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ALGEBRAIC MODEL THrORY = CYLINJRIC SET_ALGEBRAS

by H. Andréka

AMS classification code: 03C98, 03G30, 03G15.

The theory of cylindric set algebras (Cs-s) was elaborated in the
book Henkin,L. Monk,J.D. Tarski,A. Andréka,H. Németi,I.: Cylindric
Set Algebras, Lecture Notes in Mathematics 883, Springer-Verlag, 1982,
with the aim to extend the algebraic logic approach of cylindric alge-
bra theory to the more subtle issues of that part of logic which is
called model theory. The cylindric algebraic counterparts of model
theoretic notions, results and problems will be exhibited. E.g.: it
will be proved that epimorphisms are surjective in the variety Gs of
generalized Cs-s iff the solution of a certain open problem in defi-
nability theory is positive. (Definability theory is a branch of model
theory.) It will be shown that the cylindric algebraic counterparts of
model thecretic results are often stronger than the original ones €.g.
the various ultraproduct theorems, the Keisler-Shelah theorem, results
concerning elementary substructures, atomic models, definitional equi-
valence etc. Some of these have new model theoretic consequences first
obtained by Cs-theory and not by "pure logic". Not only single models
but also classes of models (e.g. axiomatizable classes) are represented
by Gs-s. Logical connections between classes of models turn out to be
nothing but special homomorphisms between Gs-s. (These are called base-
homomorphisms.) Thus not only the Gs~s themselves but also their homo-
morphisms do have a rather characteristic model theoretic meaning.
E.g. the reduct operator Rd : BA - Gr between the class BA of
Boolean algebras and Gr of groups associating to each BA its reduct
the only operation of which is the symmetric difference e is nothing
but a certain base-homomorphism-between two Gs-s. The category of
base-homomorphisms is proved to be an iso-reflective subcategory of
Gs if we assume the éxistence of an inaccessible cardinal. This cate-
gory is isomorphic to the category of axiomatizable model classes and
r'educt-operators between them.




Some mode) theory for regularly closed flelds

by ::cd»a.n t. Busareb

Given & cless & of finite groups ‘nst is closea unasr
homomorphic i‘mages, we azssociate to € the category Cg whose
Objwets are tne fielus ana whnose morpuisws are the field
extensions F/K subject %o: for every algebraic extension L of
K anu 1o1 every fipite Galois extension M/L with G(M/L)E (5. 1y
and LF w«re linearly disjoi‘nl over L. Such field extenslons
are czlieu §-cxtensions.

Given a closeu class ¥ of finite groups [2] anu a&n
admissible [3] one Y, we consider the full subcategory of C
y Genoteu by L ¢, wWhost oObjects are tune fielus K for which
the finite corffnuous homomorphic imsges of G(Kg /K) are
menbers of 97 . 1ne category (g qgscan e presentea as th«
category of models of certain t,heory YH'FL in a suitable
extension of the cusioma*y Janguage of rings with faentity.

A fiedld K is culled 9,9'-regularly ciosed if K Is an
object of Cegegsr anu s existentizlly complete in each regulad
extension F/K, where F is an object of C +too. The class of

g:g""‘-élﬂbrly closca fielus 1is an «leméntary one and its
existentisal) theory s decidable *f @ and ‘G' are recursive
clesses. osome other moues theoretic properties of ‘these
fields are aiscussca. Extensions of some results from [1],
[ed, {53, {4, [5), Lo] are obtained.
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AMS subject classification 1980: 03F25 (relative consistency and 1nterpretati0n5)

It is well known that when looking for 'natural’ binumerations of (extensions of)
Peano arithmetic (P), we should restrict our attention to the primitive recursivg
(p.r.) ones (cf [Fefermanl). But the work of [Feferman) and [Hijkova] also seem to
imply that among the p.r. binumerations of a theory there is no 'natural’ choice.
Therefore, when investigating the structure of extensions of P under some relation
of relative consistency, it appears reasonable to choose an arbitrary but fixed
p.r. binumeration of P, and look at the class of provable extensions of this bi-
numeration. This course is followed in the present paper, where the above class is

structured by a very strong notion of relative consistency.

—— - -

extensions of w(x) by

a < B iff there is a p.r. term t s.t.

PI- vx(Prf (0=1, x) - Prfg(0=1, tx})).
Let o =8 iff a<p and B < a . Note that if a < B then Pl- cong = con,,
under = , partially ordered in the obvious way.
Let a, b be degrees. We show that every degree has an element of the form
m+y (i.e. w(x)vx =y ), vhere v is a ﬂ?vsentence, and that for m + ¢ € a and
n+yeb, g.1.b. and 1.u.b. may be defined by

i

anb=dln+ ¢ vy) and

auUb=d(m+ 8), where s is s.t.
Pl- 6 & vy(Prfn(ia;, y) v Prf“W, y) = az<yprf“(?6, z)).

The structure thus obtained is shown to be a distributive, dense lattice with
greatest and lowest elements. We also show a number of results concerning details
of the lattice structure, e.g. the (non-)existence of relative complements, and
investigate the relative positions of (binumerations) of certain extepsions of P.

A comparison is made between this lattice and other similar structures (the
lattice of types of interpretability, see [Lindstrom], and Hajkova's lattice [Binl).

References:
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Feferman, S., Arithmetization of metamathematics in a general setting,
Fund. Math. 49 (1960), 33 - 92
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SUPERSTAELE GROUPS.

Chantal Berline, C.N.R.S.

Using Shelah's forking and Lascar's U-rank we initiate a classification of superstable
groups and generalise to these groups Cherlin's [1] and 2Zil'ber's [4] results on
W ~stable groups of finite Morley rank ( in connection with algebraic groups over
algebraically closed fields). We mention here same consequences easy to state.

Thanks to Poizat [37] one can associate to each siperstable group G an ordinal U(G).
We show for exemple that every superstable group G such that U(G)> w*, « any ordinal,
has a definable abelian subgroup H such that U(H) > w* . This allows to give a short

proof of the following dh&ficult theorem of Cherlin: " Every superstable field is
camutative”.

Elsewhere we have as a corollary that every group which is elementarily equivalent to
a superstable sirple group is simple too.

Also we generalise to superstable groups of U-rank w®*2 or wa,o( any ordinal,the
structural results of Cherlin on W -stable groups of Morley rank 2 or 3 and extended by
Cherlin and Shelah [21 to superstable groups of co-rank 2 or 3 (hence of U-rank 2 or 3)
and prove that"good" simple superstablegroups of U- rank (3 are algebraic groups.

{17 G. Cherlin, Groups of small Morley rank, Annals of Math. Logic 17, 1979, pp. 1-28.

{21 G. Cherlin and S. Shelah, Superstable fields and groups, Annals of Math. Logic 18,
1980, pp. 227-270.

{3] B. Poizat, Sous groupes définissables d'un groupe stable, J. of Symb. Logic 46, n°®
1981, pp. 137-146.

{41 B.I. zil'ber, The structure of models of categorical theories and the finite axicma-
tizability problem, Preprint (in Rassian)mimeographed by Viniti, Dep. N. 2800-77,
Kamerovo, 1977, |

Unive.rsité Paris 7,
U.E.R. de Mat%;gatique&

Tour 45-55, 5 étage,

2, Place JuSSieu,

75251 PARIS CDEX 05,

FRANCE.



APPLICATIONS TO LOGIC OF ERSOV NUMERATION THEORY

by Claudio Bernardi and Franco Montagna

Erfov numeration theory has been deeply studied both from a categorical point
of view and from a recursive - theoretical one. Visser first applied it to logic,
pointing out interesting examples and conseguences. Our purpose is to study
connections between positive numerations, regarded as positive equivalence
relations on wJ, and formulas of PA.

A useful lemma is the following: any precomplete positive equivalence relation
1s complete with respect to 1-rveducibility. The converse is not true: a counter=—
example is the equivalence relation ~ which associates two numbers Z,Y iff &,y
are Godel numbers of provably equivalent sentences. Actually, we have: .

THEOREM. - A positive equivalence relation ® s recursively isomorphic to
~ Lff 1) 1t admits a total recursive diagonal function A (i.e. Bx Xx) and
2) it 18 u.fup. (i.e. every partial recursive function having a finite range can
be made total in a uniform way modulo R ).

(Note that a precomplete relation always satisfies 2, but never satisfies 1).

Now, for every formula F(v) we define the equivalence relation A as follows:
Ty LEf - Flx)e— F(y).
r ‘g s : o1 'th s for a
THEOREM. - Every positive equivalence relation coincides wit F
suitable formula F(v).

As regards formulas G(v) which preserve provable equivalence, we have:

THEOREM.— An equivalence relation is isomorphic to mg for a suitable G(v)
1ff it is 1) total, or 2) iscmorphic to rs , or 3) precomplete. .

An example of formula of the kind 3 is Theor (v) . So, for every recursive
function f, there exists a sentence o such that  Theor ("o)<—> Theor (£,

Another logical consequence of numeration theory,which generalizes a classical
result of Putman - Smullyan, is the following:

THEOREM. - Let (e}, and (W, ), be r.e. sequences of .- formulas and r.e.
sets respectively, such that if t ;e d; then W =W, and 1f i€ the’f
W,\W,= f. Then there exists a &y~ formula H(v) such that FH(x) e>a, 1ff
TEW, .
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Claudic Bernardi - Andrea Sorbi, Classifying positive equivalence relations,
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to appear in The Journal of Philosophical Logic.
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INDEFEVYDENT? INSTANCES FOR SOME

UNDECIDABLE PROBLEMS

By
Cristian CALUDE and Cheorghe PAUN

Let T be a formalized theory having the following four
properties { a) T is recursively axiomatizable, b) ? is cenasis-
tent, c) all the theorems deductible in T are true at the level
of metalanguage, d) T is riech enough to contain the recursive
arithmetic. #ith respect to any sueh theory we prove that the
Emptiness Problem, the Pinitensse Problem, the Totality Problem,
the Halting Probley and the Post Correspondence Problem have in-
dependent instances (which cen be algorithmically built). As
consequences, a diophantine equation can be effectively found
for which the solution exiatence is an independent question
and for each basie undecidable problem in Pormal Langusge The-

ory an independent instance can be effectively construeted.



iAb-tract for "On the complexity of winning stralegies for clopen games”

Feter CLOTE / /
Universitd Paris VII *2, TL> r&_

In [11 Plass considered the effective vercion of the Gale-Ste:art theorem

. . . . . '
tiit every oren game is detcrmined, We prezent a refinement of Blass' results.

; '3
4 Clopen set SC.;w(M fer the Baire topology is given by sets A,B & w © such that

g = 5l_féua‘o: Tsea s=f\‘l‘h(s) }

[H

v
it

ww-S=§'feww: 4 s €38 s=f“1h(s)'&.

The pair A,B ccn be taken minimal in the cense that

‘da,tew‘“’[se auB & s=1tMn(s) &sft —> téf- Aij-

Let P = i_tew’“’: AscsuB t= st in(t) 1.
For A,E minimal ;che set T is a tree without any infinite branch, so as ucual one can
cefine the height of T. Tor S & w«o clopen the height of S denoted ht(S) is the
smallest ht(T) where T corresponds to A,B determining S.

Theorend . Let SG wo be clopen with recursive code, Let n < w &nd N\ derote a

recursive limit ordipal with fundzmental scquence b n't )N .

Tren '.
bt(s) € 2 --—-’> one of the players bés a recursive v.s.
nt(s) ¢ n+3 —> either player 1 has a w.s. O recursive in o
or player 2 has a v.s, recursive in 0“1
ni(s) < N ~ —> either player  has a'v.s, & recursive in 0 £OmO N < Co
or player 2 has a w.s., ¢ recursive in 0
Wt(s)€ N+l ——3> either player 1 or player 2 has a w.s, recursive in 0
ht(5)<e N +m2 ——> either player 1 has a w.3. @ recursive in e
' or player 2 has alw.s. recursive in O)HMI.
with the same notations from T‘heo‘x'em 3. we prove
Jheores 2. There are clopen S& w™ with recursive code eatisfying
ht(s) = ne3 and pldyer 2 wing and oml is wiiformly recursive in every
winnirg strategy
nt(s) = X and player 2 vins and 0> is uniforaly recursive in every
winning strategy ‘
nt(s) = a1 " and piaycr 1 wins and Ox is uniformly recurzive in ¢very
vinaire strategy _
Bt(S) = Nem2 and player 2 wins and 6 "% {s uniforaXy recursive in every

winnirp stiategy.



wotin

R
)

7 4hat if A,B are minizal then A T is well-ordertd lexicographically,
. oy w ~ ~
define the order type of S<w , for S a clopen sct, to be the cmallest erder tyje

of LuL, vhere A,B determine S,

Theoyen 3, Let N ve any recurscive limit ordinal.

Tren (1) for every s« clopen xith.recursive code and order type < w either
nlayer 1 bas a w.8. recursive in 0 for come n < W (where \‘ is a fundemental
secuerce for N ) or player 2 has a w.s. recursive in 0 .

ard (2) tkere is SC «w™ clopen with recursive code and order type a;\ where 2 wins the

gare GS and 0 is uniformly recursive in every w.s. of player 2. Q

1 O 0
l= U 2“’
: ot rec
vinning strztegies for clopen gomes with recursive code are simply generalized
Skolen fuactions for infinitary Llqu
1

Remark., The esscntial point of these results is that, as A

formlae. The most oovious evaluation
of the ccrplexity of these Skolowm furctions (basis result) is in general the
best possible (2nti-basis result). The Leight of the clopen cet corresponds to

a generalized vay of counting the mumber of quantifier alternations.

I

1 4. Blass "Complexity of Yinning Strategies" Discrete lathemstics

Voiuwse 3 llumber 4 1672



" On_the existence of finitely determinate models for some theories in
Stationary Logic. By Joel Combase.
AMS Subject classification: 03 C 80.

Given a first order Language L, let L%? be the corresponding
language for stationary logic.

If A is a set whose cardinal number K is regular and >w, define
P<(A) to be the set of subsets of A of cardinally <K and let D<(A) be

the closed unbounded filter on P<(A). A natural model for a theory T

. aa , . LRI
in L 1s a first order structure OL=<A,...> for L where 1t 1s under

stood that the satisfaction relation obeys the rule
OL | aas ¢(s) iff {aeP<(A): OL ¢ (a) }eD<(A)

. . aa . .
An aa, - theory is a theory in L°" whose every axiom is of the form

aa § 0O, where 9 is a 1st order formula.

Theorem 1. Let T be an aa, - theory. If for every n, T has a natural
model whose cardinality is n-ineffable, then T has a finitely determinate

(natural) model.

Theorem 2. Let T be a finitely determinate theory. If for every n, T
has a natural model whose cardinal is n-ineffable, then T has a natural

model in every regular uncountable cardinality.



A NEW FOPNDATION FOR THE THEORY OF RELATIONS

Stephen D. Comer
The Citadel, Charleston SC 29409, USA

ABSTRACT . ,
A polygroupoid is a partial multivalued algebra
m=(n,-,1,70)
where - is a partial multivalued binary operation on M, TIC M, and -1 is an

operation on M that satisfies the following axioms:'
(1) (x-y)ez = x-(y-z) for all x,y,zeM,
(ii) I'x = x = x<I for all x&M,
(iii) the formulas xEy-z, y£x~z—1, and z&y_]-'x are equivalent
for all x,y,zeM,
Denote the complex algebra of M (seell,Definition 3.8}) by c[M].

Section 5 of [1] presents a relationship between certain relation algebras

and (generalized) Brandt groupoids. The results below extend these connections.

THEOREM 1. The complex algebra C[™] of a polygroupoid M is a complete atomic

relation algebra with 0 ¢ 1. Conversely, 1if "
ol=(a,+,-,0,1,;,1',VY)

is a complete atomic RA with 0 # 1, M the set of all atoms of O, and I =

{xeM : x<l'f. then M= (M,;,1,Y) is a-pélygroupoi’d ( called the atomic

structure of Q1) and Ol c[m).

COROLLARY 2. Every relation algebra is embeddable in the complex algebra of a
polygroupoid.

A polygroupoid M is connected if for all x,y £ I there exist z &M such

that x:z =2z and z.y = z.
£

THEOREM 3. If WM is a connected polygroupoid, C{M] is 5 éimple RA. Conversely,
if Ol is a sinple RA, its atomic structure M is connected.

COROLLARY 4. Every simple RA is embeddable in the complex algebra of a connected
polygroupoid.

These results show that multivalued system& can be used to provide an

alternative to the usual approdach to the study of relations. Examples will be given.

)_agfe[ence§

[1} B.Jdnsson, A.Tarski, "Boolean Algebras with Operators.Part 1%, Amer. J. Math.
73(1951), 891-939; “Part II", ibid 74(1952),127-162.



COMPLETENESS OF TYPL ASSIGNMENT IN CONTINUOUS LAMBDA MODELS

Mario Coppo
I.S.1. Universita di Torino
C. M. D'Azeglio 42 10100-Torino Italy

The completeness of Curry's rules for assigning type schemes
to terms of the pure lambda-calculus has been proved in {11 ,[2]
using models of synctactic nature. A first result of this paper is
a completeness proof for the model P, (as asked in [3] ).
Moreover an extension of Curry's system in which types can be assigned
to the fixpoint combinator Y is introduced, together with a notion
of type semantics for which it is proved sound and complete ( answering
@ question of [4] ). Also in this case completeness is proved in
the model P¢, . All results hold for the different notions of type
semantics proposed in {11 , [3]

Refarences
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BETA STRONG REDUCTION IN COMBINATORY LOGIC: PRELIMINARY REPORT

Haskell B. Curry
Roger Hindley
Jonathan P, Seldin

Combinatory logic differs from A-calculus in that in the
former the operation of abstraction (the A-operation) is defined
and not primitive. The rule
() X =Y =X = .Y
is part of the replacement property in A-calculus, but it must
be postulated separately in combinatory logic, It is well
known that it is possible to define equality relations cor-
responding to AB- and Agn-conversion by adding a finite number
of axioms to weak (ordinary) combinatory equality. But for
reduction the situation is not sosimple. There is strong re-
duction, which corresponds to Apn-reduction, but to de " 7=
it by starting with weak reduction, one must either postulae
(€) or else use an infinite number of axioms; furthermore,
it is necessary to define abstraction in such a way that the
property
(n) Ax,Ux = U, where x does not occur (free) in U,
is incorporated in the definition as a syntactic identity
between terms, For this reason, there is not yet any agreement
on a combinatory analogue for Ap-reduction.

Thig talk presents two candidates fof a combinatory analogue
for Ap-reduction and discusses the criteria such a relation

should satisfy,



03r99 (rroof Theory)

Kosta DoSen : Senuent-Systems for Model Lopiec

Abstract

The purpose of this work is to nresent Gentzen-style formulaticis
of 55 and S4 based on senquents of higher levels, Sequents of
level 1 =2re like ordinarv senuents, senuents of level ? have
‘collections of senuents of level 1 on the left and right of

the turnstile, ete., Rules for modal constants involve senquents

of level 2, whereas rules for customary logic=1 constents of
firgt-order logic with identity involve only sequents of level 1.
A restriction on Thinning on the right of level 2, which when
applied to Thinning on the right of level 1 vproduces intui-
tionistic out of clesssical logic (without cheanging anvthing else),

vroduces S4 out of S5 (without changing anvthing else),

This charaeterization of modal constants with sequenté
of level 2 is unique in the following sense. If constants which
differ only graphically are given a formally identical
characterization, they can be shown inter-renlacesble (not
only uniformly) with the original constants s2lva provability,
Customary charsctierizations of modsl constants with sequents of
level 1, as well =& characterizetions in Hilbert-stiyle
sxiomatizations, sre not unioue in this sense. This parallels
the ¢ase with implication, which is not uniquely cheracterized
in Hilbert-style axiomatizations, but ¢an be uniguely cheracter-

ized with sequents of level 1.

These results bear unon theories of nhilosonhic=l lopic
which attempt to cher=cterize logienl constants aymteacticolly.,
They also vrovide an illustration of how alternative logies

diTfer only in their structural rilds, wherens their rules for

fogical constants =2re identic=2l,




ADJ SEMANTICS AS MODELS

Let’G be a formal grammar, not wecessartly context-free, and Pars{G) the strict
monoidal category associated to the parses (duals of derivatioms) of G. Call

G° the grammar obtained from G by 'forgetting' the terminal letters in the
productions defining G. One defines easily a trivial Horn theory T(G°) associated
to G°, hence (following Bénabou-Coste or Reyes-Dionmne) a category T(G°).

Theorem: Let E be a Grothendieck topos. One can define a Grothendieck topology

J, on Pars(G) so that to egch T(G°)-algebra in E is associatgd a continuous
functor from the site (Pars(C) , JG) to the (site underlying the) topos E.
Cor. I: Any E-valued ADJ-semantics is a model (ie a continuous functor) from

che site (Pars(G) , JG) to the topos E.

Cor. 2: The crdinary ADJ-semantics is a model from the site (Pars(G) , J

o)

to the topos Set. )

Designate by ScOrd the category of Scott-continuous ordered sets.

Cor. 3: The Scott-continuous ADJ-semantics is a model from the site (_If_g_r.ls_(G),JG)
to the site (ScOrd , Jc)’ ?here Jc is the canonica} topology on ScOrd. :
‘Hence ADJ-semantics are models in the sense of Reyes, ie continuous functors
between sites. s _ | _‘

[2] Goguen, thatcher, Wagner, Wright: Initial Algebra Semantics and Continuous
Algebras, J.A.C.M. 24(1977), 66-95 | o "

(2] Makkai, Reyes: Firet—-Order Cétegéricézi Logte, Leot. Notes in Math. 6.
(Springer, Berlin, 1977) o | ‘ C

28- 4. 1982 ‘V- Eytm, U-E.R- Mathémat'l:qHQB
Univ, René Descartes
12 rue Cujas, 765005 Paris



JNTUITIONIST IMPLICATION IN SOME MODAL LOGICS OF TYPE Su

Josep M, Font

Dept. of Algebra and Foundations, Fac. of Mathematics,
University of Barcelona.

We consider a wide class of modal logics of type S axiomatized in GBdel's
style (i.e. with L primitive and axioms Lp-p , L{p—+q)-(Lp-Lq) , Lp—~LLp , and
Rule of Necessity p b—Lp ) and we work in the corresponding algebraic models,
namely topological algebras (Boolean, pseudo-Boolean, Hilbert, and other implica-
tive algebras). If (A,I,*) is such a topological algebra (where I is an interior
operator) then we have the closure system O of all the deductive systems of A

(D C A such that 1€D, if a€D and a-bE€D then bED, and if a€D then laE€D) and

so we have the associated consequence operator D. We see that the main properties

of this operator are well described by the intuitionist implication:

a=b = I(Ia-Ib)
which was defined by A. Monteiro . The two main results are the following:

Deduction Theorem: b € D(X,a) iff a=b & D(X) Va,beaA , VX CA .

Theorem: WD C A , D is a deductive system of A iff 1€D and if a€D and a=bE€D
then bED .

This operation allows us to give "implicative characterizations' of several
concepts as completely irreducible and maximal deductive systems, radical, and

semisimplicity. We also see that the abstract logic L = (A,D) associated with D

is of type the same as the non-modal logic actually used.

Finally we can show the

Theorem: If (A,') is an algebra of the class quoted above and = is a binary operation
on A such that, for all a,b,c€A :
(1) a=a =1 ;
(2) a=(b=sc) = (a=b)=(a=c) ;
(3) a=(b:¢c) € am(b=c) ; and
(4) (a=b)=c < (a=>b)*c ,
then if we define Ia = 1=»a Va&A , (A,I,.) is a topological algebra

and = is exdctly the intuitionist implication associated with I

From this we conclude that we can give a formalization of modal logics of
type S4 ( icluding $4 itself) by using none of the classical modal operators (L,M)

but the intuitionist implication =

AMS/AMOS 1980 # O3 @G 5 03\346, 03B20 , O6A ...



CAN CARDINAL ORDERING BE UNIVERSAL %

by
¥ +
Marco Forti and Furio Honsell

It is well known that if the Axiom of Choice is
not assumed cardinal ordering is quite arbitrary.
Jech and others proved that every partial ordering
can be represented, in a model of IF, by the injecti
ve ordering of cardinals.

The question arises whether the following axiom
is consistent relatively to ZF:

cu s ¥x Vr { r p. orders x-y3f:x-su bijective 8. t.
Vz,yex (zry > |f2)g|Ey)) )

i. e, any partial ordering r is isomorphic to the
cardinal ordering on some set u,

In GBdel=Bernays-~Von Neumann set theory with-
out the Axiom of Foundation and with the axiom
"there is a proper class of autosingletons”

(which is equiconsistent with ZF_ ), we define

a generalized symmetric model?b'taking the heredi-
tarily symmetric sets for a suitable filter Qf
permutations on the class of autosingletons. Then
the following holds;

THEOREM : Foa any partially ondered sel x 4n 7(:
sduch that fix x belongs to the genenaldized
noamal filten, thene {4 an Ainfective fun-
ction g on P(x)such Zthat

T F‘Vp,qsx(pﬁq > lg(p)lélg(q)l)

*Marco Forti ~ Istituto di Matematica "L. Tonelli" - PISA
4 Furio Monsell - Scuola Normale Superiore - PISA



Corollary The foflowing axioms are consistent
with ABC

CU lin : Any Linean ordening 4is Lsomorphic to the
candinal ondering on seme sed.

“CU reg ; Any partial ondening on a well founded
set is Lsomorphic to the cardinal ordening
on dome sed,
Note that CU in its full étrenght fails in the model.
Its consistency with ABC or ABCD is still an open
problem, as is the consistency of the previous axioms
with ZF ( including regqularity ), for the transfer
methods of Jech and Pincus cannot be directly gene<
ralized to fit this situation.



ALGEBRAIC LOGIC PUR THE QUANTIFIFR

"IHERE FXISTS UNCOUNTABLE MANY"

George Georgeseu

Let (A4,I,5, 3,E) be & locally finite polyadie algebra of
infinite degree. For any p€ A we shall denote by Jp the minimel
support of p. Consider a family of unery opsrastions of A:

§Q(1):4-—> 4 | 1 €1} sueh that for eny 1€ I and p,q.€ A wae have
the following properties:

(Q))  Q(i) 1 =14

(Q,)  Q(L)(E(L,J) v B(4,k)) = 0 for 1 £ J,k;

(Q)  Y(1)(p—»a) $ (1) p—> Q1) @)

(Q)  Q(1) p = Q(3) 8(3/1) p, where J & J ;

(Qg) Q(3) (1) p € (1) Q(J) pvQ(L) 3(J) p,for any J€ I;

(Q) IfJ is s support of p, then J-{ i} 4ie @ support

of Q(1) p;
(Q;)  For any v€ 1% suen thatsnlw-&(tiﬂ) is gnjeetive, we
have Q(1) S(F ) = S(cf) Q(j), where S(j) = i,

A Q-algebra is a polyadie algsbre (4,I,3,3 ,E) with a fa-
mily of unaxry operations 1Q(1):ie IS sueh thet the sxionms (Qlj o
(Q7) are verified,

The Q-algebras asre the adequete slgebraias struetiures for
the logie L(Q) wilth the quentifier "there exists uneountable many"™,.
Any polyedie algebrs of the form F(XI,O) has & eancnieel sirueture
of Q-algebra if for any 1€ I we define Qo(i) by: Q (4) p(x) = 1
Lff{\i&ﬁllp ((u/1) x) = 1} is undountable,

Repregentatiion Theorem, Let <4,Q(4):1€ I> ve a ecuntable

Q~algebra of eountéble degrese and " a proper filter of Boclesn al-

gobra B(4):{ peals =o%,
Then there exist XA and & momphiesm of Q-algebras:

$ :<a,a(0)i1e 17 a<mxt,0),q,(1)11€1 >
sueh thet eard (X) =*; and % (p) = 1 for any p € A,
Another result is an omitting {ypes tReorem formulated in
Q-algebras., ' |



EXTRACTING LISP PROGRAMS FROM CONSTRUCTIVE PROOFS:
A FORMAL THEORY OF CONSTRUCTIVE MATHEMATICS BASED ON LISP
Susumu HAYASHI

Metropolitan College of Technology, Tokyo

We present a formal theory of constructive mathematics based
on the programming language Lisp, and introduce its formalized
qQ-realizability interpretation. Since the realizers of our
realizability interpretation are finite sequences of Lisp-programs,
we can extract Lisp-programs from VI -theorems of the theory. Our
formal theory LM (Lisp Mathematics) is a variant of Feferman's
formal theories of classes and functions introduced to formalize
Bishop's construcfive mathematics. The main differences between
Feferman's formal theories and LM are as follows:

l. Feferman's theories have no intended interpretations of
domains., On the other hand, the domain of IM is intended as the
set of the data types of Lisp. |

2. Algorithms (functions) in Feferman's theories are disci...d
by combinators., In LM, Lisp-programs are used instead of combinators,

The main result is Church's rule for LM:
Theorem. If D is a class of IM and Vx€D 3JyA(x,y) is a theorem
of LM, then we tan effectively find a Lisp-~program f from its proof
such that LM F¥XeD 3y(£f(x)2 y & A(x,y)).

We have extracted a program of the Wang-algorithm of propositional

logic by hand.

AHs';o, 03 F XX 6D , édq’



A partial predicate calculus and forcing.

s

Albert HOOGEWIJS

In order to get a better insight in the model theory for
the partial predicate calculus we Zntroduced in [1],we
consider a forcing relation which may be defined in the
following way (see also [2]).

Definition. Finite sets of atomic, A-atomic and negated
atomic sentences of a countable language LC, which are
consistent with a consistent theory T of L, are called
conditions for T. )

Definition. The relation p B o for a condition p and a

formula o is defined inductively on the complexity of a.
0. If a is atomic, then p ¥ o iff Aa€p, and

p t o 1if [a€p and Agup Ersg r & Aal.

1. p & AAB

2. p W+ 8B iff p + 4B,
p v T8 iff Agepp |[not g4 b B and Erzq r b AB)

3. p B aVe iff ERE®[p b g and p ¥+ AB] or ARES[p F AB)
p FVo iff EREd[p W 8] and Agep Erdglr b+ 4aY9)

4. p b A3xB(x) iff EceC[p + B(e) and p + AB(e)]or AcEcip F AB(ec)]
p W+ 3zB(x) 1ff Ece€Clp F B(c)) and Ag>p Erq [r F A3xB. .’

then the generic model theorem holds and we show the
following form of the

Omitting types theorem
Let M be an vV¥3 class and let Y$n=VX, menwn(;) be a

countable sequence of vV3 sentences. Suppose that for each

n, each finite piece p of M, and each m,-tuple Zecmn,

pU{wn(g)} is satisfiable in M. Then M contains a countable

model 1in which each ¢, holds.

[ 1] HOOGEWIJS A. On a formalization of the non-definedness
notion. Zeitschr.f.math.Logik und Grundl.
d.Math. (1979) 213-217.

{ 2] HOOGEWIJS A. The non-definedness notion and forcing. Analele
§thngifice ale Université%ii "Al 1 Cuza".1982.

(To appear).



EASY TERMS: . | INCLUSION PROBLEMS AMONG CLASSES OF )L-TERMS

G. Jacopini M. Venturini zilli’

Istituto per le Applicazioni del Calcolo

"Mauro Picone"
Viale del Policlinico n. 137 - 00161 Roma

(AMS Classification: 03B40)

Abstract ~ Extensions of x{ (by the terminology in [lJ ) can
be obtained by adding a set of equations T = M, with T,Me A°,
as axioms.

o
By defining T e\ to be easy iff )-"L+ =M with M

arbitrary in A ©, in [3] some set of terms, namely the set

of head recurrent terms of order O, have been shown to be easy
(1.e. to be such that every element of the set is easy) by using,
essentially, a sufficient condition for ease, there referenced
as (e).

In the paper it is shown that (e) is not a necessary condition
for ease, and the obtained results concern classes of terms for
which the following inclusion scheme holds, where superunsolvable
terms are defined in the paper.

unsolvable
terms

\ :
. superunsolvable

] '

:order O | terms with @7 -
i
'

property’ (e)

.
:.."l....'..'.."......‘....

1 H. P. Barendregt, The Lambda Calculus. Its Syntax and Semantics,
* Nerth Holland Pub.Co., Amsterdam 1980.

2 H. B. Curry et al., Combinatory Logic, voll.I e II, North Holland
Publ. Co., 1968 and 1972.

3 G. Jacopini, M. Venturini 2i11i, Equating for Recurrent Terms of
3——calcul£s and Combinatory Logic, Quad.IAC n.85 s.I1II, 978.




Some modifications of Scott s theorem on injective spaces

indrzej W, Jankowski
Institute of Mathematics
University of Warsaw

This paper is related to Scott result from (31,121. The
notion of the retract was introduced by Borsuk (1 3.
Let « , ® be regular cardinal numbers and let oo denote

the class of all cardinal numbers. A <&, > —closure space

ER

is an ordered pair X = < X, 3> such that: (1) & ,X ¢
(2) it @ #R<T , then (\RT (3) ir Q< o< We?F
then U®R €T | (4) if ReFis $ -directed,then U R ¢ ¥
In the sequel L = < L, <> be a complete lattice. We call

~

Ve L is <=xb>-filter in L provided that the following

two conditions are satisfied: (i) V is upper set, (ii) for
every Z <V , 2<% if Z is downward oK —directed, then
inf 72 €V . Let us denote by WV, (L) the < %> —closure

space of all <« b&y-~filters in L and by S_ (L) the smallest

&
<<, %> -closure space such that for every principial filter F
in L; F is closed in S x S(L)' Let st be a function
defined as follows: Jt (d,i;) = 1 1iff for every My

Vg K€m,e>) =5 (<€(m), <> ) . Observe that if
o< 2% then 1 :7:(«‘% ) =1t («,00 ) =% (0,%).

L 1is said to be <x,%> ~lattice if for every family

iat,s§tcT,seS of elements of L

inf sup a = sup inf a R
T 56 b8 ?eST teT typ(t)

pbrovided that



om

(1) T< %

J

(ii) for every s the family 3 at,s}té p 1s downward

o ~directed,

==
4

(ii1) for every T <« T, T <o there exists t € T
suéh that for every t ¢ T and s <€ S we can find
s"€ S5 such that a , < a
t ,s
Theorem 1
if w (%« ,%) =1, then a closure space X 1is an absclute
retract in the category of <« , ®> -closure spaces iff

contraction of X 1is closure space of <« &»-filters in a

<o, 5> lattice.
It is easy to observe that by the above theorem we obtain:

Corollary 1 (Scott L 33 )
A topological space X 1s an absolute retract in the category
of topological spaces iff there is a continuous lattice L

such that contraction of X 1is Scott s topoiogy on L° .

Coroliéry 2

A closure space X 1is an absolute retract in the category

of all closure spaces iff contraction of X 1is a closure space
of all principial filters in a completely distributive complete

lattice.

Corollary 3
A closure space X is absolute retract in the categotry of all
closure space which satisfies the compactness theorem iff

contraction of X 1is a closure space of all filters in &

complete Heyting lattice.



Let X = <(X,3> be-a closure space and let d,a,b € X.

We shall say that 4 3is disjunction of a and b in X

provided that C(d3}) = C(ay)~ C(4bd). A set FeF 1is prime
in X provided for every' de F if 4 1is disjunction of a
and b, then a € F or be¢ F,

A closure space X = < X, ¥ > 1is regular provided that X
satisfies the compactness theorem and there is a famiiy BT
in which every element of R is prime in X and X is

the smallest closure space X =< X, F'> such that R< J'

and X~ satisfies the compactness theorem.

Theorem 2

A closure space X is absolute retract in the category of all
regular closure spaces (with continuous functions preserving
all finite disjunctions as morphism) iff contr;ction of X 1is

a closure space of all filters in a complete Boolean algebra.
On account of the theorem 2 we obtain

Corollary 4 (Sikorski T4 1)
A Boolean algebra A 1is an absolute retract in the category

of Boolean algebras iff A 1s a complete Boolean algebra.

References
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ABSTRACT

A NEW PROOF OF THE THEOREM
OF DAVIS PUTNAM AND ROBINSON

by James P. Tonus* and Ju. V. Matijasevié

One of the historically important first steps in the eventual
solution of Hilbert's tenth problem was the 1961 Theorem of Martin Davis,
Hilary Putnam and Julia Robinson which states that every recursively
enumerable set A can be represented in so called exponential diophantine

form

rea <& 3m1, ...,xn [R(x,xl,...,xn) = S(x,xl, .oy xn)].

Here T)s% xn range over natural numbers 0,7,2,... and R and S are

2,0.-

functions built up from x,2 ,... xn by the operations of addition, A+B,

nultiplication,AB and exponintiation, AB .

Recently a new and very much simpler proof of this theorem was found by
James P. Jones and Ju. V. Matijasevi&. This new proof is based on register
machines. It is a very simple and direct translation of the work of register
machines into exponential diophantine equations.

The new proof uses only very elementary number theory, specifically we
need only the partial ordering relation, X, defined by

k¥n & 7] 51 (moa 2)-
The relation kX £ n has the effect of a bounded universal quantifier. For
k £ n holds if, and only if, each binary digit of k is less than or equal

to the corresponding binary digit of n.

AMS 1980 subject classification rumbers: 03D10, 03D23, 10NO5

* James P. Joties will lecture



Jomany  Kajiya
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ABSTRACT

The main aim of this paper is to formulate natural foundatiors for type-free
illative X-calculus. We extend Scott’s D, model for the pure A-calculus to include
a lattice algebrzic model for propositional logic by proving the following

Theorem. Let Dy be a finite relatively pseudo-complemented lattice. Then
Dy is 2 complete relatively pseudo-complemented lattice with the operation of
relative pseudo-complementation given by

(z:} Yo =

o o]
n {(zn = yn), \T/n+l.n(xn+1 = yn+1)» Y ‘I’n+k.n(zn+k = yn+k); .
k=0

This shows that the D,, model is amenable to an axiomatization of intuitionsitic
propositional calculus. We have found that it is not possible to strengthen { .z
result to Boolean logic due to the following result:

Theorem. The maximal Boolean subalgebra of Dy, is contained in Dg°.

Using the model provided by the above two theorems we are able to resolve the
so-called classical paradoxes of illative combinatory logic (e.g. Curry’s) by restrict-
ing the notion of application and abstraction to (lattice) continuous terms. All or-
dinary A-calculus terms are continuous. Based on this interpretation of implication
we build an axiom system for illative logic. As in all model-based axiomatizations
we aré guarahteed consistency through the existence of a model. Because of the
completerness of the Scott lattice, this theory may be extended to w-order predicate
calculus.

1980 Mathematics subject classification: 03B40 (Combinatory Logic and M-
calculus).



EXTENDING PARTIAL COMBINATORY ALGEBRAS

Jan Willem Klop -

Department of Computer Science
Mathematical Centre, Kruislaan 413
1098 SJ AMSTERDAM, The Netherlands

ABSTRACT

In [2]) it is asked (question 11, posed by H.Barendregt, G.Mitschke and
D.Scott) whether every partial combinatory algebra (p.c.a.) A can be com-
pleted to a total c.a. A*. Here a p.c.a. A = (A,k,s,*) is a structure with
a partially defined binary operation °* called application and equipped with

two distinguished elements k,s such that for all x,y,z eA:

(i) kx, sx, sxy are defined

(il)kxy = x, sxyz = xz(yz).

(Definition: if tl,t2

are both undefined or both defined and equal.)

are two applicative expressions’then tl & t2 iff tl,t2
The question is now: can every p.c.a. A be completed to a c.a. A* by adding
some elements and completing the application operation?

(Note that A* has to have 'the same s and k'.)

We will answer the question negatively by constructing a p.c.a. which
cannot be completed.

Secondly, a rather natural condition will be established which gquaran-
tees the existence of a completion. This condition is for instance satisfied
by Kleene's recursion theoretic p.c.a. where application is defined by
app(m,n) = {m}n.

Finally it will be shown that a p.c.a. which satisfies the 'combinatory
axioms' (AB, see p.157 of [1]) is already total.

REFERENCES '
[1) BARENDREGT, H.P., The lambda calculus, its syntax and gemantics, North-Holland, Amnsterdam 1981,

[2) Open problems; Swansea A-calculus meeting, 21 September 1979, Bulletin of the EATCS,

Nr.10, January 1980.‘
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A First Step for Analy?inc the Semantics of parallelism in Computations
Usinq a (atLgorical Approach

ANNA LABELLA ALBERTO PETTOROSSI .

Mathematics Institute "G.Castelnuovo” I.A.S.I.-C.N.R.

Rome University, 00100 Roma (Italy) Via Buonarroti 12, 00185 Roma (Italy)
ABSTRACT

The aim of our work is twofold: (i) on one hand 'we show how one can provide a ca-
tegorical semantics for languages which allow parallelism; (ii) on the other hand
we compare the different notions of parallelism and communications in two program-
ming languages by analyzing at abstract level their categorical models. We stress -
the fact that we would like to present, more than the technical results themsel-
ves,' the method which has been used. Other approaches have been used in the past
for giving semantics to programning languages: the operational one, the axiomatic
one, the denotational one, the translational one, etc. They all have their advan-
tages, but -they seem to be not particularly useful for analyzing and comparing the
abstract notions of parallelism.

A couple of years ago, Category theory has been used  for defining the semantics
of a specification language [1] . We will use the same categorical approach for the
semantics of two programming languages, in which varallel operations are specified
by distinqgished operators: they are CCS [3} and CSP (2] . By a "CCS theory of pa-
rallelism"” we mean a set of CCS terms well formed from some basic operators (terms
are usually written as a sum of guards), together with a given set of equations.
Those equations identify terms which should be considered equivalent, i.e. denoting
the "same" parallel behaviour. Terms denote nondeterministic computing agents in-
teracting with each other.

In the theories we consider the fundamental notion of parallelism is by "hand-
shaking”. We can associate to one of these theories a category & , whose objects
are the terms and morphisms are recursively defined on the structure of the terms.
A class of monomorphisms in € ,namely the inbeddings, will be also considered.

One sees that the summation corresponds to categorical coproduct in the class of
monomorphisms, NIL [3] 1is the initial object and composition is expressible.as a
pushout in f . Relabelling operation is nothing more than a functor S:§& — &

that satisfies given conditions. Usual equations are obtained fequiring commuta-
tivity of some diagrams. '

A similar categorical structure can be associated to CSP [2] In this case, every
agent is supposed to be the set of its failures in the interaction with the envi-
ronment. Notice that by the intersection operation {2 ] we model the communication
between agents regarded as “"handshaking". Between the symbols of the alphabe' *here
is a distinguished one denoting the successful termination of a process. If A is e
set of all possible traces, an agent, i.e. an_object of &, will be a-functien..

P: AN ——mm P(Pfi (a))

It is quite easy to find a suitable class of morphisms and a class of monomorphisms
among them, such that STOP is the initial object and RUN the terminal one in A
CHAOS the terminal object and nondeterministic composition the coproduct in the
ciass of monomorphisms. Parallel composition by intersection corresponds to the
product in &,

What we have done is to consider dn abstract categorical structure and CCS and CSP
as its models; comparisons between thém hate then been made at- this abstract level.
An outcome of this comparison is, ‘for example, the following: summation in CC$S and
nondeterministic composition in CSP have turned td be the same categorical construc
tion.

As general remark we can notice that the presence in CSP of & distinguishad symbol
dencting successful termination of a process, requires, for its complete formalisa-
tion, a more sophisticated categorical framework than that we need for CCS.

BEFERENCES

11) Burstall, R.M. and Goguen,J.A.:"The Semantics of CLEAR, a Specification Lan-
guage. Proc. 1979 Copenhagun Winter School on Abstract SOftware Specifi-
cations 1980 Lecture Notes in Computer Sclepce n.86. Springer Verlag(19BO)
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pp.666-677. :
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Inadequate and Weakly Incompatible Modal Systems
an abstract

Billy Joe Lucas
Manhattanville College

Call a modal system S inadequate if \’s d DU¢' .

Call two modal systems S; and S, weakly incompatible

if the system that results when they are combined is
inadequate.

In Section I, I survey the known results on weakly
incompatible systems. In Section II, 1 prove some
new results on the weak incompatibility of various
modal systems. For example, systems including both
Sobocifiski's system K1 and the Brouwerische axiom are
shown to be inadequate; thus systems containing Kl

and systems containing B are weakly incompatible.



UNITIES, SEMANTICS AND REALIZATIONS.

Carlo MARCHINI

Istituto di Matematica

Via Universitda 12 - 43100 PARMA PR (Italy)

In the intent of describing semantics for propositional calculi, we
give the following

Definition 1. Let P = (P, <) be a bounded poset and A a non-empty
set. A triple M = (P,F A) is a pre-model of A, if the following con-
ditions hold, for all atA, p,q¢P : !

(1) OFa ; (2)19a ; (3) if psq and qF a, then pi=a ; (4) if p«q
and pSa, then q=3a; (5) if pFa and q3a, then p £g.

We compare this concept and that of unity of a relation (see [i]) R
which we present in a slightly modified version, more suitable for a
Kripke-style semantics. Subsequently, we define realizable elements of
a pre-model. ' |

The definition of a model M = (P,}=, =) of IF(A), the propositional
language on a set A of propositiond letters, is a natural extension of
Definition 1, e.g. take p = Vv iff p=a«& and p=f.

Definition 2. A formula « of IF(A) is hereditarily realizable 'in a
model M of T(A) , if every subformula of &« is realizable in M.

A first result is similar to Theorem 5 in [2_] :

Theorem 1. There exists a poset P such that for any fragment of
F(A) (i.e. a subset of IT(A), closed under subformulae), there is a
model M(F) of the form (P, E(F), 5 (F) ) in which every element of F
is hereditarily realizable.

Theorem 6 in [2] can be reformulated, with suitable restriction on
the model M of X(A) and on the fragment F; the core of its statement
is as follows:

Theorem 2. There exists a model \]M[F] which is an extension of“ M,
such that every element of F is hereditarily realizable in M[F] .

REFERENCES.

T4} H. CRAPO, Unities and negation: on the representation of finii,;e lat-
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Model-theoretic properties of Parovilenko space
%arkc Mijajlovié, Belgrade

E.K.van Douwen and J.van Mill introduced the notion of Parovi-
tenko space,{1], and proved the part (€-) of the following theorem,
began by I.I.Parovienko:

Theorem CH is equivalent to the statement that every Parovilenko
space is homeomorphic to growthews= pw-iv,

The proof presented in [1] is based on a construction of two
Perovitenko spaces X;Y so that X has a point of the character }{1, tut
every point in Y has the character c=2“° . We give a purely model-theo~
retic construction of the second space which is more involved. It is
based on the following facts which might be of an independent interes3.
If M is a Boolean notion then M” denoctes its topological dual, and BA
stands for Boolean algebra.

10[2], a space X is a Parovilenko space iff there is an atomless
w, -saturated BA B, |B|=c, so that I=B%.

2° If D is the filter of cofinite subsets of an infinite set I, then
the reduced product of BA’s B,;, 1€I, modulo D has the following dual

(l;\ni)"= growth % B}

3% (B.Jonsson, P.011in) If D is the filter of cofinite subsets of «
then D is “Jl—saturativeo

4° (Z.Perovié) Let A be a free BA with k 2), free generators. If D is

a propér filter over ¢t , then every ultrafilter p of A?VD has the
character 2 k. '

Corollary Let B be a free BA with ¢ free generators, and D the fil-
ter of cofinite subsets of «w , Then (E“VD)*'is a Parovidenko space
in which every point has the character 3 c.

Remarks 1° (B”VDY‘: growth@ux2®), as B" is the Cantor space 2,
This space is the space T in {1].

2° The part (— ) of the above theorem immediately follows from the
uniqueness 6f saturated models of a complete ‘theory (in this case
of atomless BA's) of the same cardinality 3. md 4°

Referances

l. E.K.van Douwen, J.van Mill, Parovidenko characterization of rseo -0
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A NOTE ON (A,u)*~COMPACTNESS

Heikki Mannila
University of Helsinki

Finland

ABSTRACT

The concept of (A,u)*-compactness of an arbitrary logic defined by

Makowsky and Shelah is shown to be equivalent to (A,U)-set compactness.

Using this notion elementary proofs are given for the following results
of Makowsky and Shelah:
(i) If a logic is (cf(A),cf(A))*-compact, then it is (A,A)*-compact;
(i1) A logic is (A,w)*-compact if and only if it is (k,K)*-compact for
all regular Kk with w €k € X,

A simple topological characterization of (A,u)*-compactness is given
And result (ii) above is shown to have been essentially formulated.and

proved by Alexandroff and Urysohn in 1929.
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RIGHT AND LEFT INVERTIBILITY IN A" (S“CALCULUS
1. Margaria*- M. Zacchi™

It is well known [3] that the set A of X,- [3(0[) terms builds a semigroup,
having as identity the combinator I =Ax.x and as composition the operation o
so defined : XoY = BXY, where B izlxyz.x(yz). The problem of characterizing
the normal forms having inverse.has been studied both in A- ﬁ—calculus and
in'&r(3—ﬂ\—ca1culus and it has been proved that A-terms without normal forms
cannot have inverse in.*r-@-ln—calculus [1], [2]f [4].

In the present paper we use the notion of direct approximation and the
partial order relation E introduced in [5]. Firs£1y we notice that every
left (right) .inverse of arkterm X is a left (right) inverse for every/{-term
Y such that XEY. In order to characterize the set of terms having left
and/or right inverse the concept of Bohm tree is used and two "operations”
on the set of Bohm trees: terminal extension and initial extension, are
introduced. We prove that a A-term X has left (right) inverse if and only

if there exists at least aA-term Y such that YE X and ¥ can be obtained
from I applying a sequence of terminal (initial) extensions. Moreover we
characterize theA -terms left (right) invertible having ome and only one
left (right) inverse and we prove that in the other cases there exists an
infinite number of left (right) inverses.~Finally we discuss the above
results about invertibility on the graph model P, and we show that the two
functions which map an element of P, into the set of all its right or left
inverses, respectively, are not monotonic, i.e. we can have that for some

X, Y of B, : XEY (where £ is the usual order relation of B,) and there

exists a left (right) inverse of X which is not a left (right) inverse

for Y.

* Universitd degli Studi di Totino
Istituto di Scienze dell'Informaeione
C.s0 M. D'Azeglio,42 - TORINQ
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ABSTRACT

Title: Mathematical and metamathematical applications of realizability
D.C. McCarty Wolfson College, Oxford and Carnegie-Mellon University

AMS/AMOS Classifications: 02, 04

Unlike the realizability interpretations which feature so prominently in Beeson [1] and which appl-y
directly to nonextensional intuitionistic set theory (IZF), there are innumerable versions of “number rea.h:
zability” which model extensional IZF immediately. The most familiar of these arises as an extension both of
Kleene's original notion and of the Kreisel-Troelstra realizability for intuitionistic second-order arithmetic. It
is easy to see, working classically, that this structure, V(R), is sound with respect to IZF -I—CT(O)-}—AC(O,XH:
DC+MP(0)+IP+4UP(0). In V(R), the universe is unzerlegbar, every powerset is uncountable and the class of
ordinals on which membership is decidable forms a set. V(R) also provides a countermodel for the Cant?r-
Bernstein theorem, Kripke's Schema and full Church’s Thesis. The weak counterexamples of Brouwer whick
do not rely upon the theory of the creative subject and the set-theoretic weak counterexamples of Grayson
[2] are easily transformable into strict falsehoods over V(R), and, hence, into independence results from the
above extension of 1ZF. .

What is more significant than the preceding from a mathematical or philesophical point of view 1s.the
provision by the model of a “transfer principle” like that sought by Kreisel [3] to make explicit the rela.tlo.na
holding between the effective “set theories” of Myhill, Dekker et al. on the one band and their construc':lve
correlates in traditional formulation on the other. There is, for example, an translation A* of the classical
theory of the recursive equivalence types <RET, +, x, => into a structure <P(N)-stable, +, x, =>
specified in purely set-theoretic terms over the stable subsets of N in V(R) such that A holds in <RET, -+,
x, => iff V(R) satisfies A*. . .

From this result and the character of A*, it follows that the study of the recursion—theoretic relations
between RET’s can be carried out without loss as pure cardinal arithmetic in an extension of IZF. a.nd t%::st
a simple characterization of those statements which hold constructively over RET is available. Quite similar
results linking the isols to Dedekind-finite cardinals over V(R) are now easily obtained.

(1) Beeson, M.J. “Continuity in Intuitionistic Set Theories”. Logic Colloquium ’78.
[2] Grayson, R.J. Intuitionistic Set Theory. D.Phil. thesis. Oxford. 1978.
[3] Kreisel, G. “Review of Crossley, J.N. Constructive Order Types I” Zentralblatt (1968) 10.
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Abstract

Title Concerning ultrafilter characterizations for huge cardinals.

AMS /AMOS Classification number 03ES5S5

For a cardinal «k an extension of the elementary embedding
characterizations of measurable and supercompact defines « to be huge if
there exists an elementary embedding j: V -+ M‘ such that « 1s the first
ordinal moved while V and M have the same sequences of length j(k). 1Im
Zermelo Fraenkel set theory with the axiom of choice this definition is both
equivalent to the existence of a x-complete, fine, normal ultrafilter over
{x ¢ A: |x| =k}, and a k-complete, fine, normal ultrafilter over
{x €A: x = k}, (where |x| and x denote the cardinality and order type of
x respectively).

It can be shown that every member of any x-complete, fine, normal
ultrafilter over {x < A: [x| =k} must have a member of order type K.

The existence of certain filters and ultrafilters over these sets £7e
studied, Notions resembling that of closed and unbounded for subsets of

PA= {xai: |x| < k} are investigated here with several analogous results.



Roman Murawski

ON “TRACE" EXPANSIONS OF INITIAL SEGMENTS

We consider the expandability of initial segments of models of
Peano arithmetic PA to models of second order arithmeic AE or similar

theories. Recall the following

DEFINITION, A model Mk PA is said to be Ag-expandable iff there
is a family X, < P(M) such that (¥ ,M,€) k A5,

More information on expandability can be found e.g. in our survey
paper [2] and on expandability of initial segments in [1].

We shall treat, for convenieﬁce, a model for AE as a structure
(M,S,E) where M F PA, S< M, E<MxS, A5 can be also formalized in a lan-
guage with one sort of variables and with predicates §' E. Denote such

a theory by A,. We shall consider models of A, with the following rro-

perty:

(%) relations S and E are inductive.

THEOREM 1. If a countable nthtaﬁdérd model M  PA is expandable
to a model O = (XM, ¢€) of A7 such that it is isomorphic to a model
O, = (M,5,Ey of A; with the property (x) and such that § is bounded
in M then M has 2™° initial segments I €. M such that (:an} L€ H"’AE
Mwmexmn1={XnI:X€th '

THEOREM 2. If a countable nonstandapd model M |+ PA is expandable

-

to a recursively saturated model Ol = (CﬁM,M,e ) of Aé such that it is

isomorphic to a model O, = (M,§,E) of A, with (x) and such that S is



bounded in M then M has 2% elementary initial segments 1<, M such
that

19 (¥ynI,I,€) k A5,
2° (X al,I, )< (XM, €).

We have also the following “negative"

THEOREM 3, Let M be a countable nonstandard model of PA which is
expandable to a model Ol of A; = AE + CONSTR such that Ol has a full

substitutable satisfaction class S with the following properties:
1° S(A;) and 2° the comprehension scheme holds in Ol also for atomic

formulas containing S. Then there exist an extension M, of M such that
M, F PA and an AE-—expansion & = (\XM My, €) of ¥ such that
1

-
*

{Xy n MM, e) is not a model of A,
1
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CYLINDRIC-NATURAL SET ALGSBRAS, THE NATURAL EXTENSION OF BOOLEAN

OPERATIORS TO "FIRST-ORDER LOGIC OPERATIONS" DEFINED ON

ARBITRARY SEPS, by I. Németi.

AMS classification code: 0%G15, 03%C95, 03G25.

et V and D be two arbitrary sets and 1i,jé€D. _Sets is the class

of 81l sets, Define

7 ¢ (vox 3 xeVY  and
o] ¢ (iyev : (3 gex)y~(li}xsets)=g~({ilxSets)} : XEV)
Dzj d iyev : yn({ilxsets)=yN({ji*xsets)} .

Clearly, y~ : PV PV, C} : PV PV and DlaEPV for all i,jeD.

The full cylindric-natural set algebra of dimension D (from now on the

full CNsD) over V 1is defined to be

d \'/ \')

PV =<'PV ;ﬂ’ v"\-" C- 1y Da>i’a~eD.
oNsy & fOU 2 V(A S PV

That 1s, a CNsD is a subalgebra of some full CNSD. For any class X of

algebras we let IK = dio (FLERK) MELY.

THEOREM1 There exists a decidable set Ej of equations such that

ICNs; = Mod(Ep).
Ey will be explicitly defined in the lecture. We show that CNsj is the
algebraic counterpart not only of classical first order loglc but also
that of many-sorted logic, modal (first-order) logic, intuitionistic
logic, etc. Hence CNs ‘theory is rather algebraic abstract model theory
and not only algebraic first order logic. In [henkln,L. Monk,J.D. Tarski,
A+ Andréka H, Németi,I.: Cylindric Set Algebras, Lecture Notes ih Mathema-

tics 883, Springer~Verlag, 1982]the class Crg  was defined for every
ordinal < .

THEOREM 2 oK< > 1 iff ICrg, = ICNg,. 'CNsO = "Boolean set algebras”
and CNs, is the variety of closure algebras of Tarskia



The logic of categories of partiel functions and recursivensess

Adam Qbtuzowlcz

Abstract:

The category of pertial functiocas in an elemaentary Wwpos
ith Matural Number Object ie considered. It is presented %©@he
charecterizetion of this cetegory by giving the system of par-
ti;l operations defined on its errows and the systexm of egus~
tione valid in the categoéj. in other words this category is
characterized as & category with additionsl equational structu-
re in the sense of J. Lembek [2]. This characterization glves
rise to certain formel system which one can spply in the descri-
ption of A. Grzegorczyk”’s recursive objects [1] snd partisl
| recursive objects, for instance certain‘part15%¥%3§gtionn and
functionals. This deecription emloys the concept of definehility
of a function in the system which is similer to the concept ol
lambde~definebility of & function in lazbda~calouli. The formel
system is xelated %o equational cheracterization of & cartesisn
closed category (cf. [2]5._The presented charecterizetion gives
rise also to cerfain new construction of a free elementary topos
in the sense of J. Lambek [2].
[l] A+ Grzegorczyk, Recursife objects in all finite types,
Pundamenta Methemsticae LIV 1 (1964), ppe 73=39¢
[2] J. Lambek, From types to sets, Advances in Matheusatics 36
(1980)s ppe 113-164



G.E.Minc. Simple proof of the coherence theorem for cartesizn closed cate-

gories

This theorem, first proved in /1/,states in proof-theoretic terms that
A—>B has at most one derivation (up to equality of normal forms) in the
intuitionistic (&,D)-calculus if A-»B is balanced, that is no variable
occurs there more than twice, Applying familiar depth-reducing transforma-
tion /2/ we can restrict attention to balanced sequents S= Y-»k where k 1=
& V&ri&ble) and Y is a list of formulas having ons of the forms p, p=q,
p(gor), (p>q)>r, p>(gkr) for variables Psyq,r. An S-sequent 1s one
of the form Y'V-»1 , where 1 is a variable having a positive occurrence in
Sy the list Y' is contained in Y , and V is a list (possibly empty) of va-
riables such that for any v€V the list Y contains a member of the form
(vo>a)D>b. An antecedent member F of some sequent X-»v is redundant if
P has one of the forms p=>(v>q), v2A or (pav)>q.

Our proof of the coherence theorem proceeds by induction on normal deri-
vation of a balanced sequent S using the following pruning lemma,

No normal derivation of an S~sequent contains redundant members.

/1/ BabaevA.A., Sdlovjov S.V. A coherence theorem for canonical maps in
cartesian closed categories. (Russian with English summary). Zapiski nauch-
nykh seminarov LOMI, Leningrad, 'Nauka, 1979, v.88, p.3-29
/2/ Solovjov S.V. Preservation of the equivalence of proofs under —=d:ntion

of formula depth. (Russian with English summary). Zapiski, 1979,v.88,p.
197~207

AMS/MOS 80: O3FO0S+ 03 B4D+ 19415



. . . . . . 1)
Regularity of internal weak solutions of partial differential equations l

2)

University of Helsinki

Juha Oikkonen

In his book "Non-Standard Analysis" Abraham Robinson proved that the standard
part of a finite internal harmonic function is a standard harmonic function.
His argument applied Poisson's integral. We generalize Robinson's result for

strictly elliptic partial differential equations
(1) L(u) = f

of second order in a bounded domain of R~. The coefficients are assumed
©o be in C . Our metho@ is a nonstandard approach to the regularity

theory, and we prove among other things:

Theorem 1: If (1) has a norm-finite (in the L2 sense) internal weak solution,

then (1) has a standard C  solution.

Theorem 2: If u € C_ is a norm-finite (in the L2 sense) internal veak

solution of (1), then % is a standard C solution of (1).

1) AMS classification: O3HOS primary, 35J15 secondary.

2) The research is carried out in collaboration with prof. O. Martia.



Quantifier elimination in projectable L-groups.

A L-group is a L-structure which is an abelian group and such
that the language L contains only function symbols and among
them {+,—,.0} .

A projectable simple Ll-group is a l-group where a binary
function p( , ) is defined as follows : p(a,b) = 0 if b # O
and p(a,b) = a if b = 0.

A projectable L-group is a subdirect product of projectable
simple l-groups.

An example of such structures is the projectable £-groups
i.e. the lattice ordered groups which satisfy the following

axiom :

Va Vb 3n (|n| A |b|]=0 & Y£ (|£] A |b| =0~ |£] A |a -h| =0)k

Representation theorem :

4 projectable L-group A is isomorphic to the structure

r.(x, v Ax) of all sections with compact clopen supports
of a légglly boolean sheaf of projectable simple L-groups.
(Theorem 6,12 éf [K] about representation of projectable

L-groups is thus a particular case of this theorem).

Now we classify the projectable L-groups which have g.e. in L,

in term of their base space and the projectable simple L-groups
of their sheaf space.

Theotem :

A projectable L-group A admits g.e. in L iff

(1) the base space X of A is the topological sum of a space
X without isolated points and finitely many discrete



spaces Xi, i » 1, with one or two points.
Moreover (i) there exists terms t s.t. for any element

1 .
r of A ti(r) equals r over X; and equals O elsewhere ;

(1i) there are closed L-terms whose supports are
the Xi which are compact and contain at least two points.

(2) the class of projectable simple L-groups {Ax|x € X} admits
positive g.e. and for any term t(.), there exists a term
s{(.) s.t. the following equivalence holds in this class :
Nz (z = 0 V(3y tly.,x) #0 + s(z,X) # 0)).

Applications

(1) The projectable Z-groups which admit g.e. in {+,-,0,A,p )

are distributed in the two following classes (having g.e.)

- the class of all divisible totally ordered {-groups,
~ the class of all divisible projectable £-groups satisfying :

(1) Ve 3g (g # 0 & |f| A |g| = 0) and
(11) Ve 3£, 3, (£ £ 0 »(f, #0& £, 708

£, A £, =0 & £ =1£; - 750
Weispfenning extends the language of projectable Z-groups

by the following unary function symbols : ./n with n € w=-{0),
defined as follows

p(%/n, n.(x/n) -x) ='x/n and Yz (x = n.z = 2z = x/n).,

Weispfenning has shown that any non trivial totally ordered
abelian group which admits g.e. in {+,~,0,A,./n; n € w~{0}}
is dénse, regular (see [W]).

Thus, we get the setond application

(2) The projectable Z~groups which admit g.e. in

{+,4,0,A,p,./n; n € v-{0}} are distributed in the two follo-
wing classes (having g.e.) :



{ K]

[ W]

- the class of all dense regular totally ordered £-groups,
- the class of all projectable £-groups satisfying :

(i), (ii) and the following axiom :

¥ ¥g 3n( |hjAl£]=|h] s h # 0 & |b| # |£] & |n|-(|gl/m).n = |nj -fah)

K. Keimel, the representation of lattice-ordered groups
and rings by sections in sheaves, Lecture Notes 248,
A. Dold, Heidelberg and B. Echmann, Zlirich, 1971, p. 55.

V. Weispfenning, Quantifier elimination for totally ordered
abelian groups, written note.

Frangoise 'Point.

Université de 1'Etat, Faculté des Sciences,
Avenue Maistriau, 15, 7000 Mons, Belgique.



“odel Theory and Representation of Artinian Pingo.,

V.5

1ike Prest

A ring is right pure semisimple if each of its modules 1s a direct
sum of, necessarily finitely generated, indecomposable submodules.
It is equivalent to require that each of its modules be totally
transcendental. Such rings are right artinian. but it is not
known whether such a ring need be left artinian.

A right pure semisimple ring is said to be of finite representation
type if it has, up to isomorphism. only finitely many indecomposable
modules, It is equivalent to reguire that each of 1its modules has
finite Morley rank. It is unknown whether this apparently Stronger
condition is eqguivalent to being right pure semisimple: it is known
to be equivalent to right and left pure semisimplicity.

-

I show how techniques from the model theory of modules may be used
to show that the properties are equivalent in some special caseS.
In particular I use the connection between positive primitive types,
and certain sets of matrices over the ring.

I show, further, how use of model théory illuminates some of the
category-theoretic methods used in the area of representation

theory, and how it provides quick and conceptual proofs of a
number of results.

Department of Mathematical Sciences
Northern Illineis University
De Kalb

Illinois 60115.

BMS/aMos 1ak0  ©3C GO
1EA 6L



EKIENSIONAL REALIZABILITY (abstract)

We introduce APEX, an extensional theory based on intuitionistic
partial logic and on application as term-building device. APEX is
inspired on Feferman's applicative theories (see [F]); it can be

seen as a conservative extension of HA (intuitionistic arithmetic).

In APEX we define extensional realizability e and sth that it
can be characterized by EAC, an extensional axiom of choice. Using
forcing it is proved (as in [B]) that APEX | 3x xeA implies
APEX | A for arithmetical A, hence APEX + EAC 1is conservative

over HA,

Finally we interpret Martin-L8f's basic theory ML (without well-

orderings and universes; see [M-L]) in APEX + EAC, which yields:

ML is conservative over HA.
M’o [

References:

(B] M. BEESON, Goodman's theorem and beyond, Pacific Journal of
Mathematics 84 (1979) 1| - 16.

(F] S. FEFERMAN, Constructive theories of functions and classes,
in: M. Boffa, D. van Dalen, K. Mc Aloon (eds.),Logic Colloquium
1978 (North-Holland, Amsterdam, 1980) 159 - 224,

[M-L] P. MARTIN-LOF, Constructive mathematics and computer program—
ming,Reports of the Department of Mathematics, University of
Stockholm, 1979, no. 11. To appear in: L. J. Cohen, J. tLos,
H. Pfeiffer, K. P. Podewski (eds.), Logic, Methodology and
Philosophy of Science VI (North- Holland, Amsterdam, 1982).

AMS/AMOS 1980 classification: O3 F SO,

Gerard R. Renardel de Lavalette
Mathematical Institute
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PRINCIPAL TYPE SCHEMES FOR AN EXTENDED TYPE THEORY

S.RONCHI DELLA ROCCA B. VENNERI

Istituto di Scienze dell'Informazione
c.M. D'Azeglio ,42 .TORINO (italy)

ABSTRACT.

In [Barendregt et alu,l98i] the basic functionality theory of Curxy 1s
extended, generalizing both type structure and assignment rules, so that
types are preserved under comvertibility and only unsolvable terms have
a trivial functional characterization. An important feature of this system
is.that it is semantically complete and it induces a ‘Afmodel.

It is desirable to show an internal coherence between the type schemes

(in general infinite) which are deducible for a given term. ToO this aim ,
the authors prove the existence, for every term X, of a "principal

type scheme" (p.t.s.) , from which all and only the type schemes deducible

for X can be generated, by suitable operations. As the type schemes

deducible for a term X are all and only the type schemes deducible for

the approximants of X, also the p.t.s. of X is build from the p.-t.s.s

of it's approximants.

The p.t.s. of an approximant A is definad inductively on the structure

of A, and it is the simplest type scheme deducible for A. In fact it

can be assigned to A by means of a normalized deduction tree D, whose

structure corresponds to the structure of A itself. All type gchemes

deducible for A can be generated from the p.t.s. of A by means of |

repeated applications of three operations, which reflect the relationship

between the associated deductions and the deduction D.

The p.t.s. of a term X is a single type scheme in the case that % has a

finite set of approximants, it is an infinite set of type schemes otherwise.

It is easy to prove that the unification (i.e.,the problem to find,

. . Chard ; decidable.
given two typed terms, a type scheme for their applitation) 38 not



But it is possible to study "unification procedures” and the feature that
the given operations generate deducible type schemes also starting from
arbitrary deducible type schemes (not only p.t.s.s) may be useful to

this' aim.

REFERENCES
Barendregt H,, Coppo M., and Dezani-Ciancaglini M.,(1981). A Filter
Lambda-model and the Completeness of Type Assignment. To appear

in J. Symbolic Logic.



ABOUT FRAMES AND FILTERS
by Giuseppe Rosolini
Istituto di Matematica, Universita, 43100 Parma, Italy
We have given a simple construction of the pushout of frame morphisms f:C~%f
and .g:C—B as the frame of Galois connections over C.
We study lifting of filters of A or B to AeB and iterations of reduced frams

extensions of algebraic structures by means of a sort of Beck condtion on a com=

mutative square of toposes.

AMS MOS Classification: 06D20, 18B25.



Abstract

(Feys T system and Von Wright M system)
Prof. Dr. Miguel SANCHEZ -MAZAS
Neuchatel and Basque Country Universities

Each variable and each well-formed formula of two-valued propositionc!
calculus can take in our model a numerical value (expressing its medal

value in any system whatsoever) within the set of natural numbers btifﬁ.
0 and a number f=2g-1, in which g=2", n being any natural number previco-ly
fixed.

The arithmetic conditions expressing the truth of a well formed Tors
of an elementary modal calculus (such as the Feys T systen or the Von
Wright M system) will then be the following:

The Tormuta

wnich states is true if and

onTy if example for =2
O» it is necessary that p p=0 p=0
P p P<g p<8
Gr it is possible that p p<f p<l5
~Opr it is not necessary
that p p>0 p>0
~P not p p>(g-1) p>7
~ Qp it is impossible that p p=f p=15
Qré~Qp it is contingent that p O<p«<f 0<p<lis
pé&g p and g [p, q]<g 03: Q]<8
pvq p or q (p, q)<g (p, q)<8
nq p materially implies q (f-p, q)<g (15-p, -~ -<B
poq p is compatible with q [p, q]<f\ ﬁn q}<15
P-3q p strictly implies gq (f-p, q)=0 pig (15-p, q)=0 pig
p=gq p is strictly equivalent(f’-p,q).('f'-q»F’).I=O[(15‘P,q),(lS—fh'P)}O
to q p=q p-q=0 pP=9 p-q=V

in which the arithmetic functions f-p, [p,<q (least common 01lnary
compound** of p and q) and (p, gq) (gréatest common binary component**

p and q) are respectively associated with the logic functions «p, p&g

and pvq, whilst thé arithmetic relatfon piq is the realtion p is a binary
compound** of .

The paper shows that by means of that drithmetic model it is possible,
from a theoretical point of view, to prove by numerical calculation all
the theorems of such modal systems as T Feys system and M Von Wright system
and, on anothér hanhd, from a practical point of of view, that it is possible
to dpply arithmetic procedures to any scientific theory that involves
the use of modalities.

*AMS Classif!cgtion: Cl10/M10.

“4p is a binary component of q If and only if any power of 2 which 1s
part of the binary éxprcssion of p is also part of the binary GXPTCSdiot
of q; p is a binary compound of q if and only if q is a binary componen
of p. , .



Abstract

Finitely generic abelian lattice-ordered groups

by Dan Saracino and Carol Wood

Work of Glass and Pierce [1] is extended to give & characterizetion
Oof the finitely generic abelisn lattice-ordered groups, producing easy
exioms for these among all hyperarchimedean f-groups. Examples relating
representations ag real-valued functions and model-theoretic propertic:

&re alco given.

[1] Gless and Pierce, Trans. A.M.5. 26 (1980), 255-270



MULTIPLE FORMS OF GENTZEN;S RULES AND SOME INTERMEDIATE LOGICS
7. Bikié
{(Abstract)

Gentrzen’s sequential system is a formalization of classical or intuitio-
nistic logic depending on whether we take its rules in multiple or singular
form. Indeed, in the singular system extended by the initial sequents of the
form -»Av A, it is possible to prove at once the permissibility of the mul-
tiple forms of all the inference rules, € 1].

An analysis of each rule separately shows that the multiplt form of the
introduction of negation or implication in the succedent is sufficient for the
formalization of classical logic. The multiple form of the introduction of
universal quantifier in the succedent is not sufficient for the formalization
of classical logic, and at. the same time it is too strong for the formalization
of intuitionistic logic fE]. The multiple forms of the other rules do not
extend the intuitionistic system. The extension of the singular intuitionistic
system by the multiple form of the introduction of universal quantifier in the

Succedent is therefore the formalization of an intermediate logic. We call this

extension Lg.

We want to show that the system L., is related to Godel's completeness

theorem. Namely, Kleene's detailed analisis of the proof of the theorem[i?}g
reveals that the only non-intuitionistic assertion used in the proof is of the
form ¥xA(x)v 3 xJA(x). Therefore, we will compar‘é our system L, to the sin-
gular intuitionistic system extended by the initial sequents of the form
¥ xA(x)¥ 3 x9A(x). We call this extension L3u
Moreover, Kleene’s analysis shows that the predicate A(x) is decidable.
Therefore, we will also éompare our system L2 to the singular intuitionistic
system extended by the initial sequents of the form
¥ x(A(x)v 1 AL )% xA(x)V R x JA(x). We call this extension L,.
We prove constructively the following theorem:
Theorem: L extends L, &nd L, extends L. (It is plain that L, properly

. 2 2
extends Ll R f2]) .

The question remains: Is the system L2 equivalent to L1 or possibly to L3?

[1) G.Gentzen: Untersuchungen iiber das logischeé Schliessen, Math. Zeitschr.
39, 1935.

EE{] S.C.Kleene: Introduetion to Metamathematics, Van Nostrand, 1952.
[3) s.C.Kleene: Mathematical Logic, J.Willey, 1968.
AMS/AMOS 1980 classification 03B55, also of interest for O03F99.



CONDITIONS STRONGER THAN HOMOGENEITY OF BOOLEAN ALGEBRAS
Petr St&pének

We call & DBoolean algebra B homogeneous if for every tw
nonzere clements u, v<17, there is en automorphism of B such

that y%u) = v , :

Proposition For every Boolean algebra , the following comdli:cis
are equivalent (i)

B is homogeneous ,
(ii) for every finite subalgebra C of B
every automorphism of C extends to an automorphism of B.

The following result due to M. Weese shows that we cannol gei
a stronger notion of homogeneity by extending (ii) to all subalgebias.

Theorem {(¥eese) Every infinite homogeneous Boolean algebra B
contains @ subalgebra with en automorphism which does not extend to
an sutomorphism of B .

We can prove the following

Theorem (i) There is an infinite complete homogeneous Boolean
algebra B such that for every complete subalgebra C o® B,
there is an embedding e : C—=B such that every sutomorphism
of e[C] extends to an automorphiem of B . -

(ii) TFor every infinite cardinal Kk , there is a
complete homogeneous Boolean algebra B with a dense subset of
power K such that the conlusion of (i) holds for every subalgebra
of B of power at most & .

Problem.i1. Does there exist a homogeneous Booleén algebra B
such that the conclusion of (i) in the above theorem holds for
every subalgebra of B %

Problem 2, ' Do there exist two complete homogeneous Boolean
elgebras B, C such that C is a complete subalgebra of B
and no nontrivial automorphism of C - extends to en automorphisa

of B?®?




03C60

SIMON THOMAS. The classification of the stable simple locally finite groups

Cherlin conjectured in [2] that an w-stable simple locally finite group
is a Chevalley group over an algebraically closed field. We have been able
to reduce the conjecture to an identification problem using results from [1]
and [3] and the classification of the finite simple groups. This problem is
solved by the following result, which is of some interest in its own right.

It answers many of the questions raised in [3].

Theorem 1 [4]

Let G = U G, where each G, is a Chevalley group of Lie type L over a
icw . s
finite field. Then G is a Chevalley group of type L over a locally finite

field. v . :

Using this result, we obtain:

Theorem 2

A stable simple locally finite group is a Chevalley group over an

algebraically closed field.

References
1Y

(1] R.M. Bryant, Groups with the Minimal Condition on Centralizers, J.
Algebra. 60 (1979) 371-383.

(2] €. Cherlin, Groups of swall Morley rank, Ana. Math. Logic 17 (1979)
1-28.

[3] O. Kegel and B. Wehrfritz, Locally Finite Groups (North-Holland,
Amsterdam, 1973).

[4] S. Thomas, An identificdtion for the locally finite nontwisted Chevalley

groups, to appear in Arch. Math.



DECIDABILITY OR UNDECIDARILITY OF SOME THEORIES OF MEASURE SPACES.

(Sauro Tulipani, Univ., of Camerino)
Let B be a Fool=an algebra and F be an ordered real-closed

field, A finitely additive measure (shortly a "mass") is a non-nes

gative function m: B—=>F such that m(x+y)=m(x)+m(y) whenever xy:OB.

The triple (B,F,m) will be called here genevral measure Space (g.m.e.).

Moreover, a mass m will be called strongly non-atomic if for every

X €B the restriction of m to x is on%to the interval [O, m(x)] of Fj;

m will be called stricily positive if m(x):OF impliesrx=OB.

=
S
fai ]

Let H, X be classes o 1 measure spaces, Dencte by H®K

ane
gener

the class whose members are isomorphic to g.m.s, of the form (AXBuF:hgﬂﬁv

for some (A,F,m,)e H and (EQF,mE)& K; mem, is defined by m
!

2 1
=m, (a)+m,(b). Define, now, the following classes, H, is the class of

omz(a,b)ﬁ

g.m.s. (A,F,m) where A is an atomic algebra and m a strongly non-ato=
mic mass, H2 is the class where A is atomless and m strongly non-ato=
mic and strictly positive. H3 is the class w?ere A is atomless and

m strongly non-atomic mass such that for every non-zero z€ A the
restriction of m to z is never strictly positive. Kn is the class of
g.m,s, where A ig a finite Boolean algebra with at most n atoms.
THEOREN 1.( [1] )~ The theory Th(H) of the class H= H,®@ H,QH, is
de¢idable. -

The proof is by the method of elimination of quantifiers.
THEOREM 2.( [2] )- The theory T of the class HRX is interpreiunile
by parameters in Th{H}, Hence, Tn is decidable,-~

However, the following theorem shows that the decidability of
the theory of all g.m.s, fails,

THEOREN 3.( [2] )~ The class % of all g.m.s. (A, R,m), where A is
an infinite atomic algebra and R is the field of real numbers; has
an hereditarily undecidable theory.-

The proof is obtained by interpreting thé theory of finite
graphs into the theory of Kao

[ﬂ S, TULIPANT, "Invariahti per 1'equivalenza elementare per uha
clasge assiomatica di spazi zenerali di misura", Suppl.
Boll. U.,n.1, Vol. 2 (1980), 107-118,

[2} ----=s--== ;"A use of tne method of interpretations for decidability

: bra
or undecidabilitv of measure spaces”, to appear in Alge

Universalis (issue dedicated to the 30th birthday of A. Tarski).



For presentation at Logic Colloquium '82,
Florence, Italy, 23-28 August 1982

DOLPH ULRICH, Some extensions of implicational S5 not complete with respect to any
class of frames.

With wffs built from letters and the binary connective C, C5 1s the sentential

calculus with axioms Cpp, CCpaCxCpg, CCrCqrCCpaCpr and CCCCprqCprlpr and rule

detachment. Its theorems (cf. the author's Strici implication in a sequence of

extensions of Sk, Zeltschrift fiir mathematische Loglk und Grundlagen der Mathematlk,
vol. 27 (1981), pp. 201-212, from which comes also terminology unexplained below) are
the wffs valid in each frame <W,R> in which R is an equlvalence relation, 80 C5
axiomatizes the strict-implicational fragment of S55. Where _A_O!B abbreviates CCaoBB,
let C5.0 come by adding Ty = XCngE to C5's axiom set and C5.n by adding T, =
_x_-..ﬁﬁplﬂz.. .gglpp_ +1g2233;o ._C_i_pﬂ_gﬂ‘_ j @8 well, )

For n in {2, 3,..., @}, let S be the matrix with values @ and the integers less
than n, 1 designated, and the ope;auon ¢ defined so that c(a 1) =14f 1> ] and

?_(3\,:_.1) = ® otherwise. Then }-—C o Aff [=s o and *_CS L 1£f FS a.
, . S

5.0
-m —
C5.0 properly extends C5. Contrary to the well-kmown result that all proper

extensions of full S5 have finite characteristic matrices, however, C5.0 has nons,

T n falling in §_n +1 when leiters are valued by their subscripts but valld in any

matrix with n or fewer elements whose tautologlies include those of §m 0f course
the proper extensions of C5.p do all have finite characteristic matrices: the S 's.

Finally, C5.0 through C5.3 forn an ascending chain of proper extensions of C5
nbne of which is complete with respect to any class of frames: if <W,R>1s a frame
for which there exist x and y in ¥ with xRy and x # y, then To falls in any
implicational hodel <W,R,v>tbased on that frame wherein y(pix) = v(g.y) =T but
Y(Q.-i) = _‘((.Eol) = F; thus any frame for G5.0 must satisfy tHe condition

VX:Ys XRY gnly if X = y and so validate the honthesis OpCap.

[Primary classifioationt 02010 Modal logls, etc.

Secondary classification: 02005 Many-valued
logic.
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A sequent calculus for

the modal logic of provability

Silvic Valentini

During the last years, some researcher studied the modal logic
of provability GL (see /B/) by proof-theory means-

Most of the interest in GL is due to the wellknown Solovay's
theorem that estabilishes its completeness with Peano Arithmetic
/S/. |

A sequent calculus for GL can be obtained adding the following
rule

X

i

GLR:

X, 0X, oA FA nX=EﬁB= B
oX + 0A

1
J
to the usual Gentzen-like propositional rules.

The first proof of cut-elimination for this calculus was obtained,
using Xripke models, by G.Sambin and me /S-V 1/.

Ve thén succeeded in deriving from it most of the wellknown results
on GL: completeness with transitive terminal Kripke frames, finite
model property, effective decidability, interpolation theorem and
the fixed point theorem. '

The problem to give a ﬁurely syntactic proof of cut-elimination
revealed itself harder. At the matter of fact it was hard enough
that the first attempt by D.Leivant /L/ to solve it came out with
& wrong proof /s-v 2/.

Only few months ago G‘Bellin /Bel/ gave a‘very complicated proof
of normalization for the natural deduction version of GL.

Now, it is possible to obtain & simpler proof of cut-elimination for
the seaquent calculus using induction up to g03 and then to have a
syntactic proof of consistenty for GL.

The probf foes like an usual Gehtzen-style proof of cut-elimination
but the reduction proposed to solve the problem différs a lot

From the usual ones and the structure of the cut-Pree proof obtained

at the end of the process of reduction is usually very different



White and Black -~ a Boolean game

Peter Vojtés

We examine the following transfinite game on Boolean algebras
introduced by T.Jech in {J]., Given two players White and Black
and given a Boolean algebra B , let White and Black define a
- deoreasing sequence

wo?.bo?-wii-’ see ZTwW Zb 2 .., | (1)
of nonzero elements of B of length & by taking turns defining
its entries: that is, White ohooses W, then Blaock chooses
bo = LA then White ochooses w‘=£b° , and so forth, The play is
won by Blaock 1f the sequence (1) has a nonzero lower bound, and
by White if the intersection of (1) is zero,

The main problem oconcerned is the oreof [J] : "Whether the
existence of the winning strategy for Black implies that B has
a GC~closed dense subset", Our goal is to build up & oombinatorial
structure on the set of all strategles and study its relationship
to oardinal characoteristios of Boolean algebras. Besides, impro-
vements of some results from [F], [G],[J] and (V] are obtained.

AMS(MOS) subject classification (1980): Primary O4A20, Secondary
O6E99

References:

LF] M. Foreman: Games played on boolean algebras. Preprint,

(G] C. Gray: Iterated forcing from the Strateégio Point of View.
PH.,D.Thesis, Betkeley 1980,

[(J] T, Jech: A game theoretic property of Boolean algebras.in
Logic Colloquium 77 (A.MacIntyre et al, eds.,) P.135-1h4k,
North Holland Publ, Co., Amsterdanm, 1978,

(V] P, Vojth5: A bransfinite Boolean game and & generalization
of Kripke’s embedding theorem. (To appear)
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Quantifier Flimination for Distributive Lattices.

Volker Weispfenning, Univ, of Heidelberg, W. Germany.

Let L ={n,u} be the languége of lattices and let L, be L
together with an arbitrary set C of constant-symbols. We charac-
terize all classes K of distributive lattices in LC that allow
quantifier elimination ( q.e. ) in Ls. Any such K allows primitive
recursive q.e. in LC ; moreover for finite C, K is primitive
recursively decidable. The number of different complete, elemen-
tary classes K allowing q.e. in Lo is finite for finite C, but
rapidly growing with card C. Let q(n) ( q'(n) ) be the number of
complete, elementary classes K of ( relatively complemented )
distributive lattices in LC allowing g.e. in LC , where C is fixed
as a chain of length n. Then q'(0)= 2, q'(n)= 30+7 fon n A1
q(0)= 3 , q(1)= 81 , q(n) > 24n—5.54 for n 2 2. As a corollary,
we have a complete list of all classes of boolean algebras and
relatively complemented, distributive lattices that allow q.e.

in their respective languages with an arbitrary set of additional

constants.



EDUARD W. WETTE, 1977 Wrociaw abstract renewed: Computaticn of the anisotropic

e e R et - e (e e e - - - —— -

(£8)

P.rOEOI‘tions in an anti-finsteinian representation of all moiions

| B
LR

e Gy B A e M e ow A 8 e T e S g e e e ai

For the complete title c¢f. XLIV, p. 476, [12]; pp. 441 —468 contained 64 =

274+ 8--1—24+22 abstracts. (ii), (iii), {(vi) refer to §2; see Part I lat- r

§2” . Hypertorus recursion. ~ indicates that, as concerns numerical determi-

——— - G —

nation {and the direction of geodesics® projection), ¥ will precede » -1}

o, (and /3),), vs. hypertorus-generation.

{ii) ry: .. :7, determines S (=mn+1-torus). “oo" < self-intersection; — "uo
solves eyz(ro +otn,)ilr - - - ae,=(1+e, )/ 2A .,=0, n>v30. T enbedded
quy _ v+‘xv =F, sinfl, {vgn), "%, =P cos P“; F=X it Lot Iﬂgp !cosﬁrf .
R‘/r"' , cosmic ‘time' f =rf ; n=3= 0 results from §2 (v). stk-n (d(hjxj W
%, 7Map) = (450", (111) Components +0: g, =R?(0sk<n); fu=RR sinfy Ty,
=-lijn =Ty Riu=RR M Ty = =R = Rijij = —Ryjjp (0<j<ksn); Ry =

winfi Tl H:(PI(PJ Mo +U~07D R T )~ (2- O"“_)F;F}__/cosﬁt) == Ristj;e = Rujuj;u = = Rujjug

(l<k/\j<k, O<k<n); ‘I'?ﬂ:j!:i-.! = ;:‘; n’ci ’To& n—: (F;: H: -P Tf:) _ ’Rjkﬂ;u R s ij:ik *

=— = - = B = e 4 : il Akl
R‘i‘i*‘" R“-;J-_.gk Rujjt:ur = 1'»78.1}-';..11E [=- itjkak = skew-symmetric in k,t] (J#ka:va. k!,

i : j - P pi v o _pi v | _pi p¥
9"=6./9..), curvature's curvature Rt gy = atse Ripg R",,MRkH Rievm Ring Rty R

e & i v . g 6 _ _pi X, 2 5 A i_ i ogx X
QEE R 47 gut qu” = ~Rly (o 8 Qi qurgut g (d=ga-gq, b=t auh).
(i) X-geodesics H—sz{};jdsj:;C,',-,zconat. AB; =0+ j&j, <~ 0gj<..<j €m, m'+ +1

*
-

5
P T . =il d ez & /1 ® =3 b o b 4
velopes only; a=jab=j,,, (I>A>00F 2 =R anl, —g.mr. TM.. Integration.

Py = Glrgpo: Gy Tyt 3 Bal: B:./(Cfn) ”:n) “h* H::. +=0; ¥, = N +PA'<"“ (C(b)/'i;)sz)o‘f"

(F /&) Cop/Cy ~ T, = 0. Finiteness = closed T-geodesics: Q(g,C)=wi . I

= (P:, m./lmyl) - —(1-¢,00<C <{i+q, 1~@) A my(=,#30, C,=(1+g)sina,,; p; fract:

(not semi~irrational), m} fBi-turns on X*(g,1), C, Clairaut constant of a T*-ge-~
odesic, « geodesic’s azimuth. —"oo"— (p, Egyptian, m;=1vm;=1), if no * -pro-
jection; no constriction —»p =0; no "Hohlkosmos-Seitenwechsel —m,=Tvm,>2.
Computation. t,(,Cf) =7 " ¢, (0, C) =757 w075 to(g)=2e/(1-@))".

T = %1-71‘/1‘5, 71_'=1*QC1~/(T?73)* ‘r;'é:%(‘lWi‘;'), 't';'c C/(1-@)=sine« . , 7, “29/("71’8)"2‘
T,,+=(QC,)1/2/(1-‘Q); T, =1+¢cosf,~-C,, t,=1+cosfy, T,=1+¢-C; 1,=1-¢+C(,. Practicable
result: Qg,C,) =4t Kik)~t, (KWE(k,B)~EWRF(k, &) ki=t, a sin?@=t;; Glg:L,:1; ;)
=t, (Flk, @)= (1=t ) IT(N, k, 9)) « sin®@=t, A -N=t,t, = (ksin$)?, t,(1-t;) TN, k, p) =

t(u \9‘1'(U)/»9‘1(U)-“:;_— In (P U+ul/FU-w)) = wil: /2 = F(Jc,lp):FUc.é): K{k) A g = exP("”K\/K)‘
ADDENDA. (1i)(4ii) RBy=r, P, =1, + P cosf,; see l.c. [5,3.], XLII p. 478. (vi)
Gomputation. As to 2nd { )-case (with "' 7)) see l.c. [8, 4.1.1], XLVI p. kl4/5.
u=liny, : ¢o=(P’ k,=k, ko, =(1=k})/(14k}), sing,, =1 -—A,)/((i*l&},jsinq?,) or tan’e,, =
tante, -7 (k;, 4,)/7,(1,4,), where kjfk‘,zf:z*l, 4 =1~k} sin*:p,, and t,(k,c)e=(k+c)/(1+c).
3= 3, Tviz.q), T)=(-1"g" explevia), it=-15 £, Tlrr352,9) = ig" oxpliz) $(x+ §ilag™)
== 8(2), ¥l =afaz. K= K(K), K=Kk =F(k, x/2); (F,ENk, @) =] AUk, )" Vay, Elk)=

Elk,x/2). K':K:x/2=1/M(1,k):1Y/M(1,k):1, where M arithmetico-geometric mean.
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