NAME ¢ W. Sieg

UNIVERSITY: Columbia

TITLE OF THE TALK:  Note on Kénig$ Lemma

Proof Theor
SECTION: Y

ABSTRACT:

Every finitely branching, but infinite tree has an infinite
branch. That 1s KBnig's lemma KL, a most useful tool for
mathematical and metamathematical investigations. The Heine/Borel
covering theorem and GBdel's completeness theorem, to mention just
two examples, can be proved using KL (over a very weak theory
see below). KL can be formulated as an "abstract principle” t?]
in the language of second order arithmetic:

KL WOLT(E) & (V) @y) Gk (y)=xs£(y)=o-Te) (¥x) £CE(x))=0]

where J(f) abbreviates that {x | f(x)=0} forms a finitely branching
tree; i.e. (Vx)(Vy)(£(x *y)=o~+f(x)=0) & (¥x)(3z)(Vy) (f(x * Ly =o0-ysz).
Over BT -- the second order version of PRA together with the compre-
hension principle for quantifier-free formulas -- plus Eg—ACO, KL is
eguivalent to the full arithmetical choice principle d
i8-ac, ([11). Thus the theory (BT+IS-AC +KL) [ (BT+I-aAC +nL-1A4KL) ]
is equivalent to (ﬂg—ACO)r (Hg—ACoﬂ and, consequently ﬁNOT]
conservative over elementary number theory Z.

ln the presence of Zg—ACO, i.e. in effect ﬂg—ACO, KL is equi-
valent over BT to a version in which a bound for the size of the
immediare descendants of a node is given by a function.

KL, (VO (Vo) {TCE, 8) & (Wx) (3y) (1n(y) =x&f(y)=0 )= (Ih) (¥x) fﬁﬂoﬁo]

where J(f,g) abbreviates now (¥x)(Vy) (f(x*y)=o+f(x)=0) &

(Yx) (Vy) ( f({x*{yY)=0-y<£g(x)). KLy is by itself, however, weaker
than KL: if (K) is (BT+Z?—AC0 + ﬂi—IA + KLb), then (K) is conser-
vative ove . This is a slight generalization of a result of
Kreisel's Egﬁ. For the refined development of analysis and meta-
mathematics (see [4)) other results are more significant.
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THEOREM 1, (F):= (BT+ZT—AC°+E?—IA+KLb) is conservative over PRA for
Hg—sentences.

Friedman's theory WKL  is essentially (BT+A2—CA+E$-IA+NKL), where

WKL is KBnig's lemma for trees of sequences of O's and 1's, and it

is contained in (F). So we have as a corollary a result of Friedman's
(fa): NKLo is conservative over PRA for I9-sentences, Note that the
examples mentioned above can be proved in &KLO; indeed, they are
equivalent to WKL ([4]).

Minc [3] formulated a theory S’ which is (BT+7{-cA + NJ-IRT);
the schemata cextending BT are available only for formulas without
function parameters. (IR is the induction rule.) WKL for primitive
recursive trees can be proved in $+ and (using it) GBdel's completce-
ness theorem. Minc showed that S* is a conservative extension of
PRA for [IQ-sentences., This fact is an immediate consequence of the

2
following stronger result,

THEOREM 2. (M):= (BT+IJ-AC,+N9-1R +KL,) is conservative over PRA for
N9-sentences.

The arguments for theorems 1 and 2 are purely proof theoretic,

REFERENCES. [1] FRIEDMAN, KBnig's Lemma is weak; mimeographed,
Stanford 1969(?).

&] KREISEL, MINC, SIMPSON, The use of abstract language in elementary
metamathematics: Some pedagoglc examples; in: Logic Colloquium

(R. Parikh, ed.), Lecture Notes in Mathematics 453, 1975, 38-131.

B1 MINC, What can be done in PRA; Zap. Nau. Sem, LONI AN SSSR, vol. 60
(1976), 93-100., {41 SIMPSON, Which set existence axioms are needed

to prove the Cauchy/Peano theorem for ordinary differential equations?;
Research report, Department of Mathematics, Pennsylvania State
University, 1982.



99

P.H.
NAME : Slessenger

UNIVERSITY: Leeds

TITLE OF THE TALK:On Subsets of the Skolem Class T of Exponential

- Polynomials

SECTION: o Logic versus Computer Science

ABSTRACT:

The Skolem class T is defined to be the least class of
functions from N to N, which contains the constant function 0 and
the identity function x , and containg¥&f(x) and g(x) must
contain f(x)+g(x) , f(x),g(x) and f(x) .

The class is well ordered by eventual domination. ( f{x)—g(x)
iff 3neN Vx>n f(x){g(x) .) The oxder type is as yet unknown, but
is known to be £ %_.

Proper subsets of T defined by Th. Skolem, H. Levitz, R. McBeth
and the author have been shown to have order type ¢

Definition: H:7T N called the height function is defined so,
H(n)=0 VneN, H(f(x)+g(x)) = H(f(x).g(x)x) = max{H(f(x)), H(g(x))}
, and if g(x) is not constant H(f(x) ) = max[H(f(x), H(g(x)+lj

Theorem: H(f(x)) < H(g(x)) implies f(x)—<g(x)
Definition: H € T, xeH and if f(x),g(x) e Hand H(f(x))=H(g(x))
then f(x),g(x) and f(x)g x € H
Theorem: The order type of H under —( is ¢

The proof is by means of defining a standard form for each
element of H. Indeed all the results calculating order types of
subsets of T seem to rely heavily on some unique way of
expressing each element of that subset, with a subsequent
definition of a necessary and sufficient condition for one
function to dominate another.

Following a result of Levitz we have,
Theorem: f(x),g(x}eH then f(x)—(g(x) iff
£(£(2)+g(2))<g(£(2)+g(2)).
Definition (Levitz): The subset R of regular functions of T

R = {f(x)eT : g(x)—~<f(x) implies g(x)x—<t(x)}
Definitions: A -{f(x)cT :g(x)—<f(x) implies g(x)+g(x)—<f(x)}.

12 ={£(x)£T: g(x)—<f(x) implies g(x),g(x)—{f(x)}.



100

A is the set of functioms defﬁning initial segments of 7 closed
under + , and W, those closed under * (multiplication).

x £ (x g(x) A9

Theorem: f(x)eA iff 2 ) X € W, g(x)eWw implies 2 € R.

We also have R € W € A so thier order types are the same.
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Robert I. Soare
NAME :

Chigcago / Leeds
UNIVERSITY:

DEGREES OF MODELS OF ARITHMETIC
TITLE OF THE TALK:

SECTION: Invited Lecture

ABSTRACT:

We begin with a review of Turing degrees of nonstandard
models of Peanoc arithmetic by Scott, Shoenfield,
Jockusch and Soare, and others. ¥e then raise the
analogous questions for models of true arithmetic
where 'recursive' is replaced by 'arithmetic’', 'degree
(Ql)' by 'degree (O(w))‘, and ' recursively low' by
tarithmetically low'. Initial results were obtained
by Feferman, J. Knight, and D. Marker. The exact
analogy is carried out by results of Knight, Lackler
and Soare. Later results by Marker and Macintyre

and Solovay, are also mentioned.
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NAME ! Dieter Spreen

RW
UNIVERSITY: TH Aachen

Effecti i i i
TITLE OF THE TALK: ive Operators in a Topological Setting

Recursio Th
SECTION: tons theory

ABSTRACT:

It is the aim of this paper to present a uniform generalization of both the
Myhill/Shepherdson and the Kreisel/Lacombe/Shoenfield theorem on effective oper-
ators. To this end we consider effective operators on countable topological To-
spaces with a countable basis. Let (S,,T4) and (S2,72) be such spaces, and let
{B;z’)iEw be the set of basic open sets of topology 1,. Moreover, for k=1,2
i€, (I, &w) be a (partial) indexing of Sk such that
(a) i |X;2)€ B;z’} is r.e. in I, and this enumeration is uniform with respect

to J

3 1)
(b) if {xw;(i) i€w

then an index of x can be computed from m.

} is a sequence in S, that approximates some element x€S,

Finally, let F: S, S2 be an operator which is effective with respect to these
indexings. We show that F is effectively sequence continuous. From this we deduce
the above mentioned theorems.

Observe that in general in To-spaces the set of limit points of some sequence
may contain more than one element. But in these spaces a partial order can be
introduced. And in condition (b), when we say that some sequence approximates
a certain point x then this means that x is the maximal limit point of the se-

quence under this ordering.

ACKNOWLEDGEMENT

The impetus to do this work is due to Prof. Paul Young.
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Petr Stépanek
NAME :

UNIVERSITY: Prag

TITLE OF THE TALK: Automorphisms and Embeddings of

Boolean Algebras

SECTION: Boolean Algebras

ABSTRACT!

Several classes of Boolean algebras e.g. rigid, homogeneous
or Boolean algebras with no rigid or homogeneous factors are de-
fined by properties of automorphisms. For easch of the above class-
es, there is a general embedding theorem stating that every Booleen
algebra B can be completely embedded in & complete Boolean
algebra C which is countably generated and homogeneous [ 173 ,
rigid [2], or which has no rigid or homogeneous factors [37] . It
is clear that if C is rigid then no non-trivial automorphism
of B extends to an automorphism of C . On the other hand,
in the classical embedding theorem due to Kripke , every automorph-
ism of B extends to an automorphism of C. We shall deal with
the problem whether every boolean mlgebra B can be completely
embedded in a complete homogeneous Boolean algebra H such that
no non-trivial automorphism of B extends to an sutomorphism
of H .

References

f13 S. Kripke , An extension of e theorem of Gaifman-Hales-
Solovey, Fund. Math. 61 (1967), 29-32

{21 P. Stépének, B, Balcar, Embedding theorems for Boolean
algebras and consistency results on ordinal
definable sets, J. Symbolic Logic 42 (1977),
pp 64 - 75

£31 P. Stépének, Boolean algebras with no rigid or homogeneous
factors, Trans. AMS 270 (1982), 131 - 147
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NAME : _ Thomas Streicher

UNIVERSITY: Linz

TITLE OF THE TALK:__ A SOLUTION FOR THE DEFINABILITY PROBLEM FOR

"DETERMINISTIC" DOMAINS

SECTION: Logic versus Computer Science

ABSTRACT:

lio define a metalanguage {a typed A-calculus with recursion,
if-then-else and some basic operations), s.t. any computabie
object in a “deterministic" domain (a special effectively

given domain) is the denotation of an aporopriate term of the
metalanguage). The class of deterministic domains contains

all basic domains such as the one-point domain © , the dcomain

of truth-values Bool, and the domain of natural numbers

and is closed under the functors x, &, +, », (), and

definition by recursive domain equations.

Any deterministic dowain can be cmbedded inte (MN)+Bool,) by

& retract definable in the metalenguage. But (I!(+Bool ()} is &
universal domain for the category of coherently complete w-
slgebraic domains [3] and the computable objects in this

domein can be denoted by the metalonguage as follows from

(2]

Thus we have defined a metalanguage for defining the denotational
semantics of arbitrary deterministic, sequential programming
1anguages.

The class of all domains needed for the denotational semantics
of nondeterministic or parallel programs is the Smyth powerdom3in
of (N,sBool,) and computable retracts of it. If one could find
an extension of the metalanguage Lo handlie nondeterminism one
vould have obtained a metalanguage which is complete for all
domains definable by recursive domain equations even involving
the powerdomain functor.

However, this problem has not yet been solved such as the problem
vhether the Plotkin powerdomain of (NjsBool;) is universal for
the category SFP.
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NAME : M.E.Szabo / F.E. Farkas

UNIVERSITY: Montreal

TITLE OF THE TALK: Star-Deterministic Parallel Programs

Logic versus Computer Science
SECTION:

ABSTRACT:

In this paper we introduce the concept of a hyperfinite automaton
and prove that svery asynchronous parallel program is equivalent
to a *-deterministic sequential program on some hyperfinte auto-

maton., We use this theorem to give nonstandaxd characterizations

of a variety of properties of parallel programs.
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. Thiel
NAME : Chr. Thie

UNIVERSITY: Erlangen

The "Explicit™ Philosophy of Mathematics
TITLE OF THE TALK:

Today.

Invited L
SECTION: nvited Lecture

ABSTRACT:

Recent critics have charged that contemporary philosephy of
mathematics is stagnant and outdated. While neglecting new
directions in contemporary mathematics, they say, it contin-
ues to follow out the old talk about 'foundations" within the
classical triad of logicism, formalism, and intuitionism, which
is as obsolete today as the epistemological triad of Platonism,
empiricism, and nominalism (including conventionalism). In fact,
while admitting the valuable contributions by philosophers to
the field before the 20th century, they question the relevance

of the philosophy of mathematics in general.

The paper, without pretending to be an apologia, will meet this
grave critique by surveying the aims and topics (the objects,
concepts, methods, and foundations of mathematics) treated in
some recent studies within this branch of philosophy. It will
attempt to set off a proper area, which includes most of the
"classical' problems but is not subject to the above charges,
and also to argue for its necessary independence from the style
and methods of mathematics at every stage of its historical de-

velopment.
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J.K

NAME 1 Truss

UNIVERSITY: Paisley

TITLE OF THE TALK: CANCELLATION LAWS for SURJECTIVE CARDINALS

SECTION: Set Theory I

ABSTRACT:

Tarski proved without the axiom of choice that kx ¢ ky-sx ¢ y for cardinal
numbers x and y and positive integers k. His proof is "effective” in the
sense that a function P is given such that whenever X, Y are sets, k a
positive integer, and f is a 1 - 1 function from k x X into k x Y, then

F(X, Y, k, f) 1s a1 - 1 function from X into Y.

We seek analogous results for ¢ * - inequalities, i.e. for surjective maps
in place of 1 - 1 ones. Let | X | denote the cardinality of the set X.
Then x <* y means that whenever | X | =xand | Y ’ = y there is a map

from a subset of Y onto X.

Theorem 1 : If kx <* ky & ky & * kx then x ¢ * y &y g * x,

This is proved "effectively” in the same sense as above. An adaption is
used of Tarski's proof of cancellation laws in a cardinal algebra. It is
not known whether "surjective cardinals” (equivalence classes under =%
where x =*y o= x < * y & y € *x) form a cardinal algebra. However we

can show the following:

Theorem 2 : (a) Refinement. If x + y =* z + t there are cardinals

a, b, ¢, d such that x =* a +b, y =* ¢ +d, z =¥ a + ¢, t =*x b + d.

(b) Approximate Cancellation. If x + y =% x + = there are

cardinals p, g, r such that x =* X + p + q, y=p + 71, 2z =* g + T,

On the negative side we find that <* behaves differently

from <.

Theorem 3 : (Ix,y)(2x € * 2y 8—x < *y) is relatively consistent with ZF.
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NAME : A. Ursini

Siena
UNIVERSITY:

Some Problems in Set Theory
TITLE OF THE TALK:

Set Theory I
SECTION:

ABSTRACT:

A. Consider an infinite set A®.Dedekind would teach us that there
is a proper subset Al.of Ao, equipotent with A%.Then we go on and
get AZ,A3, ..... We can arrange things in such a way that A° =r\ Ai
is empty. e
In how many ways can we find such denumerably infinite annihilating
sequences?

Sometimes we can proceed further on the ordinals, so that A® is
equipotent with Ao,then get A"H:l yae e

What are the ordinal which may appear in these processes, such
that A% is empty?

Consider now all possible ways of traveling down through the
power set of Ao, in the manner deséﬁbed, to reach @: at each

non limit stage the set is equipotent with A°.

What natural structure is the set of all these possible threads

endowed with?

Can we get thereafter a sound notion of the size of Card(Ao)?

B.Let L be a linear ordd, unbound , dense and satisfying the

c.c.c.; let L2 be LXL with the product order topology.(SH)z

is the statement:"For any L as above, L2 is Nuomorphic with RZ"Where
R be the real line.Trivially SH implies (SH)2, and truly (SH)"

for any n . Does(SH)2 imply SH ?1s (SH)2 independent from ZFC?

The same qikstions for (SH)n and (SH)“

q
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Antonio Vincenzi
NAME :

Savona
UNIVERSITY:

SOME GOOD PROPERTIES OF MODAL MODEL THEORY
TITLE OF THE TALK:

Non-classical Logics
SECTION:

ABSTRACT:

Modal Model Theory L{C) has been introduced by Chang (see [Ch]) as
a semantic refinement of Montague's Pragmatics (see [Mo]). The syntax of L(C)
has an operator C such that if ¢ is a formula and t is a term, then Cty is a
formula, namely an individualized formula. The free variables of t are also
free in Cty . The semantice of L(C) requires enriched structures of the form
(20,C%> where 20 is an ordinary structure (with universe 4) and c* is an ar-
bitrary function from 4 into P(P(4)), and defines

(U, CHE=Cty  iff (a€all,CME v lalrec¥ (%),

Here we present some model theoretic properties of L(C) obtained by using the
generalized abstract model theoretic techniques developed in [Mul.
Result 1. L(C) ¢s a generalized logic with relativization.

Result 2. L(C) can be reduced to propositional logic by assigning a truth va-

lue to every prime or individualizea formula.

Thus Compacteness and Léwenheim-Skolem property for L(C) can be obtained in the
usual way (compare with [Ch], where the above properties are consequences of
L£os theorem).

Result 3. L(C) has the Fraissé-Ehrenfeucht property.

From Result 3 one gets that L(C) has the preservation property for products but
not for substructures. Notice that this is a partial solution of [Ch,Probiem 2].

Result 4. L(C) has the Robinson Consistency property.

Since L(C) is a compact logic, Result 4 implies that Craig Interpolation, Beth
Definibtlity and A-closure theorems hold in L(C), and solves [Ch,Problem 31].
[Ch] Chang,C.C.: #odal Model Theory. LNM 337, Springer 1971.

[Mo] Montague,R.: Pragmatics. In: Comtemporary Philosophy, a survey. (Klibansky
R. ed.). La Nuova Italia 1968.

[Mul Mundici,D.: Lectures on Abstract Model Theory. I,II,III. Quaderni dell'Isti-
tuto Matematico "U.Dini" di Firenze 6,7,14 (1981/82).



110

NAME : S.S. Wainer

Leeds
UNIVERSITY:

TITLE OF THE TALK: Thelt é-Approach to Subrecursive Hierarchies

SECTION: Invited Lecture

ABSTRACT:

The aim of recursion-theoretic hierarchies is to assign

ordinal notations to functions in such a way as to reflect,

as closely as possible, their computational complexity. A

new approach to this general problem is presented here - motivated
by ideas and results of Girard's "H;—Logic“, but developed within

a rather different framework.

The framework is induced by the "slow-growind hierarchy G

under which Kleene computations over the integers N appear as
the natural collapse of identical computations defined over a
maximal inductively generated set @ of abstract ordinal nota-
tions. The naturalness of G{a) as a functional representation
of ordinal |a| is illustrated by the fact that for "standard"
ordinal notations o« ¢ @, |a| = 1im 6(a), the direct limit of

the increasing function G {(a).

In particular, the transfinite Grzegorczyk Rierarchy {F(8)} over
N appears as thecollapse under G of the Bachmann Hierarchy

over { so that, for example |I = lim F(}ID ]). Thue,
n

D
n+ll
ID_ | is the limit to which we could autonomously generate the

veual s:lrecursive hierarchies, regulated by the condition tlat we

cnly proceed to level |o| if G(a) has beer previously cor ~utcd.
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Anita Wasilewska
NAME: _

Eastén / Warsaw
UNIVERSITY:

TITLE OF THE TALK: PROGRAMS, AUTOMATA AND GENTZEN TYPE

FORMALIZATIONS

SECTION: Logic versus Computer Science

ABSTRACT:

We show (Th 1,2) that the difference between Gentzen
type formalizations (G.t.f.) for any propositional and
predicate calculli based on enumerable languages is of the
same kind as that between programs without or with recursive
prodecures. To prove it we use the algebraic theory of
programs as in Blikle [1l] where FC and PD algorithms are
introduced as models for procedure free and non-free
programs, respectively and the general theory of G.t.f as
in Wasilewska [2].

We introduce the notion of monadic second order (m.s.o)
definability (based on ideas of Buchi (3])) and use theorem 1
to get the common characterization of G.t.f for propositional
calculi, finite automata and procedure-free programs
(ths 3, 4, 5). The similar problem for G.t.f. for predicate

calculi in open.

{1] A. B. Blikle, "An analysis of programs by algebraic means."
Banach Center Publications, Volume 2, Warsaw. (1977)

[2] A. Wasilewska, "On the Gentzen type formalizations."
Zeitschr. £. Math. Logik Bd 25S. (1980)

{3) Buchi T.R. {1962)"On a decision method in restricted
second order arithmatic, in Proc. 1960 Int. Cong.
for Logic. gtanford, California.
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NAME : Volker Weispfenning

UNIVERSITY: Heidelberg

TITLE OF THE TALK: DECIDABLE THEQORIES OF VALUED FIELDS

Invited lecture
SECTION:

ABSTRACT:

Fields with an additive valuation are counterparts to fields
with an absolute value such as Q, R, €. They arise naturally
- from a geometric viewpoint- in many algebraic situations, e.g.
fields of power series or nonarchimedean ordered fields., The
concept of a valued field grew out of an axiomatic treatment
of the fields Qp of p-adic numbers. These numbers were invented
by Hensel in order to treat number theoretic problems ( e.g.

systems of congruences ) by means of ideas from complex function
theory.

We give a survey on decidable theories of valued fields and
their elementary invariants. The proofs employ an explicit
quantifier elimination procedure originating from P. Cohen.

The
“
(2)
(3
CY

(%

(6)

lecture will cover the following topics:

Basic algebraic concepts ;

Linear problems in valued fields (v.d.Dries) ;

Algebraically closed valued fields (A. Robinson) ;

Hensel fields of equal characteristic zero (Ax-Kochen,

Ersov )

Hensel fields of mixed characteristic and arbitrary
ramification (Ax-Kochen, Ersov, Ziegler, Baserab, v.d.Dries );
Quéntifier elimination without cross-section and appli-
cations to real-closed rings (Macintyre, Cherlin-Dickman) .
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Ph. Welch
NAME :

UNTVERSITY: Oxford

'
- Wel i
TITLE OF THE TALK: Z" ellfounded Relations and the

Core Model

Set The
SECTION: et Theory 11

ABSTRACT:

1
Martin proved the following results on 21 sets of reales (identified with
1S E * ; p I
wT N} (in ZF + DC +Va€ N(a ex15t.s\: the cardinals in brackets refer to
the result assuming full AC)
.
(K

i . g
(and hence é; = suap(lengths of %; prewe liorderings of N> S (3\»3)
(VAN

Z‘i o . Z /
1) Every 5 wellfounded resation € N has length < j\
B wrl

1 .
2) Every ) set is the union of ff\ sets in B,
=3 wry _h
Lot h
(EK = smallest Boolean algebra containing the closed sets and closed
3

under unions of lengths < W}

(AC) Every S_; set is the union of f&ll Borel sets.

+
1f one assumes in addition _]OT {or indeed JbeN(1b ) we obtain (without AC)
1 . &
<
%_3 b 2"

2') Every Z; set is the union of i{l sets each of which is the union of

1") the lengths above are < 3%2

‘
gwl Borel sets. And so

Sl
(AC) Every \2_3 set is the union cof %{1 Borel sets.
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These figures depend completely on the computation of uL\, the W'th
uniform indiscernible, where
2 a
c={u lieomd>= N 1
Gylieamd = A
(Ia = class of Silver indiscernibles for L(a))
. trs) ) k . St
since Martin showed that if Va ( a exists) then every 25 set admits
]
an (uu) -scale. The bounds in 1)-2') are all obtained by computing U
1
Assuming all reals have sharps and O we may use Jensen's 23 -
Absoluteness Theorem for K, the Core Model (see(CM)). Using a Paris

"Patterns of Indiscernibles" type result for mice we can compute that

* «
uw < T where T = the height of the first admissible set that

contains KT_ (where T =ﬁlv). Thus

Ck Y (t+)K$3(\2'

T T N a
ini = = T
Indeed defining C <ui l i¢ On> ac p ©)
£T
inside K, we obtain
T
Vie on uooo= oy

1
Thus (if all reals have sharps) complicated 2-3 sets imply inner models

with measures.

(CM) “"The Core Model" Tony Dodd. LMS Lecture Note Series No.61 C.U.P.
(TS) "Notes on the Theory of Scales” A.Kechris and Y.Moschovakis, in

"Cabal Seminar 76-77" SLN No.689
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NAME : Eduard W. Wette

UNIVERSITY: Hennef

Control for t i
TITLE OF THE TALK: ontro or the Exhibition of Inconsistent

Numbers

£ Th
SECTION: Proof Theory

ABSTRACT:

For the complete title cf. XLIV, p. L76, [12]. The abstract was written
on April 30, 1977 ( =C.F. Gauss™+200a); it summarized my ICS/acm i.a. type-
script (16 pp., 1976 IX 15). The renovation of §1 can now refer to my 1983

§1. Formal end of mathematics, logic: power-iteration discomputed.

The practice of primitive recursive definition with <« 300 subfunctioms or
of binary computation with < 2300 variable-free polynomial terms annuls all the
"semantic" claims of proof theory and, moreover, the truth of "proven" decision
procedures. Godel's comment on my talk (January 24, 1975): "Ende der Wissen-
schaft', no other words from Princeton to Washington D.C. ! EHis main cuestion
"was machen wir jetzt mit den Permutationen ? die sind fiir Chemie noch wichtig",
when he telephoned me before, had been answered from my geometro-static approach
to the totality of ‘motion’ by '"the" seamless ‘warp & woof’' on a maximal surface.

Counter-corollaries. The intrafinite Boolean operatioms .x., .+1 mod2,

i d._, where Jme{‘l,o}, are inconsistent, if W2>y,(5, 10°); cf. Herbrand Sym-

m<W “m?
posium. The use of a language and of a free property in space & time confines us
to (,log a.A)V"x 5€ consistent stepe for each dimension. ERGO: keep silence and
save more degrees of freedom; re-educate your mind after a "refuting'" walk.
Elementary paradoxes apply < 0.1/10 megabit of information within (i) the
non-elementary function Q(n)(%(n, 193)<w(4, 2n=1), and its induction-property
rs(Q; a) s ri(Q(a) A [(a)], =[a], A g1(R(a) < gl(a) —id(a) —2-md(a), a polynomial
predicate in €2 (4 depth-concepts restored minimal stilts !), (ii) the inconsist-
ent number a, (with aA2<21OOOOOO) whose main part encodes }-3 Ry (E) > rs(Q;E).
The <2300 key-terms which compute a, from Tpredicate’ & "proof’-units, and the
direct access to "subwords’' guarantee a rapid control of the induction-free spe-
cialization rs(@; a,) and of its consequence 49838 = [Q(aA)]3:§=h9838. A few
minutes of data processing can verify such logic-free parsdoxes; explicit compu-
tation of "Q" or a,
cannot be controlled with the same certitude as a EEorage of 23\00 key-addresses.

is a practicable problem, but the outputs (in few hours)
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Note that W absorbs, e.g., a ‘propositional’ dég&ription for the number of
the derivative solution to 1n2—computation with ::m%/} symbole, ete., if m<m =
4000000, as within my former inconsistency-computation; W2= W, whereas m; con-

tains one more bit of bit of information than m,; TLM(WJM eliminates v-computed

m-selections Wm;vhﬂsﬂwavhﬂ (vs. XLII, p. 477, §1). Logical reflection is untrue.
"Neo-Sandrechoung" stated, 2189 years after Archimedes, that reckoning is con-
sistent, IFF one observes (A) numbers are restricted to their numerical meaning,

i.e. no language, no meta-code, & (B) all intermediate results have an explicit

REFERENCES. [1] FRIEDMAN, KBnig's Lemma is weak; mimeographed,
tanford 1969(7).

&] KREISEL, MINC, SIMPSON, The use of abstract language in elementary
pet amathematics: Some pedagogic examples; Iin: Logic Colloquium

'R. Parikh, ed.), Lecture Notes in Mathematiecs 453, 1975, 38-131.

(3] MINC, What can be done in PRA; Zap. Nau. Sem. LONI AN SSSR, vol. 60
(1976), 93-100, (4] SIMPSON, Which set existence axioms are needed

o prove the Cauchy/Peano theorem for ordinary differential equations?;
Research report, Department of Mathematics, Pennsylvania State
Jniversity, 1982,



117

NAME : W. Zadrozny

UNIVERSITY: Heidelberg

TITLE OF THE TALK:_ "artial Reflection

SECTION: General Model Theory

ABSTRACT:

We consider the following problem: A device M is scanning
some process A and produces information about A : A€0),A(1),...
However some pieces of information in each A(i) can be false. One
wants to extract the "truth™ about A . If T is a tgﬁory and Ai a
sequence of strucures then T is partially reflected if for some T*
s.t. Cn(T*) contains T , every sentence of T* is true in infini-

. tely many Ai's . We prove that the theory of integer additigg is
p.reflected by Z_'s ( "+" modvlo n) , this theory i§fﬁniqueAwhich
aduwits some randoum testing w.r.t. Zn‘s , and so can be viewed as
being the "truth" given by Zn's. We show that the theory of any ul-
trapover of Zn's does not have this properties. It follows that

sometimes we can extract “a correct information in a constructive

way, even if we are given mmtually contradictory facts.
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NAME : M, Ziegler

Bonn
UNIVERSITY:

TITLE OF THE TALK: Finite Subtheories of Theories

of Local Fields

SECTION: Invited Lecture

ABSTRACT:

I present the content of my article "Einige unentscheidbare
Kdrpertheorien" L”enseignement mathématique vol.28 (1982)269-280:
Pny finite subtheory of the theory of € (or any algebraically
closed field) , the theory of R or the theory of Qp is
hereditarily undecidable. In fact any countable structure can

be interpreted in a suitable model of such a theory. The model
is constructed by a series of algebraic extensions starting with
a rational function field.During the construction we control the
set of g-th powers for some prime q.

As a corollary we have e.g. that the theory of euclidean fields
is hereditarily undecidable.

In fact a stronger result is shown, which yields for example
that the theory of formal real fields where every polynomial of
odd degree has a zero is hered@itarily undecidable.
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LOGIC COLLOQUIUM

MANCHEESTER 1884

Preliminary Announcement

We plan to hold a meeting of the British Logic Colloquium at
the University of Manchester in July 1984, provisional dates being
from 15th July until 24th July. This has now been recognised as
the usual annual European summer meeting of the Association for
Symbolic Logic.

It is intended to make Models of Arithmetic and

Applications of Logic to Algebra the central topics of the

conference. There will be expository lectures on these two topics

by A. Macintyre, K. McAloon, L. van den Dries and A. Wilkie,

Nevertheless, it is hoped that there will be a number of lectures
on other subjects of current interest, in particular in areas such

as General Model Theory, Set Theory and Computational Complexity

which automatically interact with the central topics.

Most lectures will take place in the Mathematics Bullding and
accomodation will be provided in a nearby Hall of Residence. The
organisers on campus will be : P.H.G. Aczel, J,.B. Paris,

A. Wilkie, G. Wilmers and C.E.M. Yates (chairman). Additional
members 0f the program committee so far include G. Cherlin,
U. Felgner, W. Hodges ¥ A.H. Lachlan and M. Richter.

Financial support will be sought from the usual purely academic
organisations, such as the IUEPS, Royal Society, British Academy and
London Mathematical Society.

Further information can be obtained from:-

Professor C.E.M. Yates,

Department of Mathematics,

The University, Tune
Oxford Road,

Manchester  M13 8PL,

ENGLAND.

(193,
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