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Foreword.

When I was invited by Professor Sobrero to
glive some lectures at the International Centre for
Mechanical Sciences, I found it a great temptation to
use the opportunity for what I had already considered
for some years to be an interesting but unrealizable
task: to colléct the results already obtained in this
branch of contemprrary mechanics and to try to inter-
pret them from a _,eneral point of view.

The number of papers on different aspects
of polar continua in mechanics increases rapidly from
year to year and it seems very difficult at present
to treat all different models and theories on the ba-
sis of one general theory. That is not my desire, but
it seems to me worth an effort to make a systematic
comparative presentation of at least some of the most
important treatments of the subject.

I believe that one dav i+* will not be dif-
ficult to make a general theory so *hat all differ-
ent theories that exist today will be only particular
cases. T shall be glad if this course of 25 lectures
on polar continua will help the future efforts in

this direction.



I wish to express my feelings of appre
ciation for the possibility given to me by the Inter-
national Centre for Mechanical Sciences to deliver
this course of lectures here, and my thanks are par-
ticularly due to Professor Luigi Sobrero, the Secre-
tary General of the Centre and the Director of the
Institute for Mechanics of the University in Trieste,
for all he did to make this Centre a reality and to

make the work in it a pleasure.



1. Introduction.

There are two main apprcaches tc the con -
cept c¢f gereralized centinua. Classical continuun me-
charics considers materiel continua as peilnt-cortinuea
withk points bhaving three degrees of freedom, and the
resporse cf & material to the displacements of its
poirnts isc characterized by a symmetric stress tensor.
Such a model ic¢ insuftficiert for the descripticn of

certein physical phenomena.

Alresady in 18423 St.Venant [?8& *remarked
that for the descripticn ¢f deformations of thin bed-
ies a proper fheory canunct he restricted to the anal
ysis of deformaticns cf o sctraightt line which can be
only lergthened and hent, but must alsc include direc

tions which can be rctated independently ¢f the dis-

piecements of the points.

A further generalizaticu ctf this idea was
tc attach to each point ~f a three-dimensicunal cenfin
vun a number of directions which can be rotated ince-
nendently of the displacenents of the points te which
thev are atteched., That physical bedies might be pre-
sented thisz way vaos ctuggestred in 1893 by Duben [ﬁb] .
Tn the study of crystal elasticity Voigt[}83,384]came

to the gcame ideas., It is the mwerit of the brothers

* The numbers in scuare brackets retere te the Tist

cf references at the end of these lecture notes.
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Eugéne and Frangois Cosserat that a theory of such
oriented continua was developed, and there are three
papers by them [50,51,52] published in 1907-1909,
which are the basis of all later work on polar con-
tinua.However, their work remained forgotten until
1935, when Sudria [359] gave a more modern interpre-
tation of their theory, applying the contemporary vec
torial notation.

One of the essential features of polar
continua is that the stress tensor is not symmetric,
and the well known second law of Cauchy is to be re-

.

placed by another one from which the Cosserat equa-

tions follow.

In oriented bodies the antisymmetric
part of the stress tensor, according to the Cosserat
equations, 1is related to the divergence of a third-

-order tensor of couple-stresses. This tensor,through
the constitutive relations, depends on the deforma-
tions of the directors, but the deformations of direc
tors are not the only deformations responsible for
the couple-stresses.

The non-symmetry of the stress tensor
appears also if the higher order deformation gradiénts
are taken into accoirnt, instead of the first-order
gradients only,as it is the case in the classical con
tinuum mechanics. According to Truesdell and Toupin
[?78], Hellinger [154] was the first in 1914,to obtain

the general constitutive relations for stress and cou



ple-stress, generalizing an analysis of E. and F.
Cosserat.

In 1953 Bodaszewski [33] developed a theory
of non-symmetric stress states, but without any refe-
rence to earlier works. He applied the theory to ela-
sticity and fluid dynamics.

Since 1958,the general interest i1n the non-
symmetric stress tensor and in the Cosserat continuum
rapidly increased. In that year Ericksen and Truesdell
published a paper on the exact theory of rods and
shells in which they considered a generalized Cosse-
rat continuum,i.e. a medium with deformable directors,
but without any constitutive assumpfions. Gﬁnther[l&ﬂ
gave a linear theory (statics and kinematics) of the
Cosserat continuum, with a very interesting applica-
tion to the continuum theory of dislocations,and Grio
11 [134] developed a theory of elasticity with the '
non-symmetric stress tensor. Ericksen's theory of liquid
crystals and anisotropic fluids is also an applica-
tion of the theory of oriented bodies [74] .

There are different physical and mathematic
al models of continua which serve as generalizations
of the classical concept of a point continuum.All such
models in which the stress tensor 15 not symmetric

are regarded here as POLAR CONTINUA.
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2. Physical Background.

It was already mentioned that the clas-
sical model of a material continuum is unsufficient for
the description of a number of phenomena. In the case
of thin bodies this can already be seen.

If we regard a very thin circular cylin
der, a one-dimensional representation is the suffi-
cient approximation for the study of its elongation,
but twists are excluded from such considerations.In
order to include the twist we may assoclate a unit
vector with each point of the line,and rotations of
this vector give us the needed i1nformation on the
twist. Obviously, this rotation is independent of the
displacements of points of the line.

For the study of a flexible string a ri
gid triad of unit vectors may be attached to each
point of the string.

In the theory of rods, plates and shells
the situation is similar. In the direct approach to
the theory of rods, Green and Laws [113,115] define a
rod as a curve at each point of which there are two
assigned directors. The theory of plates and shells
may be based on the model, consisting of a deformable
surface with a single director attached to each of its
points. Such a surface is called by Green and Naghdil
[123] a Cosserat surface.

A crystal lattice.in the continuum appro



ximation is a point continuum, but the rotations of
particles cannot be represented in such an approxima-
tion. In order to include the interactions of rotat-
ing particles in crystal elasticity, Voigt [?83;384]
was the first to generalize the classical concepts of
continuum mechanics.

Ericksen [77] developed the theory of lig-
uid crystal and anisotropic fluids assuming that a
fluid is an ordinary three-dimensional point continu
um with one director at each point. Particles of the
fluid are assumed to be of the dumb-bell shape.

Continuum mechanics is a method for the stu
dy of mechanical properties of bodies the dimensions
of which are very great in comparison with the inter-
atomic distances. The discrete structure of matter, 1in
fact, is to be studied if we wish to make an exact the
ory of the behaviour of matter. For bodies containing
a large number of particles it 1s practically imposs-—
ible. The classical point continuum is justan approxi
mation, and some models of continua are constructed
in such a way to represent a better approximation and
to include some effects which cannot be interpreted
from the point of view of a point continuum.

In a series of papers Stojanovié, Djurid
and Vujosevid [343]in 1964, Green and Rivlin (for re-
ferences see Rivlin [29ﬂ)hayetaken as the starting
point the discrete structure of particles which con-

stitute the medium. Each particle consists of a num-
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ber of mass-points. The continuum representation con-
sists of a point-continuum, the points correspond to
the centres of gravity of particles and in a number
of deformable vectors, the directors. The distribu-
tion of masses in such a representation is speci-
fied through some inertia coefficients. The forces
acting on mass-points in the continuum representation
reduce to the simple forces acting on the points of
the continuum and on the director forces acting on
the directops,as well as to the simple and director sur
face forces.(stresses) and cquples, measured per unit
area of the deformed surface.

Kroener, Krumhansl, Kunin and other au-
thors approach this problem of approximation from the
point of view of solid state physics[186] . We shall
mention here only the very impressive picture of the
couple-stress given by Kroener in a dislocated crystal
[186]. From the distribution of microscopical stresses,
applying an averaging process sKroener computed the
macroscopic moments. The obtained couple-stress hn at-
tributed to the non-local forces, i.e. to the long-
range cohesive forces.

Mindlin [219]and Eringen and Suhubi[99]
introduced microstructure into the theory of elastic-
ity and into continuum mechanics, in general. The unit
cell of material with microstructure might be inter-
preted as a molecule of a polymer, as a crystalite

of a polycrystal, or as a grain 'of an incoherent mate-
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rial. The concept of microstructure Eringen introduc-
ed also into the fluid mechanics [91].

Eringen generalized further the model and
defined micromorphic materials[9ﬂ . A volume element
of such a material consists of microelements which
suffer micromotions and microdeformations. Micropolar
materials are a subclass, in which the microelements
behave as rigid bodies.

The theory of multipolar media by Green
and Rivlin’}28,129] represents a very fine abstract
and general mathematical treatment of generalized
continua, from which many theories follow as special
cases.

Besides the physical models mentioned which
served as a basis for different continuum-mechanical
representations, there 1s a number of other theories
and treatments inspired by the problems of solid-
-state physics (Teodosiu [36{]), or by the structure of
technical materials (Misicu [24@) or by the mathemat-
ical possibilities for generalizations of classical
concepts (Grioli[l3{], Aero and Kuvshinskii[4] ).

Granular media represent also the field in
which the methods of generalized continuum mechanics
are applied (Oshima [270]).

It is impossible to mention all contribu-
tors to the contemporary development of continuum
mechanics and we restricted this list only to some

of them whose work most inspired further research.
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3. Motion and Deformation.

We shall regard material points as the

fundamental entities of material bodies.

A body 03 is a three-dimensional diffe
rentiable manifoid, the elements of which are called

. . *
material polnts.

The material points M, M, .may be regard-
ed as a set of abstract objects M mentioned in the
Appendix, section A1 , so that the 1:1 corresbondence
of the points Mkaﬁd of the points of a three-dimen
sional arithmetic space establishes a general material
three-dimensional space. Since bodies are available to

us in Euclidean space, we shall relate the points MK

* This definition of a body corresponds to the defini
tion given by Truesdell and Noll [379] . Nol1l [261]

developed a very general approach to continuum mecha-
nics, but we are not going to follow it since it does
not include plasticity and mostly 1s concerned with

the non-polar materials, regerrding elasticity, visco-
elasticity and viscosity from a nnique point of view.
For the general approac® to this theory, because ol

its highest mathematical rigour and for a very comple-
te bibliography we refere (Lhe r?aders to the book by

Truesdell and Noll [379] .
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to the points of Euclidean space,establishing a 1:1
correspondence between the points Myof a body (> and
points x of a region (R of this space. The numbers
x‘, i=1,2.,3 represent coordinates of the ma-
terial point M , and the points X are places in the

space occupied by the points M.

Any triple of real numbers x',i=123may be
regarded as an arithmetic point, which belongs to the
arithmetic space Ay . A 1:1 smooth correspondence
between the material points M of a body (3 and arith
metic points X , such that X = xF(M), K=1,2,3
represents a system of coordinates in which individual
material points are characterized by their material

coordinates X%, K= 1.,2.,3. .

A 1:1 correspondence between points X of a
region (R of Euclidean space, and points M of a body

® is the configuration of the body.

xb= xt (M) = xt (X' %%, X?) (3.1)
The points X! represent places in the space occupied

by the material points M and we shall refere to the

coordinates x! as to the spatial coordinates. The

functions Xx'=x‘(X)are assumed to be continuously

differentiable.

In general no assumptions are made on the
geometric structure of the material manifold and it

is not to be confused with one of its configurations.
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It is advantageous to choose one configuration as the

reference configuration and to identify material coor

dinates with the spatial coordinates in the reference

configuration.

Thus, the material points of a body ®
in the reference configuration are referred to a sys-
tem of coordinates XN, which is an admissible sys-
tem of coordinates in Euclidean space, and in the fol-
lowing we shall refer to X" as to the material coor-

dinates.

Motion of a body is a one-parameter 1l:1

mapping

x®o= (XX X3 )= xH (K L), (3.2)

or shortly:

of the points M in the reference configuration Ko on
the points X occupied by the material points at a mo
ment of time t , which determines a configuration
Ky = K(t) . The parameter t is a real parameter and
it represents time. We assume that the functions%=§@)

are continuously differentiable.

We assume that

= det x*; .+0 , (3.3)
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so that there exists the inverse mapping

X X5 (xf, x% x¥ b))

short : (3.4)

X = X(%.t)

~

The partial derivatives

Fr = oxR/ X" = x%;

(3.5)

F = 0Xx"/ ox*

K .
X )R

Il
i

are called deformation gradients, and the total co-

variant derivatives (see Appendix, section A3)

represent deformation gradients of order 2,3

) )"'N

Let Ko and K be two confirnrations of a
. . K
body ® , Kyrefcrred to material coordinates X' , and
K referred to spatial coordinates x®. The systems
of reference X"and x®are chosen independcntly of one

another. The deformation is a mapping of one configu

ration on the other,

xl - xz (X') )

XL XL<;§‘) . (3.6)
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If 5% and ds®are squares of the line elements in

the configurations Kgand K respectively,

452 = 6y aXbax™,

ds? = gz, dxtdxm,

(3.7)

using the mappings (3.6) we may represent the line

element of the reference ~onfiguration in terms of the

coordinates of the deformed configuration and conver-

sely. From (3.6) we have

d Xt :X',-‘;V odx? oLxR:xf?LoLXL (3.8)

and
d52 = Cem OLDCe d:.‘{,m)
ds? = CpdX® dXx™,
Here
L M

is the spatial deformation tcnsor,

— £ m
Cin = Qpm i Xim

1s the material deformafion tensor.

and

It 1s alwavs possible to

(3.9)
(3.10)
(3.11)

decompose a
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non~singular matrix M into one symmetric and one po

sitive definit matrix,

ME, = RY 8F, = stE RE (3.12)

where R ,§ and é* are uniquely determined (cf. Erick-
sen [73] » & 43). Applying this polar decomposition
theorem to the matrix F (cf. [379] ) of deformation

gradients, we obtain

PF=R-U=V-R (3.13)

where R is orthogonal, and U andV, determined by

U2=FT'F sz FFT (3.14)

~ ~ o~ ~ ~s ~

are the right and the left stretch tensors, respecti-

vely. The deformation tensor G and B

~s

C=U*=FTF
B-v?:-Ff fT )

are accordingly called the right and the left Caushy-

~Green tensors.

Since F =-{x@ K} , the transposed matrix

F'is determined by

~

’\FJT= {9){8 ng GLM

and for the components of the tensors ( and % we have
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K KM KM
R _ ~KL K m R -4 ®m
By =0 xiy xT 9., Cy=9,C - (3.17)
-4 .
The tensor ¢ , with the components
-4 kM K
cfm = 67 iy Xy | (3.18)

i1s the reciprocal of the spatial deformation tensor C ,
“Tem m
Cig € = §;

If a body suffers only a rigid motion, the distances
between its points are preserved, there are no defor-

mations and

CKL = GKL CK2,=9|(2, . (3.19)

The material and the spatial strailn ten-

sors are defined by the following formulae

EKL 3—3— (CKL’ GKL)) eKzz—‘l__(gKﬂ_CKP,))(B‘ZO)

where we denote, as usualy, material tensors and ma-
terial components by capital letters and capital in-

dices, and spatial tensors and spatial components by
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small letters and small indices.
Velocity of a material point X 1is the vector
v+ with the components

. Dxt(X,t) /
X' = ———
X

b=
ot X = const.

(3.21)

In general, if 'T='r(§,5,t§ is a time de-
pendent double tensor field (See Appendix, section Al
and A3), the time derivatives with the material co-

ordinates XKkept fixed are called material derivatives

and are denoted by a superposed dot. Sometimes it is
useful to place the dot above a superposed bar, which
denotes upon which quantity the operation of the ma-
terial derivation 1is to be performed. For the tensor

field I we have

K.
o o 2 (BT (e - et

ot 9 xt ml
~ aTKK + T-K-”‘R, ) :i_ll
ot R

Accelaration 8 1s a vector with the compo-

nents defined by
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}ka aa” srh %8 (3.23)

.L:

d i {
—_—
The rate of change of the arc element

may be calculated directly from (3.7)

j (3.24)

ds? = g} (d,xi dxt+dxt dxt)

.

Since .
{ L L
dx® = xj dX,
and the material coordinates are kept fixed, we have
dx'=xf dX'= xf dxt= P dXt = vl dx® (3.25)
and
ds? = 2, g dxi dax® <2 dj,dxt dx® (3.26)
where
1
din = 5 (vt ;) = V) (3.27)
is the rate of strain tensor.
The gradients of velocity vb}may be de
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composed irto the symmetric and the antisymmetric

part. The antisymmetric part

1
WLJ; = V[LJ'] = T (VL,} —U&,Lj (3.28)

represents the vorticity tensor.

The tensors of the rate of strain and of
the vorticity are mutually independent, but the gra-
dients of these two tensors are related by a simple

relation:

1 y
Wiiik 5 (vi.}K ’Vg,tk) =75 (VK,L}’“VL,K}‘Vg,m"vn_'kt)(3-29)
= d’KL,}" dig,i =2 d’K[L,H .

A motion is a rigid body motion if ds =dS |
and the conditions for a motion to be a rigid body mo
tion are given by (3.19). In terms of the strain ten-
sors these conditions reduce to E =0 andlg=0. For a

rigid body motion the rate of strain vanishes and the

velocity field has to satisfy the obvious equations

The conditions (3.30) are necessary and sufficient for
a motion to be a rigid motion. If dxt=u' is an ele-
mentary displacement of a body, from (3.30) it follows

that the necessary and sufficient conditions for dis-
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placements to determine a rigid motion are

u(L})= 0 (3.31)
These equations are called Killing equations. In Eu-
clidean space the equations (3.30) and (3.31) are
integrable and the integrals represent components of
the velocity field and of the displacement field for

rigid motions.



4, Compatibility Conditions.

For a given tensor field c(%\ , or C (5\,

the deformations

x= 3 (X} or X=X(x) (4. 1)

20 not necessarily exist. The existence of the defor-
mations depends on the integrability conditions of
the equaticns (3.10) or (3.11), and these conditions
are usually called in continuum mechanics the compat-

ibility conditions.

There are six independent equations (3.19),
. . . L . . K
with nine indepondent doelormation vradlients XJK

order to {ind the delormations wae have first to [lnd
the deformation szradients,but since the number «f the
nnknowns,regarding the equations (3.10) as a svstem of
alwebhraic cquations, c¢xceeds the number of cquations,
we shall fivst differentiate partially the equations
(3.10) with respect to the spatial coordinates xi’
assuming that the deformations (4.1) exist. Thus we

ahtain a system of 18 cquations with 18 unknowns

2n 0, X5,

L M N ! Moy M N
aP,Cmn= DL Gy Xip Xy X5 '*GMM@% I K7 XS + X5 @y 0, X )

'n
(4.2)

Permutating the indices {,m,n we may cons ruct the
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Christoffel symbols of the first kind for the tensor ¢

[%m,n]g %(alcmn*'amcn%—an Clm)

= [LMN], Xbp XS X5, + Gy X5 a9y 0, X™,
(4.3)

where [LM,N]G are the Christoffel symbols for the fun
damental tensor 9 . Since there are 18 equations

(4.3); we easily find the derivatives OLOmXM

ai amXN= GNK x?K I:?’m'n:lg _{LNM}G Xli-l XTm

~

(4.4)
-
According to (3.18) we have GV X", = cn® X?K )

and since

cn® [amn], :{fm}c (4.5)

}

~

(4.4) reduces to

N n N N L ™M N
al amx ={£m}cx;n —{LM}G X5 Xim EFQm

(4.6)
The 1i1ntegrability -~onditions of (4.6) are aB_Fﬂmro.

Differentiation of (4.6) with respect

R

to X and the elimination of the second-order deriv-

atives of X's by the aid of (4.6) gives for the in-
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tegrability conditions the relations

N Y K L M
Rain™ () X5n - Riik (Q)XM%XBZ Xim =0,
where R.(g\and R(%\are the Riemann-Christoffel ten-
sors (see Appendix, (A4.10)) for the Riemannian con-
. R, K . —
nections {lm}g and {LM}Q . However 9 is the met
ric tensor of Euclidean space and R(G) vanishes iden-

tically. Therefore the integrability conditions reduce

to

n

Ritm ()

2<8K{;’“}g+ut}g {itm}J[m]: ° (4.7)

Transvecting Rk&&fwith Cnht we obtain the co-

variant Riemann—-Christoffel tensor

Rggma= 2 (an [tmon], - Cst Dm'{\s [K”'t]£>[m]
$ (4.8)

which satisfies the following three identities (cf.

Schouten [}225] Y

Rlen = —REK.mn )
Riktmn = -R Kinm (4.9)
RR?,mn = RmnKl 3

and this reduces the number of independent components

of the tensorRngo six.

The Einstein curvature tensor ﬁ with the
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components
o . 1 =
Yy = e - — Rqg's
A R > Rg

where

R' = g™ g™ Rygn' R = qi R

)

in three—-dimensional spaces may be obtained from (4.8)
by

L 4 LK ymn

re et ¥ .
A A € € RKLmn) (4.10)
and the compatibility conditions may be expressed in

terms of the Einstein tensor, which is symmetric.

The compatibility conditions are usual-
ly written in terms of the strain tensor € , and may
be derived from (4.8) and (4.10), substituting ¢ from
(3.20)2,

Q:S—Ze

and neglecting the products of the Christoffel sym-
bols in (4.8), as small quantities of the second or-

der. Thus,

gtRt gimn € min= 0 (4.10)

where "," denotes covariant differentiation with rvrc-

spect to the fundamental tensor 9

It the compatibility conditions (4.%)

for a given strain are not satisficd, we may writce

AE = mt(e) (4.12)

and m 1s the incompatibility tehsor. Tn the lincar-
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ized case we have

nLX: ELKQ 6J'fmnekm - (4.13)

When m#0, a deformation of the form (4.1)
does not exist and the strain tensor may be interpret
ed as a tensor ﬁhich represents a deformation from a
non- Euclidean configuration N of the body consider-
ed inte one of 'its Euclidean configu}ations. This in-
terpretation bf'indompatible strains 1s applied in

the theory of dislocatiens and in thermoelasticity.
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5. Oriented Bodies.

A body to each point of which is assign
ed a set of vectors g{a), a=1,2,...,n, represents an

oriented body. The vectors d(a)are directors of the

body. In general, deformations of the directors are

independent of the deformations of position.

Let the directors in an undeformed re-

ference configuration Kg be the vectors

Dy = Doy (X) , - (5.1),

with the components D&oreferred to a material system
of reference X' . A deformation of an oriented body

is determined by the equations

- (X)

~

3

d (e = de)( D) = di@(X) (5.2)

Directors are not material vectors. For
material vectors D(a) the deformation is determined

by the deformation of position,

Da) = x5y Diay. (5.3)

In an oriented body the vectors

K
A(lfx) = OL(Z) - x'fK D(a_) . (5.4)
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represent the differences between the deformed direc-
tors and the vectors obtained from the directors 1in
the reference configuration by the deformation of

position.

The Cosserat continuum in the strict sense
is a material medium to each point of which there are
assigned three directors, which represent rigid triads
of unit vectors. The directors in this continuum suf-
fer only rigid rotations, and length and angles be-
tween the directors are preserved throughout the mo-

tion, so that

9ey dif d(f) = G Deay Dy = Dap = const. (5.5)

A medium with deformable directors repre-

sents a generalized Cosserat continuum.

5. 1. Discrete Systems and Continuum Models.

The basic notion in the solid state physics
is crystal lattice. A unit cell of a crystal is compos
ed of four lattice points Mg,My, M, My . Let My be

3 ,d3 are

~

a lattice point. Any three vectors a4,
lattice vectors if they are position vectors of the
lattice points M; , M, ' My with respect to Mg of the
unit cell. The vectors

r=1a; +ma,+na
~ =1 =T RS (1,m,n - integral numbers ) (5.1.1)
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determine the lattice points of a perfect crystal.

Motions of a crystal are determined if
determined are the motions of its lattice points. How
ever, instead of the motions of the lattice points it
is possible to regard the motions of one lattice point
for each cell, and the motions of the lattice vectors

Q5 for each individual :ell. This may be consider-
ed as a four-point model which under suitable assump-
tions may be used for a continuum approximation of an
oriented body, as was done by Stojanovicé, Djurid and
Vujogevié [343] . A more general approach to general-
ized Cosserat continua with an arbitrary number of
directors is proposed by Rivlin [298,299] and in the

following we shall consider Rivlin's n-point model.

We assume that a™ody consists of par-

ticles Py,...,Py and that each particle consists
of N material points M1,...,Mn with masses my,...Mmpy ,
and with position vectors r,, ..., rpwith respect to a

fixed origin 0 in the space.

If CP is the centre of masses of the
particle P , and 2y v=1,...,n position vectors of
the points My , from particle dynamics we obtain for
the momentum, moment of momentum and kinetic energy

of a particle P the following expressions:*

* Rivlin [298,299] investigated the transition from
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n . n
K=Z myry= 2L m, Uy, (5.1.2)
~ v=1 ~ wv:=1 ~
4] o .
,:’,' =X m, PyXxVy=mEXy. + L My Qyx Oy (5.1.3)
V=1 v=4 ~ ~
1 - .
T=_5_<mvcz+§=1mvg\, gv> (5.1.4)
Here we have
dry
Vy = ry = — ) (5.1.5)
dt
8v =Iv = rc ) (5.1.6)
n
¥ m, @y =0 ) (5.1.7)
v:9 ~
n
m= X my ) (5.1.8)
V=1
mr. = 5 myry (5.1.9)
~ ol ~

Introducing the coefficients

R

4
m

n
X
é‘:mv&, 64

a discrete system to continuum,

cations of the first and

ics,

(which are

including some

not tensors)

(5.1.10)

impli

second laws of thermodynam-

without writing the expressions for momentum and

moment of momentum.
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the relations (5.1.3,4) may be rewritten in the form
0= m(rex Ve LM gnx Q) (5.1.11)

T:%‘_(vguxugx.éﬂj, (5.1.12)
From the last two expressions we see that for the dy-
namical specification of the particle P we need to
know the quantities: m - the mass of the particle,

LA - the dimensionless coefficients which charac-
terize the distribution of masses inside the particle,
and the vectors Q, which determine the configuration

of the particle.

To denote that all quantities which ap-
pear in (5.1.2 - 12) correspond to the particle P we

shall label them with the index P so that we write

o P p 3 PP
bP:gPJmP y My ):‘V)EC ;gv;gv )TP)
and

n n
P PP

m X m Mp e = X m_r

Py P ~c v v

n . p ° [ - p X/U- P - P

5P=VZ_:1mV Py EszP(fcxfc““'P gmeﬁw

“(5.1.13)

For a body consisting of N particles we

have now for the momentum

N
k=2 mp £, ‘ (5.1.14)
p-- ~
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for the moment of momentum
o ¢ o PP ¢ A4 P . p
’g:: Z &P = Z mP/EC.AY:C +z mP LE QA‘XQ/.L ,(5.1.15)
P+ P: 1 p=1 N
and for the kinetic energy
% T Y. ep 4P Ap P ep
T- = — X m <r “re + i 0, - ) .
Pt P 2 ot Pi~AcC ~C P gx glu (5.1.16)
To pass from this disrete system of parti-
cles to a continuum we have to replace the sums by

integrals. In order to do so we assume that our sys-—
tem of particles occupies a domain @>+a(ﬁ,

where 0O @ is the boundary of the body (3 . We assume
further that the discrete vectors x? , ﬁg , 95 andév
may be replaced by continuous vector fields ¢ ,ﬁ and
d vy and é(@ , and the discrete scalars m, and
L?“ by continuous scalar fields @ and LM . Tt must
be noted that the passage from a system of particles
to a continuous model can be effected only if all the
quantities involved, which are connected with the
particles, vary but little as we pass from one par-

ticle to its neighbours.

We assume that a region V of (3, with a bound
ary S 1is sufficiently large to contain many particles.

Hence we may write
Y omp - [Qd.V , (5.1.17)
v v

}v:m$=[gvdV', (5.1.18)
1
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gmpgg = [gr‘ v | (5.1.19)
ngrfoCP=fgrx£ aV | (5.1.20)
%mPsf jf=[ei’-idv ) (5.1.21)
\
L me LB eix 0 [ @ MM dpyx dudV (5.1.22)
v
Z mp % 0f = [ e i dipy-dwdV, (5.1.23)

\

Thus the expressions for momentum, mo-
ment of momentum and for the kinetic energy for a

part V of the body (obtain the form

K=/ eFdV, (5.1.24)
\'
E°= [ 9(5"5 AR Q'(MXd-(,u))d.V , (5.1.25)
\'2
4 C :
='2“V9(~'"'5+LMEL(M A ) d V. (5.1.26)

The continuum representation of the orig
inally discrete system has all the properties of a
generalized Cosserat medium: to its points r attached
are the directors gm» the motions of which are inde-

pendent of the motions of the points.
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5. 2. Materials with Microstructure.

Let a body be composed of microelements AV
in which a continuous mass density P'exists, such
that the microelements AV' represent material contin-
ua. A macro-volume element dV is composed of the mi-

cro-volume elements dV',

dV = fdv' ) (5.2.1.)

a.V
and we assume that the macro-mass dM indV is the

average of all masses indV. Denoting by P'dV'= dM!
the micro-mass of the micro-volume element dV' , we

may write

[P'dv'z dM = PdV (5.2.2)

dv
With respect to a fixed Cartesian coordi-

o . . .
nate system Z letZ'®be coordinates of points Z' in
a micro-volume element dV' in a reference configura-

tion Kg . The integral over the macro-volume element

[Przredv = pzeqy (5.2.3)

av
determines the centre of mass Z of the macro-volume

element dV. Denoting by R'=Z2'%e the position vectors

. t . o
of the p01nts‘Zof micro—-elements, by B =/"€u« the
position vectors of the centres of mass of macro-vol-

ume elements dV and by P's ='%e, the position vectors
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of the points R'relative to the centre of gravity R ,

R'= R +P!

~

(5.2.4)

)

all with respect to a fixed Cartesian system of refer

ence, we have in the coordinate notation

2'%=7%+="'%, (5.2.5)

In a deformed configuration K(t)let the
positions of points B'be r' and of the points R ber.
The relative position vectors of r'with respect to
the new positions of the ccntres of mass let be g'
The equations of motion of the centres of mass of the

macro-elements dV, which become dv , and of the points

B' are
r=rx(Rt) , R=R(rt) ,

:Is 18 (th) ) B|= B(f&t).,

and we assume that in the deformed configuration the

(5.2.6)

positions of the points g'are defined by the relations
r'=r + p'

The further assumption we make 1s that the motion

(5.2.6) carries the centres of mass of dVinto the cen

tres of mass of the deformed macro-volume elements AV ,

[9'5' dv' = g r dw _ (5.2.8)
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From (5.2.6) we have

£'=E(B+§',t)=r(8,t§+e', (5.2.9)
where
e'= e (R,Z't) . (5.2.10)
Expanding (5.2.9)1, under the assumption that p' is
an analytic function of -'« , we obtain
dp
(- . = — 1
g—g(B,O,tj+ azla - o (5.2.11)
Through (5.2.9)2 we see that for E'=0
o (R,0,t) =0 (5.2.12)
and if we write
dg
at,aE?,ga(B)t)> (5.2.13)
A o g”
X_.u:‘* - H
azva

in the linear approximation we obtain the equations

of motion of poilnts B' in the form

o' =Xa='", (5.2.14)
or

el

g = xhe =" (5.2.15)

The coefficients x%reciprocal to X « are defined by

the relations
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&jf‘=azla ) , (5.2.16)
0E”
and
X% Xo'= 0K, % K’Yﬁ =6y (5.2.17)

The velocity V' of a point R'is defined by

y'=~r"=f,+é'=},f+?',(uzla (5.2.18)

or, in the componental form

2'% = 2% 2%y TA (5.2.19)
Eliminating = '"®» from (5.2.19) we obtain
. : a o« i
v =rty xT x PEY =Y +V-yEY; (5.2.20)

where

oo ) «
v =R, K\{ﬂ:\,?x [z (z.t),t] =~ (2.t) (5.2.21)
For a macro-volume element AV the momen

tum is given by the relation

df=[ag' = [e'y du'= [o(y-via EP) dv'= ov dv,
dv av ov
(5.2.22)

and for a portion a of a body we have

K=/ovdv ' (5.2.23)

v
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The moment of momentum d£°for the macro-vol

ume element dv will be

d£°=f9'£'xy'dv"= f@‘(5+ g'jx(g+?'(a3'°°) dv' (5.2.24)
dv dv ~
Since @' are the position vectors of the points r'rela-

tive to the centre of mass r of the macro-volume ele-

ment, we have
ferg av' =0,
d

and v

at® = Qrxv av + Ig'g'xi(’u_:.'a dv’.

~ (5.2.25)
dv

In the componental form we have
;. — A e —
[ PCIE SYTVE S G (5.2.26)

and using (5.2.14) this becomes

s — o Aot —ia —th
@ Xaez 7 EauvX pXiaz =78 (5.2.27)
— — 1 p

=Xp Xa I I

. Hence, for the moment of momentum d&owe may write

~

. L — — 3
df’ = er‘}vr dv +ZSOLX?~<',Q’ fQ ;d;ﬁdv"' (5.2.28)
dar
Using the i1nverse of (5.2.15),
— i C o VA
== x5 E , (5.2.29)

by (5.2.13) we see that
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—la —! 1A 1
fe = =Py - =X K#ﬁ[e § E}LGLUr(s 2.30)

dv
and if we introduce the "micro-inertia density" X“ by

the expression

CA - ¢ BIA ' )
o " Mdr = dfe §% 8% v, (5.2.31)
A

and the "macro-inertia density moments" Iup by

!

ap -0l P AU
%P = X X i (5.2.32)

the expression (5.2.28) for the moment of momentum

becomes

d!"o:e:xyd'v +QLL}L&¢1 X‘K}L d.‘U.. (5.2-33)

For a portion v of the body we have now

]dv fe r‘W+L“‘xkxxM)dv (5.2.34)

Analoguously, we find for the kinetic

energy the expression

=%_fg (E'-E +i,)”’UL ng gﬂ) dv . (5.2.35)
Materials with micro-structure were
first considered by Eringen and Suhubi in elasticity
[99, 352] and in the fluid mechanics [9{] . Here we
"diverged slightly from the original exposition of

Eringen and Suhubi since we wanted to write the ex-
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pressions for'y and T in a form similar to the corre
sponding formulae in the section 5.1, obtained from

the consideration of a discrete system.

In the original papers (cf. [91] ) the coef

ficients 1*?stay instead ofiaﬁ, andtuﬁ instead oflaﬁ,

and, following our notation, the coefficients

Ao '”fP' —i —ipy ! (5.2.36)
O Y S
are named '"'micro—-inertia moments'", and the coeffi-
cients
o jP'Z'“Z'ﬁ’oLV' (5.2.37)

v
are constant material coefficients. We prefere to use

here the densities defined by (5.2.31,32)

According to Eringen [90] , materials af-
fected by micro-motion and micro-deformation are mi-

cromorphic materials.

Micropolar media are a subclass of micro-

morphic materials, and they exhibit microrotational
effects, i.e. the material points in a volume element
can undergo only the rotational motions about the

centres of mass.

The materials with microstructure of

Mindlin [219,222] coincide with the model given above.

Mindlin considered the infinitesimal deformations only,

and his theory is restricted to the linear case. If



42

we assume that the deformations are infinitesimal and

if we make no distinction between the material and

spatial coordinates Z%and 2%, for the micro-deforma-

tion we may write

E¢’= —h p

+u'? (5.2.38)

where wW® are components of the micro-displacements.

From (5.2.15) it follows then

whe (xf- 85 = (xP-65) BN, (5.2.39)

where the quantities wxﬁdefined by the expression

ou'? i

Wib==Engr= Kxh' 6> (5.2.40)

are called by Mindlin the micro-deformations. Denot-

ing by u®the displacements of particles (which are

not necessarily represented by their centres of mass),

oL

W - ZOL_ZOL (5.2.41)

the macro-strain is given by

—i auﬁ au,oc)
Eup = 5 (az“ * 325 ) (5.2.42)

and the relative deformation by

_ E)u.ﬂ, 5
Yap = Z3a " Yap - (5.2.43)

In this theory the quantities Wapplay the role of
directors, and the medium with micro-structure is a

generalized Cosserat medium.



43

5. 3. Multipolar Theories.

In a series of papers Green and Rivlin[lZB,
129;13£], Green [ili] , and Green, Naghdi and Rivlin
ElZ@ developed the theory of multipolar continua,
which represents a very general, but a very formal
approach. Let Z%¥be coordinates of a particle in a re-

ference position and Z 1ts position at time T s

2%(1) =2,(2. %) , - @<T <. (5.3.1)

It is possible to consider the position of the parti-
cle Z at time T also in terms of the current posi-

tion at time !t , so that

= (v) = z"‘(z‘,zz,zf','c,t). (5.3.2)

A simple 2¥ -pole displacement field is de-

fined in two forms,

2“31.__3{(1') =zaB1...BY(Z:T); (5.3.3)

_and

= .3.4
20![51 ﬁy (‘t> = Zo"ﬁﬂfb)’(g!t)‘ty' . (5 3 )
The examples of such multipolar displace-
ment fields are the gradients
oV z%(v)

z.m,..ay(?)‘m (5.3.5)
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oY z%(1)
0zh1.. 0=zR¢

The time derivatives of the multipolar displacements

Z%ppy () = (5.3.6)

represent the multipolar (2Y -pole) velocity fields.

In multipolar theories the deformation
is described by the simple deformation field 2 (t) and
by Vv tensor fields, saylkakr.AY(T), y=142,...,v
The tensor fields “qun.Ay(73 are called multipolar
deformation fields. In 1967 Green and Rivlin [131]sh01

ed that the multipolar theory: can be considered as a
special case of the director theory, with the multi-
polar deformation fields Wqa,... Ay corresponding

to 37 directors.

The theory of multipolar media was ap-

plied by Bleustein and Green to fluids.[32] .

5. 4. Strain-Gradient Theories.

The state of strain of a body at a
point 5 depends on the relative displacements of points
in a neighbourhood N(X). 1f X +AX is a point in

N(X} , and the equations of motion are

xt = xt (X, t) (5.4.1)

the relative displacements of all pointsX+sAXfor arbi-

trar AX are determined by the deformation gradients
y 2 y g
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i L

i
Xk, XK, Koy ov o s XSy Ky (5.4.2)

Material derivatives of these deformation gradients

are the velocity gradients,

L L L '
ik ”U';K1KZ)---)V;K1,,,KN)... (5.4.3)

The theories which consider the influence of the high
er-order deformation and velocity gradients are known

as the strain-gradient theories.

According to (3.20) and (3.11),by differen

tiation we obtain

k 3
Exim = 9ne Xm0 %5 «) o (5.4.4)
and we see that the first gradient of strain involves

the second gradient of deformation.

The deformed directors at two points, say X
and X+ AX in a neighbourhood N(ﬁ\will, be according
to (5.2),

4 X
dia) = diy(X)
k % K L
d’(d)(ﬁ +AK) = d’(“)(,x,) ¥ d'(o(,);(_ AX +...
(5.4.5)

Hence, the director deformation at Z is characterized

. . K K
by the director gradients du) ;L » d@);Lyl,y -+ . From

(5.4) 1t follows then that
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K ® K K K
Aeey;l =Byt + X g Dy + Xy Dewrst - (5.4.6)

If an oriented body degenerates into an ordinary body
the directors will become material vectors and AZ&)
vanishes. In this case we may chose the directors Pum
in the reference configuration to be parallel vectors
fields so that DéH;L: 0 . Consequently, the director
gradients will be proportional to the second gradients

of deformation,

K R . K
C‘L(Ot);L = x;x Dy (5.4.7)

and the theory of an oriented body will degenerate

into a strain-gradient theory.

In Cosserat bodies the directors dform

rigid triads, such that

oy - d(p) = Diay D(py = const. (5.4.8)
In this case the rates of the directors will be

&(a) = W x %(a\ , (5.4.9)
where w is the rate of rotation of the triads of
directors. In the componental form we may write

Aoy m =€mij w " d, = Wim dk (5.4.10)

If there are only three directors, a=12,3, and in the

Cosserat continuum in the Strict sense there are only
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three directors, the reciprocal triads o (® exist,

and for the tensor W we have

wnm

= d.(g“ 'd,(a)m . (5.4.11)
From (5.4.8) 1t follows that the left—hand
side of (5.4.11) is an antisymmetric tensor. If the
rotations of the director triads are constrained to
follow the rotations of the medium determined by the
displacements of the points of the medium, which are

given by

W, .= U[n,m] , (5.4.12)

where v'sx‘is the velocity vector, for the correspond

ing medium it is said that it 1s a Cosserat continuum

with constrained rotations (Toupin [37{]).
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6. Forces, Stresses and Couples.

In mechanics of particles it is usually
proved that a system of forces, say fu),fr),...,fm
acting on a system of particles My,...,M, may be re-
duced to the resultant force

b= %ﬁm (6.1)

L=

and to the resultant couple, which is defined with
respect to a pole g by the expression

n
Mos £ orit (6.2)
where I'; are position vectors of the particles Mjwith
respect o J.In continuum mechanics an immediate gener
alization is insufficient to describe all the forces
and couples which appear, even if the suitable assump

tions are made for the transition from a discrete sys

tem to a continuum model.

In the following definition we partly follow
Truesdell and Noll [365], but we introduce some addi-
tional definitions in order to consider more general

models of continua.

LLet U be a part of a body 3 and S the
bounding surface of the v , and let the motion of

the body be given by the equations
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xL =xb<x,t), (6.3)
dia = d&m()ﬁ:t); (= 1,2,...n)

and let @=Q(x)be the density of matter.

1. At each time t there 1is a vector
field f(},t)defined per unit mass, which we call the

external body force. The vector EF(v)defined by the

volume integral

Fe(vy = [e f(x)dv (6.4)

is called the resultant external body force exerted

on the part v at time ([

2. At each time t there is an antisym
metric tensor field V*(%,t) defined per unit mass,

which we call the external body couple. The resultant

body couple is defined by the volume integral
Myt (v) = [gz'“?*f(;p, av - (6.5)
v

3. At each time t , to each part v of
the body ( corresponds a vector ficll E(Xﬂﬂ , defined
for the points X on the bounding surface s of v . It

1s called the stress (or the density of the contact

force ), acting on the part v of b . The resultant

contact force E () exerted on 2 at time [ 1s defined
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by the surface integral

Fe (v)=§6£ (x .v) ds (6.6)

s

4. At each time t , to each part Vv of the
body (3 corresponds an antisymmetric tensor field m'é
defined for the point X on the boundary s of v . It

is called the couple stress (or the density of the

contact couple), acting on the part Vv of (b. The re-

sultant contact couple Mﬁ(v)is defined by the surface

integral

MU () = @ mt(x . v) de (6.7)
5

5. The total resultant force exerted on the

part U of @ is defined as the sum of the resultant

body force and the resultant contact force,

Flv) = Eelv) + Folv) (6.8)

6. The total resultant couple exerted on

the part v of b is defined as the sum of the result-

ant body couple and the resultant contact couple,

MU () = M ()« MU (6.9)

According to the stress principle (cf. D65])
there 1s a vector field t(%’ﬂ> defined for all pnints
X in Band for all unit vectors n, such that the

stress acting on any part v of 3is given by
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t(xv) =t (x.n) (6.10)

where n 1s the exterior unit normal vector at the

points X on the boundary of S

In elementary continuum mechanics 1t 1is

proved that the stress vector t(xQL

E(%,@:tt(%.fﬂ 9 (6.11)

may be represented in the form

tixn)=t4x)n; g , (6.12)

where t%(¥jare components of the stress tensor. From

(6.6) we obtain now that the components of the result

ant stress are given by the integral

Fi(v) = 96 bH(x) g, njds (6.13)

I3 ~
In analogy to the stress vector we may

write for the couple stress

m (x,v) = mtk()é,gj : (A.14)

m4(x . n) = m(x )y (6.15)

where melz—m“Kis the couple-stress tensor (cf.[364]).

7. At each time t , at each partwrof the
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body @ there are vector fields 5@Y§,f) defined per

unit mass, which we call the external director forces.

The vectors E:(VS defined by the integral

FR () = f@ j@(“)(%,t) dv | (oo‘=4,2,...,nj (6.16)

are called the resultant director forces exerted on

the part Vv of the body at time [ .

8. At each time t , to each part Vof the bo-
dy ® correspond vector fields an%,v), defined for
the points X on the boundary § of v , which we call

the director stresses. We assume that there are vec-

tor fields hmx§,ﬁ), defined for all points of <V and
for all wunit vectors n , such that the director

stresses acting on any part Vv of @ are given by

M (x v) = W% n) , (a=12,..n) (6.17)

The resultant director stresses are given by the sur-

face integrals

Frar = @ h®(x v)ds . (@=12,..,n) (6.18)
p b

For the director stress vectors Ha%xnjwe

assume that they may be represented in the form

M) = NN (%) g0, (6.19)

and that

~

h™(x v) = B*¥(x.n) = KM(x) g¢ n| (6.20)

~
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The quantities h(®) we call the director stress

tensors.

9. The total resultant director forces
exerted on the part v of ® are defined as the sum
of the resultant director forces and the resultant

director stresses,

Fa(v) = Felv) « FR(v) . (6.21)

We assume that the number of the direc-

tor force vectors and of the director stress tensors

is equal to the number of the directors dwyof the bo-

dy 6 .

The momenta of forces and stresses are

defined by the following expressions:

a) The moment of the external body force at a point

X, with respect to the origin 0

rxof, (6.22)

and the resultant moment for the part v of (b

[Q:Xj dv (6.23)
v
b) The moment of stress at X , with respect to the

origin 0

ret(x.0), (6.24)

~

and the resultant moment of stress:
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¢£‘£(1¢.D) ds . (6.25)
(3
¢) The moment of the director forces at x

e = deayx g k™(x t) (6.26)

and the resultant of the director forces for the part

v oof (>

[e dierx R (x.t) dv . (6.27)
v

d) The moment of the director stresses at X :

d xh®(x . n) (6.28)

)

and the resultant moment of the director stresses,

95 deay x ' (x ., n) ds. (6.29)
S

The total resultant moment of forces acting
on a part v of a body ® at time bt is the sum of the
moments of body and director forces, of body and direc
tor couples, and of the moments of stress and director

stresses, and of the couple stresses,

L= f@(f"f +dpx KM+ L) dv +
v

(6.30)
+ @ (et + dmxh® +m)ds.

5

This may be written in the components for as follows:
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Laﬁ=21[e(ﬂqu+-d% K“W]+[aﬁ>dv .

v
+2 (}é (z["‘ SRELR d([% hMRly m‘xﬁ’y> nyds.
(6.31)
6. 1. A Physical Interpretation.

Physical interpretations of the director
forces depend on the model considered. For a medium
consisting of particles which are composed of mass
points, as was the medium considered 1n the sectlon
5.1, we may assume (Rivlin [?90,29{]) that the exter-
nal force nﬂ? j@‘ acts on the mass point n#g) of thé

Pth particle. The resultant external force acting on

the Pth particle is

m

o= ~

(6.1.1)
and if we assume that the discrete sets of vectors

’Hm nd Nﬁ) may be replaced by continuous vector
fields j and ja, defined throughout the body ®
for a part v of @ we may write for the resultant body
force

~ i's

Fe(v)= Tm® P [Qidv. (6.1.2)
v

(mthe position vec-

Denoting again by Y
tors of the centres of mass of the particles and by
P} e . . .
Q; the position vectors of the mass points 1inside

the particles, with respect to the corresponding
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centres of mass, the moment of the force m(a)f(m

with respect to the origin O will be
( P8 gf)) X m(i) 5(5’ . (6.1.3)

~
~

For a particle P we have for the resultant

moment of external forces the expression

() (P F(P) > m(® £
o=

r ) Q ) (6.1.4)
and for the part U of (3 under the suitable assump-

tions we may write

n
h (6.1.5)

= fgrxj:dv +[Q é(a)Xch dv ,
u o

where according to the section 5.1 the discrete vec-
tors Qﬂ? are replaced by continuous vector fields
A (a)

According to Rivlin [291] , the field f
represents the body force field, and ia are the

director force fields.

According to this model of Rivlin's, 1if s

is the bounding surface of v in (3 , under the

assumption that on the surface 5 the discrete vec-

tors}fm)and i%? may be replaced by continuous vec~-

tor fields t and (o) , we may write

~
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Z m(P)i(P);- é&d’s y (6_1'6)
)

3
where ds=nds is the directed surface element and n

the unit vector, and

? m(ofz) 9<opc)xf<oi)= 56 oy * Loy A5 (6.1.7)
~ )

t represents the simple surface force field, or the

stress, and Ll(q) are the director surface force fields,

or the director stresses according to the therminolo-

gy introduced in the previous section.
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7. Balance and Conservation Principles.

The differential equations of motion in
classical continuum mechanics are usually derived from
the law of conservation of mass (equation of continui
ty), and from the Euler's laws of balance of momentum
and moment of momentum. Since we postulate here the

validity of these laws, we regard them as principles.

Let ¥ be a part of a body ® and S the
boundary of v . Let | be the density of a quantity
in balance, 6 its influx (or efflux) per unit area
of the bounding surface and B its source per unit

volume. The equation of balance has the general form

%fldv=§5A~Q&+[de_ (7.1)

u 5 v
where d3 is the oriented surface element, d3=ﬂd5 s
and n the unit normal vector to a$ . If the source

vanishes, the equation of balance becomes the equation

of conservation.

In classical mechanics we assume that there
are neither sources nor influxes of mass. If @ is

the density of mass, so that dm |

o dv= dm | (7.2)
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is the mass contained in the volume divr , the mass
contained in the part v of the body considered will

be

m(v>=/9dv (7.3)

.
From (7.1) we may write now the law of conservation

of mass,

dm d

=27 - 2 = 7.4

m -2 [rgo\.v 0, (7.4)
which may be written in the form

Jfr(édvﬂ‘ed—v%o : (7.4)

For a body in motion the equations of

motion of 1ts points are

x e (XL XE) (i=423) (7.5

where X® are material, and x%

spatial coordinates.
If dV is the volume element of the body in an initial
configuration referred to the coordinates X’(, and
dv the corresponding volume element in a configura-
tion K(tﬁ at time ! , the volume elements dv =ad &V
are related by the formula
dv = JdV , (7.6)

where

J: —9— d,et <:)CK)K> (7.7)
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From (7.6) we have now*

dv =3 dV (7.8)

* Let d1[,dg£and d;r be three non-coplanar vectors at

a point X. The element of volume defined by these vec

tors 1is

= (dir x dor) dsr =€, dyX" d,xt dyx™.

Let this be the volume element at the configuration

K(t)of a body. Let be the corresponding volume ele-

ment at the initial configuration

AV = €,y 0 X d2 X daX
From (7.5) we have
dme=x?’K dXK

and since

V9 Cpym  @nd €= VG ey

where 8 and G are determinants of the fundamental

tensors and , respectively, we have

\f_‘é_ det (x") av.
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and since

J-73x" J div v (7.9)

’K= ~

from (7.4) we immediately have the global form of the

law of conservation of mass,

/(é+Q’U'}&K)d‘U'=O (7.10)

Y

This has to be valid for an arbitrary part 4 of the
body and therefore we finally obtain the local form

of this law, which 1s often called the equation of

continuity,

é+QU?R=0. (7.11)

In general, the density e is a func
tion of position and time,g@=0(X.t) and é:ﬂg/at+Q,RUR.

Substiﬁuting this in (7.11) we obtain the continuity

x*According to the rule for the differentiation of

. . ; v i
determinants, if 38 = del aE} , then 66; = d; AfK ,
where A%R is the cofactor in a corresponding to the
. R
element aFQ . Since X?K: (cofactor for X;K) / (det
R

X ), we have

det x¥ = i?K X?l(det xTMj 5}( =1rf‘K det x7,,

R © R

where v = X is the velocity vector.
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equation in another form,

2—9t+(9v“)m=o (7.12)

The principle of balance of momentum states

-

that the rate of the global momentum K of a part W
of a body @ is equal to the total resultant force
exerted on the part Vv of the body. According to
(6.4),(6.6),(6.8) and (6.10), for the total result-

ant force we have
f(v)=[gidv+¢£(§~c,g)ots. (7.13)
v S
We assume the momentum 5 of a part v of a

body to have the form given by(5.1.24) or (5.2.23)

£ = fey av,

and the balance of momentum equation reads

%[ng= fefdv+ bt (x.n)ds . (7.14)

v S

Using (6.12) and referring for the sake of simplicity
all quantities to a Cartesian svstem of reference ze,

the component form of (7.14) becomes

2 foidv= [ of"dv + G P np ds (7.15)
ite v S

Performing the differentiation on the left-hand side
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and applying the divergence theorem to the surface
integral on the right-hand side of (7.16), and using

the continuity equation (7.11) we obtain

/Qir“dv= f(gf“+t°‘ﬁ,ﬁ)dv, (7.17)

v

which is valid for an arbitrary part U of  and
therefore the relation (7.17) must be valid at all
points of ( , which gives the local equation for the

balance of momentum;
o _ poaf o
ev” =t a+ f™. (7.18)

This 1s a tensorial equation and for arbitrary curvi-

linear coordinates X' we have
QUL=tL&J}+Q{'L ) (7.19)

wvhere (see Appendix, (A3.10) )

o= g?Ler v (7.20)
and tiﬁ}represents the covariant derivative of E
with respect to x}, or the divergence of the tensor
t
In the local form (7.19), the equations
of balance cf momentum represent the set of three

differential equations of motion for points of a body(B.
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The principle of balance of moment of mo-

mentum states that the rate of change of the moment
of momentum of a part v of a body is equal to the

total resultant moment of forces acting on

From the discussion in the section 5 we
see that the expression (5.1.25) may be considered
as a general form of the moment of momentum, since
various physical models which lead to continuum mod-
els yield for the moment of momentum expressions
of that form . Using (6.29) @e may write directly

the principle of balance of moment of momentum,

L fo (rrw e i dpyedg) dv -

= [Q<£xi + g,(ng,(Ma-N?,) dv + Sﬁ(rx£+ @(M*D(M*'m> as .
- 5 (7.21)

For Cartesian coordinates by the application of

(6.30) in the component form, the relation (7.21)
reduces to
& oz R o ) dv =
at (M) (M)

u
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=fg (z[“ N d&\ I lo&)dv +

(7.22)
+ gﬁ(z[“ AT, ol.% h(k\fﬂr +m°°ﬁ'y)n¥ ds

S
Differentiating the integral on the left-hand side of
(7.22), applying the divergence theorem to the sur-
face integral, using the continuity equation and the
equations of motion (7.18), and since the coefficients

L * are symmetric, from (7.22) we obtain

fg g aff, dfd 4 al 48] dv -

(7.23)
[Te (ol k9B =) o 1o, (ale WORIY, bt Ty

However, from the analysis in the sec-
tions 5.1 and 5.2 it follows that the coefficients
LM may be assumed to be independent of time,
and since the relation (7.23) has to be valid for an
arbitrary part Vv of the body, we obtain from (7.23)
the local form of the principle of balance of moment

of momentum,

o il dP) - tPele gl WMBLL ) (gl WPIY s ey )
(7.24)

Let us introduce the notation



66

Aol gRrl | geh
VA dyy = ot

*
) [0 p(MpY_ pop
V524 d ) R Pl 1P

m Py, d([‘jf) RMPlY_ ek (7.25)

)

& A =
dZ hOBra HoBY

o (Wp ap
‘*m RE= R

With this notation the relation (7.24) obtains the

simple form
»*
Qo_oaﬁ = t[DuL Q?’aﬂ+;‘aﬂy)¥ . (7.26)

The principle of moment of momentum in
this form, (for elastic materials) was obtained by
Toupin [372] from Hamilton's principle. He named

o o the spin angular momentum per unit mass,

H ofy corresponds to Toupin's hyperstress, and

H["‘ﬁ]\’ he

identified with the couple-stress ten-
sor. The apparent discrepancy in the terminology and
symbols is due to the fact that Toupin considered
separately materials with directors, and materials
which are described in terms of a strain-gradient
theory. The couple stress tensor m which we introduc

ed independently of the hyperstress corresponds to
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the couple-stress tensor in Toupin's strain-gradient

theory.

From (7.24) and (7.25) it 1s evident
that it is impossible in the total effect to separaté
the influence of body moments from the director mo-
ments, and the influence of couple—stressés from thé

hyperstresses.

Assuming that there are no deformations
of the directors and that there are no director
forces and director stresses, the relation (7.26) re-

duces to

t[a/ﬁhmaﬁr)weqaﬁ , (7.27)
which substitutes Caushy's second law
peP o ppe (7.28)

valid only in the non-polar case.

In the theory of anisotropic fluids and
liquid crystals,Ericksen [74a, 74 - 89] writes a sepa
rate equation of balance for the director momentum.
Ericksen considers liquid crystals as packet of rod-
-like molecules, which corresponds to a one-director
continuum model. Generalizing this idea we may intro-

duce the principle of balance of the director moments

(Stojanovié, Djurié, Vujofevid [343], Djurid [61] ,
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Stojanovié and Djurié [341] ) in the form
d DA ) (M ap (3
ngtﬁd&)dv_?h d,sjg,+vaR gy (7.29)

where on the right-hand side we have written in the
component form the expression for the total resultant

director force (6.21).

Performing the indicated differentiation
and applying the divergence theorem in (7.29) we ob-
tain

oMM dS, = h.(")“ﬁ,ﬁ+ o kM@ (7.30)

as an independent set of the differential equations

of motion for the directors.

Using (7.30), the equations (7.24) may be
reduced to the form which does not include explicitly

the inertial terms,

t[aﬂ] = maﬁ){’y + an/b+ d,[a

MRy
()0 Y h y (7.31)

It is obvious that the antisymmetric part of the
stress tensor is affected by the director stresses

if the medium considered is an oriented medium.

Since all the equations of motion (7.18),
(7.26),(7.30) are tensorial equations, we shall write

these equations directly in the component form valid
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for an arbitrary gystem of curvilinear coordinates X'

@ X" =t wgft (7.32)

ey« RO g K .39
. .. * P

Qo‘“k = t[c\"'] + Q?.L* +m"3h,a . (7.34)

(L. r=12,3; =42, n)

Eliminating from (7.34) the spin angular momentum
o , as it was already done in (7.31),

ing in (7.32) the stress tensor

decompos-

into 1its symmetric

and antisymmetric parts and substituting the anti-
symmetric part from (7.34), we obtain the set of

3n+3 differential equations of motion,

eXx‘= t(”’) £mt )}K+<d([;\ K h(M&]K)“Q?'L?} Hgfi’ (7.35)

o LM a(LM - hik)i;}} + o M (7.36)

Obviuosly, the motion xi=xt(5,t) is affected by the

deformations of the directors and by the director
stresses, and the motion of the directors, d&A:

=d&ﬂ&ﬂis affected only by the director stresses and

director forces.
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7. 1. The Cosserat Continuum,

The Cosserat continuum is the medium 1in
which the directors represent rigid triads of unit
vectors, so .that the motion is described by the mo-
tion of points and by an independent rotation of the
director triads. According to (5.4.11) the rotation
of the directors 1s determined by the field of the

angular velocity tensor g;(x.t) ) so that we have
9 = -i n .1.1
dw) = ©n" ) (7.1.1)

from which follows
dejuy = (@4 + @y w;{“)d&)- (7.1.2)
The angular velocity tensor @ is antisymmetric and

instead ¢ nine functions dd“Cx't) we have to con-

sider onlv three independent components of (0

Trom (7.34) and (7.25) we easily obtain
three inizcendent equations for the determination of
the angul:v velocity tensor,

[Il' g d (,o'”(p'i)] = t[L}] +—I’T’\i‘-}K + *?‘,‘* (7.1.3)
Q Y 1 n I:"J’] 'R 9 ) : '

where

I' = T3 < (M g, d.(ﬁ” ) (7.1.4)
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which represent the density of inertia coefficients

per unit mass.

According to (5.1.10), for a particle
consisting of n mass points the directors d () are
position vectors of the mass points with respect to
the centres of mass of corresponding particles, and

therefore we have

ap_ 4§ X e o A _1 < @ . p
177 = - ‘%1 Myby Ovy E('n:) E(g) Yy §1mvE(‘o)é(“)'
Hence, I“ﬁ are components of the inertia tensor of

the particle considered. Also for the media with mi-
crostructure when a curvilinear system of coordinates

x' is introduced into (5.2.32) and (5.2.36) anu

when the vectors X o are identificd with the direc-
tors, a relation of the form of (7.'.4) will be ob-
tained

Taking the material derivative of ['¥
(with LX# independent of time) and using (7.1.1) we
find '
Q14 i X Rjp .. L
W+I§KU - [Mot -TTwb=0 . (7.1.9)
This relation Eringen [91]03115 the conservation of

micro-inertia.

The complete set of equations of motion

of a Cosserat continuum consists now of the following



72

equations:

()
1) a—f +(QUK>)K=O s

2)  exX' =t 4 gft (7.1.6)
i Ri i iR
3 I - 1TMw, -1 i =0
: . o . . - * .
5 o [I%(@t+wy o) oy ~t f:‘L&K'R RS

A very interesting field of application of
the theory of Cosserat media.is the dynamics of gra-
nular media. Oshima [277] considered a model of a
granular medium assuming that there are no director
forces and director stresses and disregarding the
coefficients of inertia of the granulae. Cowin [53]
assumes the same kinematical model as Oshima. A more
general approach is offered by the théory of micro-
polar media (Eringen [90 - 9{]), but this theory 1is
not yet explicitly applied to granular materials.
Satake considered first [305] a granular medium 1n
the absence of volume and director forces and moments,
but in a recent paper [30{' he included these forces
into the consideration. Satake approaches the pro-
blem from the point of view of a purely linear theo-
ry and, the same as Oshima, he assumes certain a prio
ri prescribed mechanical properties of the medium
(elasticity). Cowin admits the medium to be a composi

tion of elastic and viscous phases.



73

A much wider field of applications 1is
offered if the directors do not constitute rigid
triedra. The micropolar theory of Eringen generalizes
the idea of a Cosserat continuum admiting the direc-
tors to deform, but restricting the number of direc-
tors to three. A large number of applications 1is
covered by the later development of the micropolar
theory. (Cf. e.g. Ariman [ll,l{] , Ariman and Cakmak
[13], Ariman, Cakmak and Hill[li], Askar and Cakmak
[16], Askar , Cakmak and Ariman[17]).

A structural model of a micropolar con
tinuum (Askari and Cakmak[lﬁ]), which consists of a
two-dimensional network of orientable points, joined
by extensible and flexible rods, yvields the equations
very close to those obtained by Eringen and Suhubi
[99,352], Eringen[93]and Mindlin [220,223] , starting

with continuum principles.

7. 2. Bodies with One Director.

The theory of liquid crystals and ani-
"sotropic fluids of Ericksen [74a,74 - 8§] (cf. also
Leslie [?04,205] ) 1s pased on the assumption that
the media such as liquid crystals and suspensions of
large molecules may be described by the position vec-
tors of the particles and by a simple director field.
The differential equations of motion may be obtained
from our equations - (7.32-34), together with the conti

nulity equation (7.11):
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é*‘QU?K:O )

)

QE =t£%}'*QFL.
dv =kt (7.2.1)

thisd. gli gil

To obtain these equations from (7.11)
and (7.25) we have to assume that there are no dirég
tor stresses b , no couple-stresses m and no volume
couples & . Under such assumptions the equation
(7.2.1)4 is a direct consequence of the moment of mo-
mentum equation (7.24).

Another example of a one-director theory

is the theory of Cosserat surfaces. (Green, Naghdi

and Wainwraight [127], Green and Naghdi [121 - 125]).

A Cosserat surface is a two-dimensional
material manifold 5 toeach point of which a simple
director field is assigned. This surface is embedded
in a 3-dimensional Fuclidean space. Let x%, a=
=1,2 be coordinates defining points on the surface
and x°=0 at all points of the surface. The position
vector of a point of 5 at time [ and the director

g are functions of position X% and of time [ ,
E:r(x“,t) d:@(x“,_t).

Y ~

(7.2.2)
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The base vectors along curves x% are Qo
and we assume that Q5 is the unit normal vector to 5,

S0 that

9 "9p =9ap , (Qax9s) 9120 , (@+p)
(7.2.3)

From the theory of surfaces it is known
that the second fundamental tensor baﬁ of a surface

is defined by

09
23
ga//g,=bu/s 9: 5 Fop =-bf ga (7.2.4)
Where "I" denotes covariant differentiation with re-

spect to the metric form on the surface 5

Let f and E be the assigned force and the

assigned director force per unit mass,

-
i

Fa9“+F3 9

~ ~

(7.2.5)

=
it

Raga+R/395

The stress vector’E“is to be regarded as a

force per unit length of a curve bounding an area on
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8 . The same holds for the director stress’b“, SO

that

£¢x =.t/50L %/5 +t5a23 )

he=hP¥gp +h*%g, . (7.2.6)

To write the equation of continuity
(7.11) in the appropriate form we have to calculate
the divergence of the velocity vector consider-

ing (7.2.3). Let the velocity vector of a point on 5

be

V=V ga V> gs
The Hamiltonian operator on the surface S 1is

vV =g% 04

~

and we have

Vs Ty =gt (gp v v Bugs 1y Ba v v dagn)

which 1n virtue of (7.2.4) becomes

L a
UL'=Ua|m" b(x 'U'S

Substituting this in (7.11) we obtain the continuity

equation in the form
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g+ (vu-bg v3)=0 | (7.2.7)

Differentiation of the stress vectors 0%

which, bécause of (7.2.4), reduces to

ofy=<tﬁTy-b};tm)gp +(t30|Ly+ bay tha) 95 - (7.2.8)

~

We obtain the similar expression for the derivatives

of the director stress vectors h© s

“¥:=(hb _bﬁ hba) gﬁ (h57¥+bpy hﬁu) %5. (7!2.9)

3=

From the vectorial form of the differential

equations of motion (7.19),

)

ov = th vef

by scalar multiplication with the base vectors %“and
35 we obtain the following three differential equa-

~

tions of motion:

ga” =

3

pa

)

T e PR RN LS 2

(7.2.10)

i

taﬁaa-baﬁtﬁa+ be,
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where &8 1s the acceleration vector with the compo-

nents (a%,33%).

Green, Naghdi and Wainwright [127]
assumed that there 1s an additional physical director
force which they denoted by m®and which acts over

the curves x%.

For the motion of the director g(%ﬁ,t)
we shall write also the equations (7.33) in the com-
pact (vectorial) form to which our equations (7.33)

reduce in the case of a single director field,

m o= hi;+e(R-id),

where m represents the additional physical force,
and QL 1is the inertia density at the points of the
surface. Since the director stress depends only upon

(a2

X, we may write

m =h’“+g(K—LEi) , (7.2.11)

and by scalar multiplication with gﬁand 93 this equa-

~

tion gives the following equations in the component

form:
mP = P, - b2 R 4 Q(Kﬁ,*i,.(iﬁ>,

m3=h3“|u+baﬁh/5“+9<ﬁb-t&5> . (7.2.12)
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The equations (7.2.7),(7.2.10) and (7.2.12)
represent the basic set of equations for a Cosserat
surface. In the original paper of Green, Naghdi and
Wainwright, as well as in the subsequent work of
Green and Naghdi, the equations of motion are derived
directly from the considerations of the surface, and
not from a general theory of the generalized Cosserat

continua.

In the applications of the theory of Cosse-
rat surfaces to the theory of elastic plates and
shells it was assumed that in the initial configura-
tion DU“’ 0 and D(n = is . For further refer-
ences see e.g. [121,122,124,251].%

* Ericksen and Truesdell [72] gave a very elegant and
exact theory of strain and stress in shells, assuming
that three directors are assigned to each point of the
surface. The work of Cohen and DeSilva [46,463] on
elastic surfaces 1s based also on the assumption that
three directors are assigned to the points of the sur
face, and they based their work on the results of
Ericksen and Truesdell. Theilr equations of equilibri-
um may be derived directly from our equations (7.32,
33) . However, in the thteory of elastic membranes [47]

they consider,at the points of the membrane,a single

director field. The director is taken to be normal to
the surface and the only deformation it suffers is the

deformation of 1ts magnitude.
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7. 3. Bodies with Two Directors. A Theory of Rods.

‘ As an example of two-director bodies wé
shall corsider the theory of rods by Green and Laws
B13,116] , which was applied to the theory of élastic
rods by Green ,Naghdi and Laws[llS].

A rod is considered as a curve L
imbedded in Euclidean three-dimensional space. At
each point of the curve there are two assigned direc-
tors. Let ® be a convected coordinate * defining
points on the curve, and let y be the position vec-
tor, relative to a fixed origin, of a point on the

curve,

ro=r (@,t) _ (7.3.1)
Let d(y =94 and d=g, be the assigned
directors and let the vector 33 , tangential to the
curve, N
or
9s = 70 (7.3.2)
. _

Convected coordinates,by the definition,move with the
body and deform with it so that the numerical values

of such coordinates for each individual point of a

body remain unchanged.
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be considered as the third vector of the triad, so

that

q =-<%1x %2> -%3 >0 .

Along ! we may construct the reciprocal triad %L ,

such that

1]

309579, $9imat, gy,

%L (7.3.3)

L

o L i _ L
9" 9i= 6 , 9fg,e= 8k .
We shall introduce the notation

CFR R « 99 K
35_ .%}_—_%L&) 9‘*. %i&Eg'a% =N . (7.3.4)

It is assumed that the stress acts along
the curve ! . The stress vector E(O,Q) according to
(6.11) 1is

tLQL . (7.3.5)

£<O,£L> =t"<®,3) %'ﬁt”’%L Ny

Since n,=n =1 , the components of the stress tensor
) ' L :
reduce to R : “nwool o resultant stress

exerted on a segment ( ©4,0 Y of a rod is

£<°2)"£(01j=[£(@>jgf (7.3.6)

For the director stress vectors h(a) , ac-

cording to (6.19) and (6.20) we may also write
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b'(a)( 91{.,") = h(a)t(@;ﬁ) Qi =h(a)L3(®>gi'n5=h(a)L%i)

~ ~

(7.3.7)
and the moment of the director stresses, defined by

(6.27), becomes

OLXQ»L . (738)

~

M= dp R g, = K

—~

W0

The resultant moment of the director stresses exerted
on the segment ( ©4 , ©, ) of the rod will be ac-

cording to (6.28),

’ ]
p(oz)-p(er)=[pu (o] (7.3.9)
4
If we assume that there are no body
couples 2 and no couple stresses m acting on the

curve 1 , and since the mass dm of the line ele-

ment ds 1s given by
dm = gds = @ |/ gs; d o, (7.3.10)

the law of conservation of mass and the principles of
balance of momentum (7.14) and the moment of momentum

(7.21) obtain the form

(CH

2 /9 gy do =0, (7.3.11)

0,
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62 6. O
4 [ev|g.do-= fej oI d@*‘[i(@ﬂe y o (7.3.12)
at g, o, 1

0,
L ooy i dwdow) o do -
© (7.3.13)
¥ .
= /Q (f",f*'g(x\"ﬁ(}')) m&9+[£x£+}£]ol
o, O
Since ©,; and ©®; are convected coordinates of
two points of the curve and remain unchanged under the
deformations of the curve, it follows from (7.3.11)

that @ \g,, 1s independent of time and the law of

conservation of mass may be written in the form

e Vg, = 3(e), (7.3.14)

where f (@) is an arbitrary function of position.

Using the simple relation

9;
2 d f
GRNSE S
1 o,

the equations (7.3.12) and (7.3.13) obtain the form+

o, @,
fev Vg, do=[(ef|g,, + o4
D4 o,y

(7.3.15)

)

) de

* We take i to be indeperndent of time [116].
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jg(fxif +L}“Mg,(mxgl.(/u)) V93 do =
Dy

(7.3.16)

=f[9(l"‘£*9’(x)x5m) 83 + 583 (E*s*&ﬂ d o .

)
These two equations must be valid for an arbitrary

segment ( ©®4 , ®, ), which yields the local form
of the equations of balance, 1.e. we get the equa-

tions oi motion;

a0 (7.3.17)

——+93x~tj ) (7.3.18)

where we have applied (7.3.17) to simpiify the equa-
tion (7.3.18).

To write the equations of motion in the

component form we have to apply the formula

OI E)T‘ m L
(3T )y

where I (C) , b > is a tensor defined along the
curve ! , and %;; is defined by (7.3.4). Hence, the
scalar products of the vectorial equations (7.3.17,
18) with the base vectors gL giye the following six

~

differential equations of motion:
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oV gt = efiv (a“wr‘,{‘t"‘), (7.3.19)

. . : o K { m
QL’””(Q«<L\*@(#»>'%L=QFL+‘L LL "o A (g xgﬂd (7.3.20)

Since we have

: “¥(q; b = o't e Rop oo bi R
(gxgﬂ'fE:gw(%Jx %3) Ki“%‘yex’-‘“% E-Q—&ﬁ}skt )
and R must be different from 3 according to the defi-

nition of the € -tensors, the equation (7.3.20) may

be also written 1in the form

out . .
! (—/u*r- M},{“}L"Wg”‘ €pat“>
e

@i {dpyrdu)= @ T e
(7.3.21)
The equations (7.3.14),(7.3.19) and (7.3.21)

represent the basic set of the equations of motion 1in

the general theory of rods by Green and Laws.

Ericksen and Truesdell [72] assigned to
each point of a rod three directors and discussed 1in
detail the state of strain and stress from this poid
of view, without making any constitutive assumptions
on the mechanical properties of the material of the
rod. In their criticism of the classical description

of the strain in a rod, the inadequacy of the classic



al description of twist and the insufficiencies of the
theories which do not assume the material to be ori-—
ented in the sense of the generalized Cosserat con-
tinuum become obvious. Cohen's theory [45] of elastic
rods is based on the kinematics and statics of Erick-
sen and Truesdell. An independent approach to the
theory of rods, but with the same form of the equa-
tions of motion as (7.3.14,19,21) is presented by
Suhubi [354]
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8. Some Applications of Classical Thermodynamics.

During the last ten yvears a great work has
been done on the development of thermodynamics of
continua. Our interest here is primarly directed to-
wards the application of thermodynamics in the deriva
tion of the constitutive equations, and we shall re-
strict our considerations to the classical formula-
tions of the first law and the second law of thermo-
dynamics. The readers interested in the modern treat-
ments, for the survey of the modern contributions up
to 1965, mav be referred to the book by Truesdell and
Noll [37?], and for the later work to the papers by
e.g. Chen[ﬁé],Creen and Laws [144], Green and Rivlin
[132], Kline[180], Kline and Allen[181], Leigh[202],
Truesdell [377,378] , Uhlhorn[380]etc.

The experience shows that mechanical proc-
esses can not be separated from thermal phenomena.
Mechanical work may make a body hotter, or,heating
may produce certain mechanical effects, such as e.g.

thermal dilatations and thermoelastlc stresses.

To indicate how hot is a body the temper-
ature ® 1is introduced. as a fundamental entity. It is
assum~d that there exists an absolute zero ®=0 which

is the lowest bound of ® and for all processes ®>0
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It 1s postulated that the total energy

of a body is the sum of the kinetic energy produced
by the motion of the mass points of the body and of

an internal energy E

For the internal energy it is assumed
that it is an absolutly continuous function of mass,

so that for a part v of a body it may be written

E=fedm=fge.dv, (8.1)

v v

where € 1s the specific internal energy,

e=e(x,t) . (8.2)

The increment of the total energy per
unit time depends on the rate P at which the mechanic
al forces do work (the mechanical working), and on
the total input (output) of the nonmechanical work-

ing (heat), which we shall denote by Q .

Mechanical working 1s the rate at which

the body forces f EUA

, the director forces , the

body couples 8 , the stresses L[ , the director

stresses h“ﬂand couple stresses m do work. Accord-

ing to the definitions of the section 6, t,}ﬁk) and

~

M are defined for the points on the boundary 9 of

~

a part Vv of the body considered’. Therefore the work-
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ing of I’K(M and { is to be summed over all points
of v, and the working of the forces U ,QUAand m over

the points on the bounding surface S

The kinetic energy 1 of a part v of a
body we shall assume to be in the general case repre

sented by the expression of the form (5.1.26),

T=‘7Jg(xixL+LW&&3 d(wyi)dv (8.3)

where we assume that the coefficients L™ are independ
ent of time. The rate of the kinetic energy will be

now

T=]Q<'JE_L5LL+LXMCL(L;V) dpyi ) dv . (8.4)
u
Using the equations of motion (7.32,33,34),

Ui

Qx," =t Vi + th,
vl/uai . h(?»)i}_+ R(A)L
gL (P = Ik Q ’ (8.5)
. .. m.. ¥ *
o ot = tletl s guib e mii®
where owing to the temsorial character of the quanti

ties involved we may from (7.25) write the correspond

ing expressions for curvilinear coordinates,
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Y TR LI
o VG

(8.6)

E 3
iio_ ik Lol ()] ¥R iR L (N3] R
V= U0 wd ) RV, mi T e mi R e d g, W

and for the rate of the kinetic energy we have the

expression

"f= ¢(tikii+h(x)ak&mrmqn w;;) Aoy +
s (8.7)
+ /'Q(ftit+k.(k)ia.()v);"‘zlé WL&’) dv - W

v

By W we have denoted here

W= [w av = /(t(moh& + hmwd(;),k Wa}*hmmam;.k‘mmwibQ_d"
L} K

(8.8)

The right-hand side of (8.7) represents the mechanic

al working P

The non-mechanical working Q 1s assum-

ed to rise from surface and volume densities,

Q= ¢qusR+[hdm, (8.9)
o

5

where g 1is the rate at which heat flows through the

~
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surface, and h 1s the heat generation per unit mass

(source) . q is often called the heat flux vector.

The first law of thermodynamics postulates

that
T+FE=P+0Q (8.10)

From (8.10), using (8.1) and (8.5-9), we

obtain

Q€ =w+q ., +@h (8.11)

)

which represents the local law of balance of energy.

According to (8.1),(8.3),(8.8) and (8.9) we see that

the first law of thermodynamics is also of the form
of a balance law, and therefore it represents 1in the
global form (8.10) the law of balance of the total

energy.

From experience we know that at least one
part of the mechanical working goes into heat, and
the rest is again available for the mechanical work.
Therefore we assume that W may be decomposed into a

reversible part E\V and into an irreversible part W

which may aiso be called the dissipative part of W ,

such that

W = W+DW (8.12)
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The reversible part of working goes into the poten-—

tial energy PN , such that 2 =¢W and
> = [Ew dxr=fecrdv , (8.13)
T v

where @ 1s the specific strain energy, or the elas-

tic potential.

The difference between the rate of the
specific intermal energy and the rate of reversible

work we shall denote by @41 , SO0 that

Pé= ¢wrooen , (8.14)

where M represents the specific entropy and is de-

fined per unit mass and per unit temperature, and

from (8.11) we obtain
Q®ﬁ= ”v+qfk+gh , (8.15)

which represents the equation for procduction of spe-

cific entropy.

If we assume that all stresses, direc-
tor stresses and stress-couples may be decomposed
. . . A)
into parts which do reversible work ( EE ) Eb( y
!

gm ), and which do dissipative work ( ,DQOJ

p M ), we may write

3

~ ~

£=E£+D£ ) h(k\=Eh<}V)+Db(A)) YL]"_' Em+D
(8.16)
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From (8.15) it follows that any portion of
the stress, director stresses and couple-stresses
which does recoverable work makes no contribution to

the entropy (Truesdell and Toupin [375]).

On the basis of (8.11,12 and 15) we may

/QYIOLU /—OI,R % )dv=[1g W (8.17)

The quantity V defined by

wrilte

E[Qn dv
v .
is called the total entropy. Now, from (8.17) we ob-
tain
K
l:i—gﬁ d ds“—f ek dv:ji (Dw+®“q )dv- (8.18)
2 (S ) (& (O

The postulate of irreversibility, also call

ed the second law of thermodynamics states that

] %
|-|—§15qu“— eh v s0 (8.19)
L e ®

In the form (8.19) this law is also known as the

Clausius~Duhem inequality , or the entropy inequality.

In the local form this law reads

h - ‘_ F20
Q®n 4 q»K'* ®)Rq (8.20)



O
_L\

Sometimes 1t is convenient to use the

Helmholtz free energy W per unit mass, defined by

the relation
Yy =£&E-0©n . (8.21)
On substituting this equation into (8.14) we find
oY+ Ene = w . (8.22)

Using (8.11) we may rewrite (8.20) in

the form which includes the mechanical working w ,
St +Qen tw e+ — o, q"20 , (8.23)
(O]

and if we introduce the free energy into this ine-

quality, it becomes
—Qi;u—gné +w+4g®,KqRaO ] (8.24)

A process in which

© =0 is called isothermal
Q@ =0 is called adiabatic,
ﬁ =0 is called isentropic
£ =0 is called isoenergetic

When 1n (8.19) we have the equality, we
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have the case of equilibrium and the corresponding

process 1s reversible.

From {(8.14) and (8.22) we see that the
strain energy ¢ 1s equal to the internal energy & If
the process i1s isentropic,and that the strain energy

G 1s equal to the free energy Y if the process

1s 1sothermal.

An inspection of (8.8) shows that for the

recoverable part of working we may write

(8.25)
Since
() o (i) .. ¢
i = g gt
(R g b L SIS (8.26)
eh™ " dy.y Wip = it day,x eh o
ko0 k) L1
EM Wik = Qit U UNT IR ) cmE by
and since .
g 2 L.
U xg Xy,
. . (8.27)
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iy 1 K
Ak = %k X5k

we see that rw may be expressed as a linear func-

tion in the material derivatives of the gradients of

deformation and of the directors,

b ¢ 3
XL X5 kL ) du);K

Thus,

y i Wik (] N
Ew=9,ai[zt( ”XJL}+ Ay g gh 2 X}&‘Em(&mxglv*‘] X

ARy K i (iR yL K ]
* Eh( b X;Rd(aﬁ;K'giQ Emt(& )X;} Xow X gL

According to (8.14), we may assume that

the internal energy is a function of the deformation

and director gradients and of the entropy,

4 ¢ !
E= & (I;L ) x;KL)d(L);K ,"1\,

*
so that

é=a—£9 ;QL"' aéz ngKL*'L?— d‘(QM;K*'a—é ‘
aI,L ax;KL ad(A’))R an (8.29)

* We tfollnw here the procedure applicd by Stojanovid
and Djurid [}40~342] and by Stojanovid, Sincid and

Vujosevid Eﬂﬁﬂ in the case of elasticity.
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Since the relation (8.14) must be valid for any proc-

ess, it must be satisfied for arbitrary rates x%L,

x%KL , d&HK and T , which yields the

following relations

Em"(“ﬂ: --Qg‘g 9 x?K x?‘l_ , (8.30)
E)chK
? L

KMk o gét %_ x*fK , (8.31)
(A x

i o [git A i, 0e i [ _3'°-_d,f\m xF (8.32)
E g it ) g 9 3 { LK

0x;, diaik L]
Hence, from the first law of thermodynamics we may ob
tain certain relations for the reversible parts of
the symmetric part of the stress tensor, of the sym-
metric part of the couple-stress tensor and for the

director-stress tensor. The dissipative parts remain

indetermined.

Regarding the dissipative parts of the
stress tensor, couple~stress tensor and director-
-stress tensors, there 1s a discussion whether or no
the inequalities (8.19), or (8.23,24) present any re-
strictions. F.g. Kline [lSO] demonstrated that form
these inequalities without additional assumptions

further conclusions can not be made, but Leigh [202
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(in the nonpolar case) finds certain restrictions

and applies the second law of thermodynamics to plas

ticity and linear viscous flow. Green and Rivlin
D32] obtained the differential equations of theories

of generaliied continua by the systematic use of the
first and second law of thermodynamics, but applied

the procedure only to the reversible case (cf. also
Green and Laws [ll{]).

I find, however, that

in some cases the
principle of least

irreversible force by Ziegler
[616] is very useful.”

Ziegler applied
of cases

it to a number
in the theory of non-polar materials.

For polar materials this principle was
applied for the derivation of the constitutive rela-

tions of plasticity and viscous flow by Komljenovic

[184], Plav¥ié [286-288] , Plav§ié and Stojanovié
[290] and Djurié[63a]

Ziegler assumed that the entropy M has

two parts, the 1rreversible part n<” and tne Te-
/

versible part n‘r)

, so that
n =,nh\+,qhﬁ , (8.33)
* This principle is not

generally accepted and some
authors have serious objections on its general

validity.
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and

0 o® ﬁm

W )
. (8.34)
een™ = g% +oh.

These relations satisfy the equation for production
of entropv. Further he assumed the second law of ther

modynamics (for dt >0 ) to be of the form
20 20 . (8.35)

From (8.20) we see that this assumption is valid only

if

®, 9° <0 (8.36)
which 1s not in contradiction with the experience,
since the temperature flows from the parts of the body
with higher temperature to the parts with lower tem-

perature. It follows then from (8.34) that

sw 2 0 (8.37)

The rate of entropy production ﬁ(” is in-
dependent of the heat exchange and may be a function

of the rates of deformation only.

e x® , R=1,..,n are variables which
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describe the configuration of a thefmodynamical sys-—

. (1) . . .
tem and if X x Aare 1lrreversible forces, we may write

(i R
Dw:XK dx ) (8.38)

In an n-dimensional space of the vari-

ables x®the dissipation function

b (x)= on (8.39)

. P R
for each prescribed value of the velocities X repre-

sents a surface,
~ ) (8.40)

Assuming that a process considered 1is

. . . _ . R
quasistatic, 1.e. the change of the coordinates X

and of the temperature ® 1is sufficiently slow, the

principle of least irreversible force states that:

If the value M>0 of the dissipation
. r R . . .
function Q)QI )and the direction VK of the 1rrevers-

ible force (X%)=X‘VK> are prescribed, then the

actual quasistatic velocity %x® minimizes the magnil-
i . (1) .

tude X of the irreversible force X(K subject to the

condition ¢)(iﬂ)2 0.

For the justification of this principle

we refere to Zicgler's paper [ylﬁ] .

As a consequence of this principle it



follows that the components of the

have to satisfy the equations

(i) 0
X = A —=

where

r= 6 (—a—d’— a‘c”‘>"

101

irreversible force

(8.41)

(8.42)

)
When we identify the components X(R with the

components of the irreversible parts of the stress

tensor, couple stress tensor and tensor of the direc-

.. <R '
tor stresses, and the velocities X with the corre-

sponding rates of the deformation of position and

directors, from (8.40) follow the relations forDE,Dm

and DD(KS
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9. Some General Considerations on Constitutive Relations.

The relations (8.30-32) for the revers-
ible part of the stress, director stresses and couple-
-stress tensors, as well as the relations for the
irreversible parts which follows from (8.40), have
to satisfy some additional assumptions in order to

represent constitutive relations.

Constitutive relations in mechanics de-
scribe the response of a matgrial to deformations.
The response is characterized by the intrinsic proper
ties of matter and not by the choice of coordinates,
or by the choice of the way of describing deforma-
tions, rates of deformation, motions etc. Constitu-
tive relations never describe completely mechanical
properties of real materials, but only some of the
dominant properties considered for some particular
purposes. Therefore, a material which would complete
ly behave according to some prescribed constitutive
relations 1s an 1dcal material and does not mxist

in the Nature.

The [irst question, regarding the consti
tutive rclations, is: which quantities are to he de-
termined by these relations and which quantities are
to be considercd as variables. There are 3n+3 differ
ential equations (7.35) and (7.36) from which the mo

N\ »
tions X = 3§<>5t) and g(o‘)=9{a)<§,t> may be de-
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termined if the forces i and ﬂ(a)and the couples g
are prescribed, but there are 9+9+27=45 components of
the tensors t , an

~

and m which can not be determin
ed from these equations. If we turn to the laws of
thermodynamics, we obtain some relations, but then two
new additional quantities are introduced, temperature

® and entropy mn . Expressing the laws of thermo
dynamics in terms of the internal energy & , or in
terms of the free energy VY we may regard @ , Or
u respectively, as a quantity to be determined by

a constitutive relation.

There are two methods for the formulation
of constitutive relations. One method is: to assume
certain relations and to subject them to certain
restrictions which follow from thermodynamics and from
the principles which will be introduced later. The
other method consists in deriving the relations from
the energetic considerations based on thermodynamics;
so obtained relations are then to be subject to
further restrictions furnished by the additional prin

ciples.

The number of the assumed additional prin-
ciples which are to be imposed on the constitutive
relations varies from author to author. Since we are
going to consider the constitutive relations which
follow from the energetic considerations, and since
we are not going to consider problems of more com-

plex nature such as viscoelasticity and dependence
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of the state of stress on the history of deformation,
we shall restrict the number of additional assump-

tions to two principles,
1° The principle of material frame indiference, and
2° The principle of local action.

The discussion of various other principles
in continuum mechanics may be found e.g. in the books

by Truesdell and Noll l}79] and by Eringen [1013,1016}

The two mentioned principles are independ
ent of the so called material symmetries. In order
to obtain the relations for a particular class of
material symmetries, we have to require, in addition,
that the constitutive relations are invariant with
respect to a subgroup of the group of orthogonal
transformations which characterizes the class of

material symmetries considered.

Let 2% and Z% be two orthogonal Carte-
sian coordinate systems with origins at Q and O ,
and let an event be described with respecct to these
two systems by {g,t} and {g,f} , where b and t
are times measured by two observers at O and §

A change of the frame of reference 1s expressed by

the formula

2% =Q% () 2P+ a%(t)

(9.1)
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or

b=t + % ) ‘ (9.2)

Here

Qp% Q¥ = 8j a* Qy =8¢ (9.3)

. . —4 T
and we assume that g 1s an orthogonal matrlx,() =Q .

Tf T is a tensor field with components

T.mand T ... with respect to the coordinate systems
Oz and OZ respectively, and 1f the components
transform according to the transformation law for ten

sors when both, the dependent and independent vari-
ahles, arc transformed according to (9.1,2), the ten-

sor field T is said to be frame-indifferent, or ob-

Jective.

. . (4
The components of the position vector I'=sZ ga
are obviously not objective quantities since they

transform according to (9.1,2).

The components of the velocity vector v
are defined with respect to the two considered refer-

ence frames by

2i
"
Y|

(9.4)

From (9.1) we have
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ffa:'C.lo.‘ﬁ, Zﬁ+Qc.xﬁU/5 +a%
(9.5)

and obviously the velocity vector 1s not an objective

vector. Writing (9.5) in the form
To = Qaar 22+ Qo™ v, + 34 (9.6)

we obtain for the velocityv gradients the following

transformation law,

0% - 9z’ 2 0v, ozt

— = Qg —_75"'&& — T

0zh 0z oz# 0z’ (9.7)
=Q Apt + Qo Ova Q
= Waa J5 o« " Ji)

Hence, the velocity gradients are not objective quan
tities. However, the rate of strain tensor 1is an ob-

jective tensor. From (9.7) we have

Qi

1 0ve 0Up A A
aﬁ:? < a2/}+ ai&) = Q(}b Qeyr +Qa” Qp Ve,

but 1n view of (9.3)
Qp* Qar+ Gt Gpn = L (@3> Qua)=0
p7 Qar+ Qo™ Qpa = —+ Ksz. oA )= )

and obviously
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o

wp= Qo Qpt dag

From (9.7) it mav be seen that the vorticity
tensor Weap = Ve, p] is not an objective tensor,
but the gradients of this tensor are objective quan-

tities. We have

Wap = Q" Qaar Qol A wiy
and

Wapy = Qa’ Qp* QY wy iy - (9.8)

Tf points of a body are referred to a sys-

tem of material Cartesian coordinates Zk and 1f 2%

and Z% are two spatial reference frames, we see from

(9.1) that

2z« « 027
N = Qﬁ‘) Y )
adZ 97 (9.9)
and the deformation sradients are ~bjective. The same

holds Tor the higher order devormation gradients

aZE(X Qa O2ZILL
— = d Ty , (9.10
VAL VA 0z a7 M > ete, )
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The principle of material frame indiffer-

ence requires that: Constitutive equations must be in
variant with respect to rigid motions of the spatial

frame of reference.

A function F <V(?) ,V(?) , ...,Za> of
vectors ,YUJiS objective or frame-indifferent if it
remains invariant under rigid motions of the spatial
frame.

If only translations are regarded, 2%= z% +a

1t follows that
\; € - o
Viay = Voo

and the condition of objectivity for the function F

reduces to

F <ym) ___,z°‘+a°‘) = F<\~/m,--- ,Z°‘>

. o . .
If the translations A& are small quantities, from
the Taylor series expansion of the function Fove ob

tain that 1t will be objective only if

oF
0z%

i.e. 1f it does not depend explicity on spatial co

ordinates of position.

Let us sce now which restrictions arc im-
posed on the function F by arbitrary rigid rotations

of the spatial frame, if F is an objective function.
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Let (' be the matrix

Q- (87 +0%),

where Wep = - Wpy is an arbitrary infinitesimal

rotation, and

%= Q% zﬁ=<8j'§+w‘?”j5>zﬁ. (9.11)

. . - . a
If F is an objective function of vectors Vivy

v=12. .. n, 1t will satisfy the relation

o o \ = /= -
F <V(”)___ V(n,})= F’\V(?},.._’V(:B . (9.12)
From (9.11) we have

V(-v)= V(v)a 6= V(V)+ V(Q,) (A)aﬁ (9-13)
ZI

and the 1nvariance requirement reduces to the rela-

tion
PV, ) = F (VG e Vi, ) (9.14)

For sufficiently small Qggﬁ we may expand F into

the Taylor series,

)

/ [ I o . _ [\ o - oF /jB o
Fvs v o, )= FLVE, X oV, Vi) 0%+



11a

Hence, if F 1is an objective function, for infinitesim
al rotations @) we obtain that F has to satisfy the

condition

oF
V3

{M>

<

But ¢ 1s an arbitrary antisymmetric tensor and (9.15)

reduces to the system of three differential equations
(Toupin [370] )

o OF
<§1 = Vm;s) =0, (9.16)
OV (e 3]

The equations (9.16) are tensorial equa-

tions. If the variables are objective quantities, we
may write (9.16) in the form appropriate for arbitrary

curvilinear coordinates X ',

< s gwa_Fe v(i)>[“_= 0 (9.17)

The principle of local action states that:

the state of stress at a point Z of a medium 1is deter
mined by the motion inside an arbitrary neighbourhood
N(Z}of the point Z , and the motion outside this

neighbourhood may be disrcgarded.

Under the "state of stress'" we understand

the values of all the quantities which describe rhe
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stress field ( [ , ’b(n , M etc.). If P(z(Zz)) is a

function which géscribes the state of stress at 7

at time t , according to this principle, at a confi

gurationK(t)the state of stress at Z is determined

by the instantaneous configuration of the neighbourhood
N(;). Let Z; be a point in N(é). At the configu

ration K(t) the relative position of Z' with respect

to Z is given by ”
Az -z(Zht)-2(Z.t) .
If 2% -72%= AZ*

, we may write

(9.18)

o A 2_ 0
A== 02 A7 L 82 Azrpze
0Z 2 azez*
Since the state of stress at g is determined by the
local configuration of an arbitrary neighbourhood N(ZL

it follows that ¢ must be a function of the deforma

tion gradients,

)

‘P=<P<?-?‘M,Z?;\1xg)... Z?‘)J...AN,...Z.t) . (9.19)

If ¢ is the internal energy function & and
if N is the highest order of the deformation gradients
which appears in the expression for the znergy, accord
ing to Toupin [372] , the corresponding material 1is

said to be of order N .

Stojanovidé and Djurid [340,341] generalized
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this notion to directed elastic bodies, considering
the strain energy as a function of the deformation
gradients of an order N , and of the director gradi-

ents of an order M , such that € 1is a function

of the form*

R R R " R R
E=¢ (x;mx TKaKe ., XKL Ky 3 Gy K ,d:(ﬂ',‘“Kl)d(A\qug...KM;n,X>.
' (9.20)

In the following we restrict our consid-
erations to the materials of the order N=2 and M=1,
i.e. the constitutive variables, which are to be con
sidered as independent variables, in the expression
for the internal energy density are first and second
order deformation gradients and the director gradi-

ents, so that

& = & (I‘TK x?KL )d-(i\',K,Tl )5) . (9.21)

* A number of authors considered the strain energy as
a function of the components Cia\of directors, and
not only as a function of the gradients of the direc
tors (mostly in linear theories). From our considera-
tions in the section 8 (sce eq. (8.28)) it does not
follow that the components of the directors appecar
explicitly as constttutive variables and therefore

we omit them here.
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Generalizations to higher order materials
are in principle simple, but require more involved ne
tation which makes the expressions less clear. The
higher order gradients of deformation and directors
may be identified with the multipolar theory then might

be directly applied.

The materials for which the constitutive
relations do not depend explicitly on X are called

homogeneous and we shall consider only such materials.

9. 1. The Internal Energy Function.

The internal energy function & 1n the
form (9.21) has, according to the principle of materi
al frame indifference, to satisfy the conditions of
the form (9.17). When the constitutive variables are
identified with the components of the vectors V (e)

according to the table

{ { t ?
Vm )V(z‘) Jv(’ﬂ — X5y X5 ,X 0y

{ 1 )
Vie) Vis) —>= Xy X o

t L { l
V'\/'\O) y -~ vt )V(Sn+9§ —_— d’(1\/)1 y - ')d'(ﬂ.\)S )

the equations (9.17) obtain the form
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@ﬂ( 98 i .96 yb, . _0E d(iy;xﬂ 20 (9.1.1)
ax%K ax%m (i\m [Lﬂ
"This represents a system of 3 linear
partial differential equations with 3 x (3n+9) vari-
ables V(i), ! =12, yv=14,2,... 3n+39.
The internal energy ¢ 1is an arbitrary function of
J x <5rt+ 9)-5: 9n+24 independent integrals of

the system (9.1.1).

It 1is matter of a direct calculation to
verify that integrals of the system (9.1.1) are the

material tensors

- a b N

Can = Gap X354 X5 (9.1.2)
a b

GCAE>= gab x'JCAx';B y (9.1.3)
a b

Fans= gan %7, diyn . (9.1.4)

These tensors are 1invartants under the transforma-

tions of spatial coordinates. Since

Can = Cpy Geap = Gace (9.1.5)

there are 6 +18+ 9n independent inteprals €,G6 Fu

and the internal energy 1s an arbitrary function of
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these quantities,
£=¢ <CAB,GCAB,FMB,XK>. (9.1.6)

9. 2. Irreversible Processes.

The dissipation function Q in (8.39) 1is
a function of certain generalized velocities. Accerd-
ing to the principle of material frame indifference
Q has to be a function of objective variables.
Such variables are the components of the rate of strain
tensor dw} =‘V(L%) , the gradients of vorticity
Wik , as well as the second gradients Vi ik

of the velocity vector.

For oriented media the rates of directors
a«i) and the gradients d&);n of these rates are
objective tensors. With respect to rigid motions
(9.1.3) of Cartesian frames, it follows that the direc

tors are objective vectors,

didy= dim Qlu

but the rates
= . A A A
oy = Aoy Qtu+ daQ

and the gradients of the rates

dimp= Ao v Qlu QY+ dlanv QT QpY
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are obviously not objective quantities.

From (8.8) we have for the didsipative

part w of the mechanical power the expression

W = Dt(t&)d% +Dh(mk<d(m‘r Wi o)) pmiE w  (92.1)

However, we may write

[N]

Anpam Wit Amin= (domgm wit doay) itk divi (9-2.2)

where

d(mg, = a(x\g - Wj,L g (9.2.3)

1s the co-rotational time flux (cf. [375] ) of the vec

tor g(k)- It may be directly verified that dJMg is
an objective vector. Hence, we may rewrite now (9.2.1)

in the form

iV (MR 3 ipR LR
p W :I)t( &>d-Ld—+Dh. ¢ d’(A)},K— (m& +d'(Mh- 3)W~L&,K _(9.2.4)
Hence, all rates which appear here,
di; , Wi x )d«(m&,n - (9.2.5)

are objective. It would be natural to assume now that

the dissipation function ¢ depends on the objective
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rates (9.2.5). But, according to the definition, &
iz a function of velocities, and therefore it might
be regarded as a function of i?& ,i?kL ,d&xK via
the objective variables (9.2.5).

For the derivation of the constitutive relations for
irreversible processes we may turn now tc Ziegler's
principle, or to consider the Clausius-Duhem inequali
ty. Ziegler's principle of least irreversible force
is so far applied only to the case of non-oriented
polar media, where it was assumed (for refernces see

secftion 8) that

¢= @(di&,wtk,ﬁ&> . (9'2;6)

Formal difficulties for the application of
the Clausius-Duhem inequality are evident, since the
internal energy function & , or the free energy VY,
have to be regarded as functions of :L?K ,x?KLﬁi&HK,
and not of the rates (9.2.5). Therefore we may only
quote Rivlin [?981 , who said that "The 11oplication of
the Clausius-Duhem inequality to inclastic materials
is.... questionable. Tt shpuld, howe ..r, be realized

that the results obtained from much applications are,

in the main, not very strong'".

The only possibility which remains 1s to
introduce the constitutive ralations by assumption,
and in the form which will not violate the laws of mo

tion and the laws of thermodynamics. The form of the
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assumed relations depends on the mechanical properties
which are to be considered. Often in the applications

1

of this methnd is uscd the principle of equipresence:

A quantity present as an independent variable in one
constitutive equation should be also present in all,
unless its presence contradicts the laws of physics,
or the rules of invariance (cf. E79]).It should be

noted that this principle is not generally accepted.

In the theory of inelastic properties of
non-polar media, owing to the recent developments of
the thermodymnamics of continua, some progress 1s made

by Leigh 202 , and Dillon 59 a

In the following sections we shall dis-
cuss the constitutive relaiions of some parttcular
media, when the constitutive relations are expressed
in the form of functions. More general theories, based

. *
on functionals, are not yet much developed.

# For some aspects of viscoelasticity we refere the

readers to the papers by DeSilva and Kline [}9] and
by Eringen [}O,9g] .



10. Elasticity.

In some modern treatments the difference is

made between elastic and hyperelastic materials. Hyper

elastic materials are those for which an elastic
potential exists and the stresses may be derived from
this potential. For elastic materials the existence
6f such a potential is not necessary. Hyperelastic
materials are etastic, but elastic materials are not
necessarily hyperelastic. We restrict our considera-
tions, according to this division, to hyperelastic

materials.

In the sense of thermodynamics the mechanic
al work done by a deformation of an elastic material
is reversible and it is accumulated in the elastic

potential energy 6 , so that from (8.12,13) we have

W= w , 0 =2 (10.1)
" The local law of balance of energy (8.11) may be
written in one of the forms corresponding to (8.14)
or (8.22),

QE = ;w + gon , (10.2)

or
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0y = (W - 0@ . (10.3)

Since the dissipative part of working vanishes we

shall drop the subscript "E".

Aecording to the section 8, we assume
the specific internal energy to be a function of the
form ‘

12 4 t

and the specific free energy to be a function of the

form
1 3 d.a
Y=Y X, X Yk, @) ( 10.5)

If we take the energy balance equation
in the form (10.2), from (8.29-32) we obtain the
following‘expressions for the temperature, stress,

director stress and couple-stress:

o =& : (10.6)

on

ij) e/ 9 _ i . 0& ' it 0€E i ®
| aI;L Elx;,(,_ ad,(k);K [L&]
) (10.7)

muu) - QLG &

%5 ¢, (10.8)
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hM ik =ggu' [2F3

1 x%x . (10.9)
ad’(M;K

J

The similar set of equations follows if
the free energy functien W3 1is used instead of & |
but since in Y the temperature ® 1is regarded as

one of the constitutive variables, the corresponding

constitutive equation for entropy will be

owv .
- (10.10)
n (O]
The relations (10.7 - 9) can not be regard

ed yet as constitutive relations. First, the internal
energy must be an objective function, and second, the
symmetry properties of the left and right hand-sides
of the relations (10.7,8) have to be the same, i.e.
the necessary and sufficient conditions for the ten-
sorial equations (10.7- 9) to be satisfied are that
the irreducible parts of the left and right-hand sides

of each of the equations are equal (Toupin [37{]).

According to this requirement the relations
(10.6) and (10.9) present no restrictions on the fune
tion € , since the requirements are identically ful-
filled, but the relations (10.6) and (10.7) present

considerable restrictions.

On the left-hand side of (10.7) we have

the symmetric part of the stress tensor, and hence
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the antisymmetric part of the right-hand side must

vanish. This yields the set of three euqgations

[gﬂ< aéE X+ ai et + Deﬁ ' oL(i);k)] =0 (10.11)
0x;, 0%k ad'(k);K [

i
If we compare this with (9.1.1), which followed from
the principle of material frame indifference, we see
that (10.11) is identical with (9.1.1). Aecordingly,

the internal energy must be a function of the form

'S

&= € (CAB Geag > Fans ,m , X" > . (10.12)

To investigate the restrictions imposed
by the symmetries of (10.8) we have first to find the
irreducible parts of the tensor mt(}K3 = Mt s
knowing that mitf o o According to the Ap-
pendix, (A2.26-29), the irreducible parts of the ten

sor MUU* are

-
JMWT= 0
LR
WMEE=0
PMLU(Z %r (qun_m}m_rnm§>)
(10.13)
gM“*ﬁ: + <m”fK+ mitt -2 m“): .
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Hence, the right-hand side of (10.8) has to satisfy
10 conditions (10.13)1,

<g” —ﬁ%i— xt, x?L)_ =0 (10.14)
0X k. (igx)

and one condition (10.13)2,

it 0¢& i K)
xi x| =0 . (10.15)
G e pa R

and the tensor mtl® has only 8 independent components.

Owing to the symmetry of the gradients

xf = x' . (10.15) is identically satisfied.

Relations (10.14) represent an additional
system of 10 partial differential equations which must
be satisfied simultaneously with the system (10.11).
According to the definitions of the tensors C , G
and f(wy , (9.1.2-4), it 1s obvious that (10.14) will
vield restrictions only on the tensor 9 . It may be

direcctly verified that the system (10.14) 1is satisfied

by the material tensor

Daac = Gcfea] = Ccfae] . (10.16)

Hence, the specific internal energy & 1s an arbitrary
. K
function of the tensors C , D , Fig and of ® and X

. K
For homogeneous materials & does not depend on X,
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E=E <CAB ) DABC )F(XAB,T]> . (10.].7)

To write the mechanical constitutive
equations (10.7-9) we have to perform the differentia
tions of the internal energy function Considéring it
as an arbitrary function of the form (10.17), which

gives for the derivatives the following expressions:

0¢ - o€ OCAB+ 0E aDAbc _ 0& aFaAb
ax?L 0Cpg ax%L 0Dagc ax?L aFaAb'ax%L

(10.18)
o€ 0&  ODgqc

v - [ )
axiKL 0D4ec ax’iKL

d€ - ot OF . an
ddinik  OFwan Od(hy

According to (10.11), the equation for

the symmetric part of the stress tensor becomes now

(ip) = i/ e, 9¢ i } (10.19)
: 9[9 <i)3cQ RPN (i)

VL yKL

and the complete set of the mechanical constitutive

relations 1s

t““=g<2 0¢ b X+ 0 X s 0¢ fod(iy‘L})(lo.zo)
0C,, 0Dy m OF ekt /

> (10.21)
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) L g¢& P ‘
h(jL&:.Q x}K x?’ . (10.22)
0F axe

For applications it i1s advantageous to
substitute the deformation tensor C by the strain
tensor E (3.10). It is also possible to represent

the tensor Q in terms of the strain gradients,

Dasc =2 Eca,e] - (16.23)

From the constitutive relations (10.20-22)
we see that the symmetric part of the stress tensor
is affected by the strain of position, by the strain
gradients and by the deformations of the directors,
but couple-stresses depend (explicitly) only on the
strain gradients, and the director stresses depend

explicitly only on the deformations of the directors.

It is also to be explicitly mentioned that
in the thermodynamical approach to the constitutive
relations the couple stress tensor remains indetermin
ed. Out of 1ts nine components only eight appear in
the equation of energy balance and only eight are de-

termined by the constitutive relations.

So far, except in the theory of disloca-
tions (Kroener and Hehl ESZ] , Stojanovic D35,337] ,
Stojanovic¢ and Djurid [}4@]) the general relations
(10.20-22) were not used in the applications. The
applications are mostly concerned with more special

classes of materials, i.e. with materials of grade
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two (the strain gradient theory), and with different
kinds of oriented (directed) materials. For materi-—
als of grade twoe the internal energy is assumed to

be of the form

e=e(g,p,n>, (10.24)

and for oriented materials of the form

£ = e((;, . Fa ,n> _ (10.25)

10. 1. A Principle of Virtual Work and Boundary Conditions.

To derive the boundary conditions for
elastic polar materials we shall generalize the prin
ciple of virtual work used by Toupin B71] for static
equilibrium in the theory of elastic materials of
grade two. In a slightly more general form this prin
ciple was also applied to generalized Cosserat con-

tinua by Stojanovid¢ and Djurid [}41] .

We assume the principle of virtual work
in the form
0T + 6E =déw | (10.1.1)

where 6T 1is the virtual work of inertial forces, 6E
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is the first variation of the internal energy and 6w
is the virtual work of all body and contact forces ac
ting on a part v of a body. At the points of the

boundary s of v the normal derivatives I)ﬁxLand

I)6d4&> of (by assumption) independent variations 8x'

and 6d(x) are to be considered also as independent.

In general, it may be assumed that the boun
dary s consists of a finite number of surfaces 3
bounded by curves ‘6 . The boundary curves represent

edges.

The gradients %)k of a function V , de
fined in the interior and o+ the boundary of v , may
be decompo=ec? aon the boundarv of YV into the surface

gradient Dk Y -nd the normal gradient D Y R

‘fjk=Dp‘7"+“nD%, (10.1.2)

where n 1s the unit normal to the boundary surface 5 .

Toupin introduced a three-dimensional extension of the

*
second fundamental tensor B of a surface by

b'L‘}:—DL n}=—D}nL. (10.1.3)

+ Let WY, ®=1,2 be coordinates on S , and the equa
tions of the surface are X'= x%uﬁ). From (10.1.3) it

follows that /
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For any smooth tensor field f... defined
at points of a smooth surface & Toupin introduced

the integral identity

S/D-LF._.n}d,s.i?/(bKRn‘\nj—bLD f...ds+ ¢mtn&fd?.) (10.1.4)
€

wvhere m= T¥xn and T is the unit tangent to 1

3

and dl is the scalar line element of €

If the integral transformation (10.1.4)

is applied to all surfaces &, i.0, to the whole

boundary S of v , one gets

R N . - N
/o boingds= B(0%nin, ~by ) foder Tmn, £, (100100
s s ¢

where [ ] represents the jumps of the enclosed quan-
tity when an edge is approached from é¢ither side.

We assume that the boundary S of 7Y has no edges

and that f. . is smooth throughout S , so that the

Lo P
BijXja Xip = +ny Xlap = bap,

vhere baﬁ i1s the second fundamental tensor and xfmb
are covariant derivatives of xfa, with respect to the
surface metric. It is to be noted that for the polnts

on the surface n.

L
p X = 0
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line integral in (10.1.5) wvanishes.

For the virtual work of inertia forces we

assume the expression
3T=/Q(5ﬁL(S:r,-t+i,)"u.d..(i)6d.(p)i) av | (10.1.6)

and for the variation of the internal energy we may

write

6 E /Q< )K_O_e éx’fKH ai 6&&)39 dv .

UDC,K ax?KL 0d(;x (10.1.7)

Since the spatial coordinates only are sub
ject to variations we shall use the following rela-

tions:
R m
0%y = (tixk)whx

51?“: I:(ﬁx*‘),m jl (33( ) mtx)xx <5x' ) x7 TKL

ey =(8dtn)m Ty

(10.1.8)

and (10.1.7) may be rewritten in the form

6E:/Q I 86K xT + ai xTKL> (6x“>’m

(10.1.9)
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0¢ m ot R
+ x}Kxﬂ(ﬁx ),mg+

2 X", (a d.(i;)m} dv.
9%y, adm;n

For the sake of brevity in writing let us introduce

the notation’

A = Q< 0t x Ty + 0¢ xTKL) )

9% ax?m
.ml 0¢ ]
B = e N xTKx'iL ’
0% s (10.1.10)
A) &
P(')Rm—:_ & T xTy
ad—(m;k
and
do= A (8, dv,
UZEEJ/Bkme<6xK)ma¢U, | (10.1.11)
o

3y =[P (8, mdv .
For J, we have

:14=/[(A;;“ 8x" ) - A, ax"J dv

v

. ‘ . 10.1.12
=¢AK 5xknmds—/AK o oxdy ( )
5 r

J,may be written in the form

p 5 (10.1.13)
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Since we may write
) .mt K ~mt K
J, ,=:_/<E>>K 0x >)mkow= §5<BK dx >,m“&d*5)
A S
applying the integral identity (10.1.5) this becomes
3, =B <[DB M, n, o (B Dot ) By | 5x®+
2 = X mn.n'!’ tnmnl" ml s p 9
-]
B, nt<D61K>}ds,
and for J, we definitively have
Cl—/E)'"‘e Sx*dy +
2= g, m?

¢ {[DB;{"“ nny (0 ngng <0 ) B 2B, ny Jox”

; (10.1.14)
+ B g <D 6x">} s
For 33 we obtain similarly
Ty= G PO Gdidyngds -/ PO L B de. (10.1.15)
5 v

Collecting the results we obtain for & E

the expression

SE =/[(\*Akm,m+3;‘“,m£) doc® -PE" ad(i)} dv +

v
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¢ {wnm+ (DB )n, g + <btt A0y -bt ) B-2B ng] dx*
s
PP, 8dg, + B nmng<D6xK>}d.s. (10.1.16)

-According to the form of (10.1.16) it is

natural to assume for the virtual work Ow the expres-—

sion
R (o) k
ow = (Lkﬁx +9'% Sd,(u))d.’v +
7
R x (o) R

+§5[MK6x+NK<D6x>+T°K‘6d(m:|ds (16.1.17)
where L , M, N ,éﬁ)and;IM)are some generalized
forces.

Introducing now 6T , 6E and 8w from
(10.1.6,16,17) into (10.1.1) and assuming that the
b .
variations & x® |, Déx® and 8d(e) in v and on 5

are independent, we obtain the following relations:

oxt- At st st (10.1.18)

in v

Qi.a/ud'(i) _ P(m)lm)m - S(a\ﬁ’
(10.1.19)

Aﬂm nm+ <D B!mn) nm nn + (btt nmnn _ bmh> Bﬂmn_ZBRmr’\m nn = MQ ,
(10.1.20)
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N/
p(e)tm M = T , (10.1.21)
B n_n, = N' . (10.1.22)
From (10.8),(10.9),(10.19) and (10.1.10) we see that

A(z&n) = t(t}ﬂ.} ,

btmn - mQ(mn‘)

) o (10.1.23)
P(uﬂm__= h(oc)lm
According to (10.11) we also have*
(tm] [t (a)m .
Attt el e (10.1.24)

which substituted in (10.1.18) yields

# The equation (10.1.24) follows also from thé re-—
quirement that 8 E is invariant under virtual rigid
displacements. Let x' be Cartesian coordinates. The
virtual rigid displacements are 5XK=8R+'€KL&K1 X}

and Sd @ = erE K, d(ay; , where a®and K are arbi
trary constants. Introducing this intg_ﬂlo.l.lﬁ) and
requireing that the energy of every part of the body
is separately invariant under all rigid variations we

obtain (10.1.24)
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Gl pm L k) +dD h<°t>m]P+|_t

gx = ym » mn (@), p )

This, together with (10.,1.19),

coep g L () Em (m)t

represents the equations of motion. Here we may
identify L'  with Q(F“E“‘.m) , and s yien
) K“”Lv . The boundary conditions follow from

(10.1.20-22),

t(gm) N+ d[E h(a) m]p n,+Dm L(mn) n,n,- (bttnmn'n' bmn) mE(mn\_'_Zm?(mn?mnn: MZ)

(a),p
heatm p ot (10.1.25)
—m tmn) n, h, = NG
The generalized forces M , I(u) and N are certain

surface tractions which are to be prescribed on the

boundary of the body.

10. 2. Elastic Materials of Grade Two.

When the internal enrgy is a function of
deformation gradients x:?K and xka and of X" and
M only, the mechanical constitmtive relations (10.20,

21) obtain the form
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(i) 0 Lo ¢ G -9
(LI <2 Xt x x ¢ ) 10.2.1
] aC .. Pk L+ODKLM ik X3m) ( )
m 0 2 Q_aé_ngx(;erm i (10.2.2)
abKLM

Accerding to the Appendix (A1.32), the
couple-stress tensor mLiK may be represented by the
second order tensor min , and this tensor may be de
composed into its deviatorie and spherical part, where

the deviatoric part is

x A ik 4 rok
Moy =mt -mpp63=—2—€u}m” _Téqu'mpq (SL (1.2.3)
or
m'.'””:/ui}k-qrmbpewl , o (le.2.4)
where
,LLL&*=€L*E;L&K . (10.2.5)

In the constitutive relations (10.2.2) only the sym-

. LR
metric part mtm*) of the couple-stress tensor appears,

and from (10.2.4) we see that

mé(E®) o W0 (10.2.6)
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Since there are only eight independent
components of the tensor miuk)(cf.(10.13)), and since

the deviator has only eight components (cf. App.

(A2.4)), we may represent the deviator ;LWK in terms
of the tensor mt(&m,
LiR 2 L{jR R\
/b(l'& =T <2ml'(k)+m (L&X) . (10.2-7)
. . ijR_ R
The invariant CipgM* =My of the

couple-stress tensor remains undetermined since there
are only eight constitutive equations (10.2.2), and
also in the boundary conditipns (10.1.25) only the
symmetric part of the couple-stress tensor appears.
According to Koiter [}83] , without any loss in gen-

erality we may assume that nlk“is equal to zero.

The tensor Duim is antisymmetric 1in
K and L and if we introduce the second-order materi

al tensor

the constitutive equations (10.2.1) obtain the form

t(tp=g < 0& ! x?ﬁ_}_ 0¢& 6NKL x(%K x‘PLM) 7

oE " 2D", (10.2.9)

where we have used (3.10), and for the deviator/;f we

get from (10.2.3,7,8) the relation

1 0e
/("2 _—_B—Q aDN

M

NKL L } R)
S €Eijt Xk x(ﬂ.x iMoo (10.2.10)

3
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For isotropic materials the Internal energy
must be a function of isotropic invariants (see App.
section A2) of the tensor E and D ,

~

o e 42— 2 53— p—
€=¢ (-‘-—E!HE’—E ) lI—D)I—Dl .I—I—lEDJ -I—”-Eb) mED)"')' (10'2‘]‘1)

Teodosiu [}61—366] applied the general
theory of elastic materials of grade two to media with
internal and initial stresses and particularly teo the
determination of internal stresses produced by dis-
locations. He also considered a more general theory
in which the couple-stress tensor is not indetermined.
A proposal for such a generalization was already given
by Toupin [}71] on the basis of the analysis of the
boundary conditions (10.1.25)3. From the antisymmetry
of the couple-stress tensor it follows that the trac-
tion N has to be orthogonal to the boundary surface,

E " n o= 0 , but this requirement for the traction
N is without a physical motivation. For that reason
Toupin proposed a more general theory in which the

complete couple-stress tensor would be determined.

For infinitesimal deformations we may as-

. K R . ; .
sume that the coordinates X and X coincilide 1n the

reference configuration, such that

Kook K
x® = X 6, +u,

(10.2.12)
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R I { m
X =Wy 6 Oy
(16.2.12)
where W is an infinitesimal displacement. The deferma

tion tensors in the linear approximation are

- ool oot

le.2.1
Dum = D o ot ol ( »
KLM ~ Rlm K L M

where - .
Dyt = 2em[K,?] =2 Wy m o

10.2.14
@Wyp = W ge] . ( )

It is accustomed, however, te represent
the third-order tensorS/Land E by their second-order
duals. Since the rotation tensor Wgy, may be represent

ed by the vector wt=21¢ Wye  , we may put

ki Wit o (10.2.16)

and the linear constitutive relations may be written

in the form

() LiRE Lixe
b = C Lt €y +C2”‘ R

(10.2.17)

L LpRre kt

For isotropic materials the fourth-order
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tensors g and_F4 are linear combinations of the

fundamental tensors gt* , such that

C i}Kt—a k Rl+ R ﬂ-i- it r®
N ve'e *Pyv gl vy gt gl (10.2.18)

M Lpkt
v

i

ay gq gm + by gik %}E - gae %w ) ('v 34'2>

Since the constitutive relations (10.2.17)
for isotropic materials have to be invariant under the
full orthogonal group of trasformations, we shall ob-
tain them substituting the elasticity tensors from

(10.2.18) into (10.2.17).

In.the linear theory we may assume that
the density @ 1s approximatively equal to the densi-
ty in the reference configuration, @ = @,

For isotropic materials in this approximation the 1in

ternal energy function may be approximated by a qua-

dratic polynominal in the isotropic invariants L,

I, and T > s 2E-D of the tensors € and D , and

it may be written in the form (Koiter [}83] )

Q06=G[ v Ig+e;ei+2£2(KL&KL&+T}KL}R&L)J

1-2v ’

(10.2.19)

where 6 is the shear modulus, vV is the Poisson ratio
and 2 Gt* and 2716%* are two additional new elastic

constants.The constant & ‘has the dimension of length
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and is called the characteristic length of the materi

al. M 1s a non-dimensional number.

The constitutive relations (10.2.9,10)

may be written now in the form

(o) (F3 i v i
thlz g €€ _2G [e'f 1 t)

% oe i} ( Ty )
(10.2.20)

ij Je 2 i -
' a 4Gl RY t
s !.BR“ ( *ak )

These relations were obtained by Aero
and Kuvshinskii [é] in l960.’Grioli[}34a] studied the
non-linear theory and in the linearization he obtain-
ed the similar expressions, but he neglected the terms
involving M . Mindlin and Teirsten l}l7] considered
the linear eonstitutive equations as a result of 1lin
earization of the relations derived by Toupin, and
they applied the linear theory to a number of problems
in vibrations and stress coneentration (ef. also Mind
lin [?Zi]). One of the most interesting effects of
couple—sfresses is its influence on the stress concen
tration factor which appears to be a function of -the
characteristic length ! and to be less than what 1is
usually assumed in the non-polar theories to be 1its
value. For detailed study of the influence of couple-
~-stresses in linear elasticity we refere the reader,
among others, to the papers by Mindlin and Tiersten
[217] , mindtin [218], [221] , Mindlin and Eshel [225)]
Koiter D83] , Neuber [?56] s and, for the problems
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6f stress concentration, to the book by Savin BO%}
which appeared in 1968 and where detailed references

may be found.

Within the theory of materials of grade two
(or, within the strain-gradient theory) a generaliza-
tion of Rivliin's method for the constructien ef gen-
eral solutions in non-linear elasticity was presented
by Stojanovié¢ and Blagojevid [}39] and by Blagojevic
P&,Zga] . It is found that owing to the influence of
couple-stresses the Poynting effect, which is in the
non-linear theory of elasticity attributed to the se-
cond-order terms, appears as an effect of the first

order in hemitropic materials.

A very fine and general synthesis of work
of Grioli, Aero and Kuvshinskii, Bressan [35{} and
other authors 1s presented by Galletto [ioi] .

10. 3. The Elastic Cosserat Continuum,

When the influence of the strain gradients
in the intermal energy function is neglected, accord-
ing to (10.20-22) the couple-stress tensor m will

vanish and the constitutive relations obtain the form

(i) 0¢ L } Q& . i .
B <aEKLx,K,x§L+ OF.L S dd’xm) , (10.3.1)
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WM 2 0E

o i xd, . (10.3.2)
(AL

The directors 'in a Cosserat medium re-
present rigid triads and therefore we may assume that
in the initial (reference) configuration the direc-
tors D(g)coincide with the base vectors of a Cartesian

K .
system of refernce X , l.e.

K K
P(u)"D(u)SK ) D(é)‘-‘ﬁa . (10.3.3)

For infinitesimal deformation we may write
LN L
(10.3.4)

die= Dey + £2 * Doy

or

R _ r - R
dicy= 0o + Qo (10.3.5)

where W 1is an infinitesimal displacement vector, and
Q is an independent rotation of the director triads

However,

Rk )
Xk = 6K+LL,£ 6K 3

(10.3.6)
) .
dWML=$1“ﬁ16%

)

and the deformation tensors are
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R L
Eqe = Wy 0g 0

(10.3.7)
Faki™ Qo t 658] = Xaxy 8568

Thus, we may consider as the censtitutive variables

the strain tensor eyt and the gradients of reta-
tien HgRE =~ Moyel or
1 X
u'f’ts?e" T Qoakt - (10.3.8)

The constitutive relations (10.3.1,2) for o=@, be-

(i) Qe 0& .
[ARCE ot
N <ae”’, " GRIA%Y) A'?) ’

come nNoOw

(10.3.9)
NEOIE 0E
= Qo -
9%
However, nxi& is an antisymmetric tensor and the

index A is of the tensorial character. Applying

(10.3.8) we may now write

(ip) 0& 0& m i 0e L P m
= SYLLUNNE, B2 g n* 5t.>
Q’<Oe~4+ ’Ou”,‘n " an'f’n n

(10.3.10)
(X3

L

0%.&

hii= @,

where
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h(f E% eiknn)‘né
(10.3.11)

The internal energy & may be approximat

ed now by a_ quadratic polynomial,

. . #*
_ W 2 vk 2 Loa, * 3
0,£E=0 [1-2\: Ie+e&ei+22 <H-gua“ﬂ"-¢“{’u>:| (10.3.12)

and the linear constitutive relations have the form

completely analoguous to (10.2.20),

tiP-26 (e"h e Ie‘g'“‘*> )
(10.3.13)
héb=4682<u}“+ﬁx?}>
*

Here again we have, a "characteristic length" & of
. . - : *
the material, and a nondimensional constant T

The linear theory of elasticity of Cos-
serat materials is studied extensively by Schaefer
B10—316] , whae also elaborated a method for solving
the equilibrium problems in terms of the stress-func
tionms 314,315 , and applied the theory to the theory

of dislocations*‘}17—3l9] .

* I mostly appreciate Prof. Schaefer's kindness to
put at my disposal his yet unpublished results on the

dislocation theory in the Cosserat continuum.
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The théory of nonsymmetric elasticity developed since
1960 by Aero, Bul'gin and Kuvshinskii [3-6,36,199] is
based on the assumption that particles of a medium
may suffer rotations independent of the displacements,
which makes their theory to be,in fact,a theory of

Cosserat media.

The equations of motion (7.1.6)24 in the
b
linearized theory of Cosserat continua obtain the form

Q:')c'.i---l‘..LE‘,‘-k+QF.L

QI&['“&);;}L e[, H[q]n’R . Qd([&uﬁ(mﬂ | (10.3.14)
where the hyperstress tensor H'® defined by (7.25)&,
appears only as an antisymmetric tensor.

The moments of director forces appear here in the

form of body couples. The effect of hyperstresses in
the linear theory of an elastic Cosserat continuum is
obviously the same as the effect of couple-stresses

in the strain-gradient theory. For that reason many
authors consider both kinds of "materials'" as Cosserat
materials, or simply as materials with couple-stresses
without making any distinction between the two kinds

of materials.
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10. 4. Elastic Materials with Microstructure.

a) Micromorphic and micropolar materials.- The

basic theory is developed by Eringen and Suhubi [90—
101,352] . It is assumed that for the microelements

are valid the Caushy laws of motion,

Q’ a|L= tli':t,' + qui

1 )

(10.4.1)
tlt& - tlé_i'

where primes denote that the quantities are related

to microelements. For macromaterial the corresponding

quantities are obtained through the averaging, e.g.
ﬁ'u d.‘.)"}
ds

by the relations

A ds; /Q'f'LdU'=QFi'd.’l)', etc. (10.4.2)
dv

The stress and volume moments are defined

(¥ R [ Li R .
OL/t*E de'y = A ds; (10.4.3)
9

/Q' Fl 8'tdy' = oltidy
dv

and K%Krepresents the "first stress moment'", which
is not the same as the couple-stress. Further, in the

relation
/Q'SILEI}d.’U"E Qé‘t&d.v (10.4.4)
dv

the quantity 'Y is defined as the "inertial spin'",



147

and the symmetric tensor Su;defined by

/t"‘i dv'= s't dv (10.4.5)
av

represents the '"microstress average''.

The constitutive relations, according to

our notation (cf.section 5.2) read

0&E
Gl M
X
5!‘2=9< Be_ v . 645a d(n + _af_d(i).,,‘) , (10.4.6)
ax;K ad.(;,) a (k",K
P S T T (n=12.3)

t
Od(M;L

where it 1s assumed that the intermal energy & 1is a

function of the mechanical constitutive variables

R (A !
Xk o day o, deoik : (10.4.7)

The stress momert A coincides with our
hyperstress, and this theory may be regarded also as

a theory of generalized Cosserat continua.

The difference between the general theory
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outlined in the section 10.3 and the theory of micro
morphic continua is in the assumption that the intern

al energy depends explicitly on the components of the

directors , and, also, in the assumed existence of
two independent stresses - the macro-stress E’ and

the micro - stress average S .

In micropolar bodies the micro-elements
are rigid. The directors in this case represent rigid
triads and the theory reduces to the theory of elastic

Cosserat media (cf. section 1Q.3).

b) Microstructure.- The linear theory of elastic

bodies with microstructure was developed by Mindlin
D18,219]. The continuum is composed of unit cells
which jave some properties of crystal lattices. The
theory represents, in the mechanical sense, the linear
ized version of the theory of generalized Cosserat
continua with deformable directors (section 5.2). The
directors represent microdeformations, and since there
are only three directors in this theory we may put
dmu =Ya} , where Wi are displacement-gradients in

the micro-medium,

\Pi} = Du.'*/ Ox"“,

Denoting by x' and u' Cartesian coordinates and com
ponents of the macro-displacements, resp. , the rela-

tive deformation is given by
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ouw;
0x'

and the macro-strain by

Yi.'k = _Wi,'k )

£Lé’ = a(b w k\
Macro-deformation gradients are determined by the ten

SOoY
Xijk= 0;Yx

which represents the tensor of director-gradients.

The state of stress is described by the

ordinary (Caushy) stress t ik , by the relative stress

o't and by the double stress /LWR, such that (for
e=eo=1)
vp . 0E ij_ Q& (X3
b= , G't= ) Mg = ,  (10.4.8)
&} Oyii w 0%«
and the equations of motion are
(ttt + GL&)J* + QFL = QLLL
(10.4.9)
/uLéR,L'fO‘éR‘F @}R= L&Ei{;ak .

This theory eontains the linearized equa-
tions of Cosserat continua as a special case, and the
linear version of the strain-gradient theory as a
special case, too..Eringen @8] showed, however, that

this theory coincides with the theory of micromorphic
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materials. The theory of Mindlin, however, is elaborat
ed only in the linear version and it is difficult to
say from the coincidence of two theories in their lin
ear forms if they agree in general, or they represént

two differenf theories.
10. 5. Incompatible Deformations.

Under certain circumstances a field of
stresses can not be associated to a field of deforma-
tions which satisfies the compatibility conditions
(see App. sections A4 and section 4). Such situations
appear in thermoelasticity and in the theory of dis
locations. In the classical linear thermoelasticity,
in the Duhamel-Neumann law, it is assumed that the tot
al strain € , which satisfies the compatibility con-
ditions, is composed of two strains which do not sa-
tisfy these conditions, of an elastic strain gE which
produces thermal stresses, and of a strain gT which
depends on the distribution of temperature in a body.
This idea was used in the linear theory of disloca-
tions for the determination of internal stresses pro-
duced by dislocations (cf. Kroener [}95a ) and later
it was generalized first in the theory of dislocations
by Kroener and Seeger [}933] . Guenther {}43] establish
ed a very important and interesting relation between
the incompatibilities of the Cosserat continuum and the

structural curvature of a dislocated crystal.

Stojanovié¢, Djuri¢ and Vujoshevid B35—337,
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344,347—349,385—388] developed a general theory of
elastic incompatible deformations, which was applied

to thermoelasticity and dislocations [?35,337] .

The theory is based on the assumption that
thé deformation gradients corresponding to a deforma-
tion x* = XR(K) of a body from an initial (and
unstressed) configuration |<ointo a deformed (and
stressed) configuration K may be decomposed in two

deformations, such that

k R (A K K (» .
X = (I)(M @'k ) X;n"' O q){, (10.5.1)

(A . .
where ®@) and © "represent reciprocal triads of vec-

tors, as well as @(M and qﬂ”.

The linear differential forms

du* = @2 dx*  and  dut= oPdx® (10.5.2)

are in general non integrable. The vectors @“Jrepresent

; g . A .
-elastic "distorsions, and @( ) are plastic or thermal

distorsions (the terminology depends on the. applications;
in the theory of dislocations these distorsions are

plastic). The coordinates w?

owing to the non-integra
bility of (10.5.2) may be interpreted as coordinates
of points of a non-Euclidean, linearly connected space
with the coefficients of connection (with respect to

the systems of reference x*® and X" )
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R R ) K R (M
r?_m=®(l\a[®(:\-\ ) LM=®(A\DL®M . (10.5.3)

Under the assumption that the state of stress is de-
scribed by a nonsymmetric stress tensor tit and by
the antisymmetric tensor mitR of couple-stresses,
and that the internal energy G is a function of elas-

. . . (A . .
tic distorsions @ ¢t and their gradients @?l\ , ob-

tained are the constitutive relations in the form

i i ; (i i) m
t( Do Q 0o b (D(,L) + L L0200 (D(*m,m q)w)> ,
oc Ak aDA,};V

(10.5.4)
i 06 A&i i K
m*K=-Q -Eﬁ_— (P(M q)(;;.) q)(v) )
ALYV

where

b m t ' n
Cam=Gom P oy , Dauvs <9Qm O D n (b“”) [A(}?o' 5.5)

These constitutive relations reduce to the constitu-
tive relations of the strain-gradient theory (elastic

materials of grade two) (10.2.1,2) if we put

A
(D(i\:x;!x and, ®(t\=5L- (10.5.6)

The most important consequence of this
approach to the problem of incompatible deformations

in elasticity 1is that in the constitutive relations
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(10.5.4) the couple-stress tensor is completely de-
termined, while in the theory of materials of grade
two, to which this theory reduces in the limiting
case, there are only eight constitutive relations for

(i k
the tensor lmL<*)

. . .. A)
For applications to thermoelasticity G(L
are interpreted as tensors of thermal distorsions
(e.g. for isotropic materials with small thermal dili

) »
tations o« we have @% =(1+ax®) 8¢ ).

In the applications to the theory of dislo
cations the generalized Cosserat continuum with three
directors is considered. The directors may be related
to lattice vectors, but in the absence of dislocations
the directors are then material vectors and the con-
tinuum reduces to an ordinary continuum. In a dislocat
ed ecrystal with a given distribution of dislocation

. . . . R
in terms of the dislocation density tensortqu=-aét

there is the fundamental connection between directors

and dislocation-density tensor (Stojanovic D35,33i])

LR R (M.
a; = day dpg o, (10.5.7)

such that

i A R
Fofas) = @ije Xia Xt d(a (10.5.8)

where Feaas is the tensor of the director-deformation

(9.1.4).
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The linear theory of moving dislocations
in the Cosserat continuum 1s developed recently by

Schaefer E17—319] .

- The problem of couple-stresses in thermo
elasticity, without a reference to incompatibilities
of the thermal strains, but both for Cosserat continua
and for strain-gradient materials is studied by Nowacki
562—2651. Thermoelasticity of materials with micro
structure, also without entering into the problems of
incompatibilities, is presented in a number of papers

by Wozniak [}04—41@] .



155

11. Viscous and Plastic Flow.

In this section we shall give only a short
review of some of the results in the theory of polar
fluids and in the theory of plasticity of polar

materials.

a) Polar fluids.- In comparison with elasti
city, the theory of polar fluids (or of fluids with
non-symmetric stress tensor) is much less developed,
although there are certain effects which might be ex-
perimentally observed and which might serve for the

verification of the theory.

Liquid crystals were already mentioned as
an example of a Cosserat continuum with one director
(section 7.2). Ericksen's theory was further developed
by Leslie EO&,ZOE] , who applied some of the modern
concepts of thermodynamics and obtained Ericksens's
equations of statics as the limiting ease. Coleman
BS] and Wang [90,9{} considered liquid crystals from

the point of view of the more general theories of ma-

terials with memory.

Aero, Bul'gin and Xuvshinskii [3] consider
ed (1964) a fluid with rotating particles, which is in
fact a Cosserat fluid. Dahler and Scriven [}6] and
Condif and Dahler l}9](?964>gave an interpretation of
the antisymmetric stress in fluids, based on the con-

siderations of the spin of molecular substructure.
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Stokes BSQ] in 1966 attributed the couple-stresses

to the influence of the gradient of vorticity. Such
fluids, according to the terminology of the multipolar
continuum mechanics (section 5.3) may be named dipolar
fluids, Plaféié [?85-288] considered such fluids

from the thermodynamical point of view, applying
Ziegler's principle of least irreversible force for
the derivation of the general (non linear) constitu-
tive relations. The linear theory of dipolar fluids 1is
given by Bleustein and Green 52] and Hills [}57].

The theory of generalized Cosserat continua Allen and
DeSilva E,lo] applied to fluid mechanics and ébtained
from the continuum approach the results of Dahler and
Scriven. Alblas [8] also considered a fluid with rotat

ing particles.

Theory of micropolar fluids represents
an application of the general concept of micromorphic
continua.The basis is presented in the papers by Eringen
in 1964 L?O,91J . Later it was applied to a study of
some particular cases of flow (Eringen[}&], Ariman [lﬂ
Ariman and Cakmak [}3—15] , Willson [}OO] , Hudimoto
and Tokuoka [E6{] , Kirwan and Newman [}79] etc.).

Independently of the model of a £luid
considered by each of the authors, there is one impres
sive characteristic result mutual to all models in the
linear theory. In the linear theory of Newtonian fluids

there are two viscosity coefficients (volume viscosity
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and shéar viscosity). In the theory of linear polar
fluids there appears a third coefficient which might
bé named "rotational viscoéity”. Owing to this coef-
ficiént the distribution of velocities is different
from what follows from the theory of Newtonian fluids
é.g. in the theory of channel flow the velocities in
the middle of the channel are smaller than it 1is pre-
dicted for Newtonian fluids. Similar results are

also obtained for other flows and the results may be
applied for experimental viscometric measurments and
for the determination of the coefficient of rotational
viscosity. Plaviié [286,287] studied the whole series
of the so-called viscometric flows of dipolar fluids
and obtained the results which might be directly ap-

plied for experimental investigations.

b) Plasticity.- So far little is done in

the domain of the theory of plastic flow of polar mate
rials. Komljenovid [}84] applied Ziegler's principle

of least irreversible force to materials of the strain-
-gradient type and obtained the non-linear constitu-
tive relations for elastic-plastic materials. The yield
condition in his work 1is Q}=K2;0, where @ is the dis-
sipation function. In the linearized case this reduces
for isotropic materials to the Hencky-Mises yield

condition.

For ideally plastic materials Sawczuk [?O?]
and Lippmann [?07] formmlated the theories of plastic
flow of Cosserat continua. The yield conditions follow

from the requirement that.the constitutive relations
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are not explicitly depending on time. Lippmann @Oj*
applied the theory to numerous problems of practical
interest. Randenkovié and Plav$ié [289) formulated a
theory of visco-plasticity for the strain-gradient
type of matefials*, and applied it to the study of
flow of a visco-plastic material between two parallél
plates. The obtained solution reduces in the non-polar

case to the well-known solution of Prager.

LR N I I I T B A

Time has not alleed me to pay more atten
tion to application although in the applications and
not in the general theory thé effects of couple
stresses may be realized to the full extent. The role
of more general concepts of matérial continua is to
be detected completeiy only when the effects are pre

dicted and presentedby the theories in such a way

that the experimental verification might be realized.

These lecture notes were written during
the time the cours itself was held and I am aware of
many errors not only of the technical and linguistic-
al character, but also of the conceptual nature. I am

aware that most of the points of view adopted here may

# The author i1s mostly indebted to Prof. Lippmann

and to Dr. Plavsic for giving him the manuscripts of

their yet unpublished papers.
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be subjectéd to serious criticism. To defend myself

I can only say that many different approaches, many
different mathematical and physical models which serve
as basis for various theories of continua with non-
-symmetric stress tensor make it difficult (at least
to me) to find a unique and sufficiently general way
of presentation of the subject of my lectures,
Neglecting all the weaknesses of these lectures and of
these lecture notes, if this course of Mechanics

of Polar Continua contributed to increase the interest
in this field of mechanics to numerous listeners I

had, the main purpose of this course is fulfilled.

At the end I wish to thank to all listeners
for their interest and cooperation throughtout the

whole series of 30 lectures.

The autorities of CISM and particularly the
Secretary General, Prof. L. Sobrero and the Rectsr,
Prof. W. Olszak have done everything to make the con-
ditions for my work in Udine perfect. The responsibili
ty for the failure to make this course as it has to be
according to the excellent conditions for work -

absolutely is mine.

My sincere thanks are also due to the mem-
bers of the technical staff of CISM at Udine for all
their unselfish help and cooperation which made it
possible to prepare this text in such a short time.
Their cooperation twas far beyond what might be consi-

dered as the official cooperation.
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Appendix.

For theoretical considerations 1t seems to
me that the most suitable in the nonlinearized expo-
sitions is the notation of the double tensor field
theory (cf.Ericksen's Appendix "Tensor Fields"in DB])
Assuming that the readers are familiar with the ten-
sor analysis, the aim of this Appendix is to present
only a survey of notation and some basic properties
of ordinary and double tensor fields which are used

in the lectures.

A. 1. Coordinates. Tensots.

An ordered set of numbers §={f'xa.”)xq(we
consider only real numbers) represents an arithmetic
point. The numbers xK are coordinates of the point x.
The set of all possible arithmetic points, obtained
when the coordinates take all possible values, repre-

sents an n-dimensional arithmetic space Ap .

If M 1s a set of objects m , such that
there is a 1:1 correspondence between the'objects
of the set M and the points x of a region A of Ap
we may say that the numbers xt are coordinates of the
objects m , and that the objects m are pictures of

the arithmetic points x .

If there is a 121 mapping of points X of a
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region A in Apupon points x of a region A in the

same An »

R R -1 =2 =n
X = Xx xX,x,,.., X
) ) ) )I (Al.l)
—h -R 4 2 )
x =x {x, X, ..., x ),
-k .
we say that the Xx represent another coordinate sys

tem with respect to which the objects m are determin
ed. The set M of objects m , together with the coor-
dinate system & , and a group of transformations

(Al1.1) which introduces all admissible systems, repre

sents an n—-dimensional geometric space Xn . The ob-

jects m are now points of the space Xn .

The coordinate transformations are tran
sformations of the numbers characterizing the same

point m,

If R is a region in Xp with points A€R
referred to a coordinate system 1?, and if E is an-
other region in Xy with points B referred to a sys-
tem of coordinates X% , the 1:1 mappings of the

points of R upon the points of R,

I 1 n

S A L (A1.2)
X

XB;‘XK(X1 Xn),
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represents a point transformation.

In the following, 1f xk are coordinates of

a point in xn, we say 1t 1s the point X

e

A geometric quantity hmxnat a polnt x 1s

defined by a set of numbers, say N , and by a trans
formation law which enables us to determine these num
bers when a coordinate transformation is performed.
Ifx: and i: are coordinates of a point P imlxngiven
with respect to two coordinate systems, and En,1L=1£p

,)N are the components of a geometric object £ s
the general transformation law has the form

- R R
En,{'gp}=¢n (F’{:EP})' ) FN{%D})%P)%PI g:m )Tt a.xran, QC ax’m%)"')'

If the transformation law does not depend
explicitly on the coordinates of the point P , and
on the partial derivatives of order higher then the

first, the geometric object is a geometric quantity.

A scalar 1is a geometric quantity with one compo-

nent: and with the transformation law

LoxM) = (R, .
@ (x)...,x")=o(x)... ,x") (A1)

Covariant vectors are quantities with the

number of components equal to the number of the di-
mensions of the space , n=N . If Vi and VB are compo

nents of a covariant vector v at a point x , the trans
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formation law for covariant vectors reads

- 9 xR
Vi =Y gee

(k,8=1,2,...,n) (Al.4)

- 3=t
'V‘k=’v'9'-—axp

Here and in the following we apply the usual summa-

tion convéntion for repeated indices.

For a contravariant vector w with com

R -2 . ]
ponents w and Ww the transformation law reads

— o A
\VL: Ww g:;k )

) (A1.5)
Wk=\7vag§!' ’

A tensor T of covariant order p and con

. . . . +
travariant order qQ 1s a quantity with nf'd components
T{"'f}1“‘}q and with the transformation law

PEEEE TR

- o oxk  ax a9z pzld
R .--) _ .---2--'2, — s e - e .A1.6
T, ST a%ts dzr Oxh <l )

The order of this tensor 1s p+q-

A tensor all of whose indices are super-

scripts (subscripts) 1s said to be a contravariant



165
(covariant) tensor.

If the components of a tensor remain unchan
ged when two of its co- or contravariant indices inter
change their places, we say that the tensor 1s symme-

tric with respect to these two indices, e.g.

Tijke= Toge , 770 = T¥7,

If components of a tensor change sign when two of its

co—- or contravariant indices interchange their posi-

tions, the tensor is antisymmetric, e.g.

Tijer = -Tieje, T = -T%0

A second-order tensor may always be decom-

posed into its symmetric part,

Tap=—4(Toj + Tji)

' .. . (A1.7)
T(uﬁE_%_ (Tns + TJ*-)/
and into its antisymmetric part,
T[LJ] :—:%—(TH _ i) /
(A1.8)
AT -7
Try1 =2 (Tej = T3)
such that
TL‘} = T(ij) +T[Lj:|
(A1.9)

T;J'

I

TEpy+Tjl .
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There are tensors defined simultaneous-
ly with respect to two points of the space, and these
two points are, in general, referred to two different

. K ‘
coordinate systems, say xk'and X" . Such tensors re-

present the double tensor fields. Let JK(;QQbe such a

tensor. With respect to coordinate transformations at
X it transforms like a contravariant vector, and

with respect to coordinate transformations at X it

~

transforms like a covariant vector,

4k axt. axX
L Kk 2x® OXt - (A1.10)

Further examples of the double tensor
fields are partial derivatives of the point transfor-

mations (Al.2)

® X '
Rk _0x _ % X 00X (K
In Euclidean spaces Ey there exist

rectilinear orthogonal (Cartesian) coordinate systems

%, a=1,2,...,n , and if such a coordinate

system is admissible in an Xp , besides some other
properties which will be mentioned later, we say that
it is Euclidean space. The unit veetors in the direc-
tions of the coordinate lines 2¥ we shall denote by

eq =86°% . The position of a point 2 in E, is

~

determined by the position vectar r ,
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r = z% o , (A1.12)
o« [ L
where r =% are the components of r . If X 1s an

admissible coordinate system in Euclidean space, 1.e.
if there exist the coordinate transformations
L L 1 n
x'=x (2 ... ,2"Y)
Al.13
2% z%(x,. .. ,x") ( )

which are analytic functions in the neighbourhood of

the point Z , the components of the position vector
r with respect to the system X" are given by
L
rt o= ZOL axu , ‘

Jdz
(Al.14)

Zu= ri, OZT

dx

Denoting by g the base vectors of the coor

dinate system x', the position vector r may be ex-

pressed now in the form

(Al. 15)

where

[+
0z or . (A1.16)
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The reciprocal base vectors g-L , defin-
ed by the relations

, i
gl. - ga Bxa
~ 0z

(A1.17)

represent the reciprocal vectorial base. For Carte-
sian coordinates, the scalar products of the base vec
tors are

o

e“ep=043, ea 'Sﬁ=5aﬂ:,€°"eﬁ=5aﬁr (A1.18)

1;“ =J’5
where 5g==5ap=5aﬁ={ are the Kronecker symbols.

0,a4p
Hence,
P o x' 0z « Ox' 0zP i
. .=e -Q — —_— = ——— = 8' .
TRITEOER 0 i 0z% dxi ¢

We shall use the symbol 1 for the matrix {6}:}.

The scalar products of the base vectors

94 and 9"
al lensor ( QL& and gt} ) for the systems of coor-

give the components of the fundament-

dinates X' , which is a symmetric tensor,

9z* 2z° (A1.19)

b

drigi e B ox' ox!
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and also

5oh ox' 9xt

b gh.gl =gl s
gi=g9 Q=g = (A1.20)
~ 3 9z% 9z” -

Transvection of co- and contravariant com
ponents of the fundamental tensor gives the components

of the unit tensor,

g's 9= Oy
(A1.21)

Denoting by G't the cofactor in the deter
minant @ =det QL} , corresponding to the element Q}L
such that

905=6"aux , BENCERELY

from (A1.22) we have

gtt = ) 97 964,
¢ (A1.23)

where G}L is the cofactor 1in detg%corresponding to

the element gi} , and

det g4 = (det QL})-1 . (A1.24)

In 3-dimensional Euclidean space the vectorial prod-

uct of two base vectors e, and ep ,&+f3is the vec-
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tor * €y, , P y Y all different. If & p Yy is

an even permutation of the numbers 123 , we have

Lax€p =€y (« By +) (A1.25)
and if it is an odd permutation,
faxgp =-gy (a.p,v+) (A1.26)

Hence, we may define completely antisymmetric unit

tensors € gpy and eofy by the scalar products

(SaXSb)§y==eapy
(A1.27)

cOPY

(8% xgP) e¥

Under arbitrary coordinate fransforma—
tions the unit tensors e do not behave as tensors.
The transformation law involves the Jacobian of the
coordinate transformation and such tensors are named

relative tensors. However, if we make the scalar prod

ucts analoguous to (A1.27), we obtain using the rela

tions (Al. 16,17)

- 0z 2zP z¥ _
(gix nggn—ea/ay orl el 3t _(d.et ggj ek,

(A1.28)

where ik are now numerical symbols with the
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same meaning the unit tensors for Cartesian coordina-

tes have. From (A1.19) we have now

.- (det 6&}5) (det 02?‘)2= (det %_i‘_a )z |

ox' x*

and therefore for (Al1.28) we may write

ea}nE(gaxg;,)-gK _ (A1.29)
Simmilarly we have
ik _ i }) R_ A1 ip R
et = X Q= — e
CREDR s : (A1.30)
The quantities €ijk and €% are true tensors under

arbitrary coordinate transformations and often they

are referred to as the Riccl tensors.

Using Ricci tensors an antisymmetric tensor
may be represented by a vector. For instance, if
ML}=-M?the tensor M has three independent nonvanish
ing components in E 3 and we may represent it by a co-
variant vector

M; ='i‘€L}KM&K)

2 (A1.31)

(Mik= gitfm, ),

Kemb®is an antisymme-

Analoguously, if m'
tric third order tensor, we may represent it as a se-

cond order mixed tensor,
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‘K 1 Lk

(mii® = et mi“j .

Using the components of the

(A1.32)

fundamental

tensor the operation of raising and lowering of indi-

ces may be defined, such that

~--i,~--_ e e s e
QL*T."T} ,
and
LsT SRR | A
Thus,

Vi iRyt o 1R
and for the scalar product of two vectors,
v

~

, We may write

i A RS ) 3
Woys=u v o= gipu vhagtujvis ug v

The vectorial product of two

say 8 and b, is a second-order antisymmet

(A1.33)

(Al.34)

it TN
3 t2K= gd tQ& )

say W and

. (A1.35)

vectors,

ric tensor,
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3xb = {aL bé- ab bi}= {c”} ,

clb= _cil

(A1.36)

)

and using the Riccl tensor we may represent it as a

vector ¢ ,

1 i v i
CK=?€'L}R.C J':e'._ika bt (A1.37)

Tensors, as geometrical quantities, are de-
fined at points of the space, and the operations of
addition may be performed only if the tensors consider
ed are brought to the same point of the space. If we
have to add two tensors, or to compare them, and they
are not defined at the same point, omne of the tensors
must be shifted parallelly to the point in which the
other tensor 1s defined. In Cartesian coordinates the
components of a vector which represents a field of par
rallel vectors at all points of the space are equal,
but with respect to curvilinear coordinates this 1is
not true and we have to define the operation of par-
allel shifting which will enable us to compare compo-

nents of tensors which are not given at the same point.

Let Vv be a field of parallel vectors in Es
. . K

and let U® be its components at a point X ,and \
its components at a point X . The two points may, in

general, be determined with respect to two different
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coordinate systems, X' and XK . Let 2z and Z Dbe the

coordinates of the two points considered with respect
to an absolute Cartesian system of reference and v A
and V™he components of the vector field ¥ with re-
spect to this Cartesian system. Since by assumption

Eis a field of parallel vectors, we have

vt =85 VA or VA= 8% v (A1.38)

According to the transformation law for vectors we

have

A : A
ur eyt 02Ty gk 027
ox® DXy (A1.39)

and the relations (Al.38)may be written in the form

R oox 0x" 927 (& K A X" 9z*
=M X 92 VK= 6
v oz* ox, ' "zt axt (A1.40)

The quantities

s ax* 22" Ko gn X D2*
0z* ox"

QFKE

(Al.41)

(with g% gi-8% , g%cai'=6k)

are the Euclidean shifters (Doyle and Ericksen [67] s

Toupin D70] ). Using the shifters we may perform the
shifting of an arbitrary tensor from one point of the

space to another,

As an example let us consider a vector
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field Vv at a point(R,Q}given with respect to a sys-—
tem of polar coordinates in the Euclidean plane, and
let us shift it to a point(r,w) given with respect to
the same system of coordinates. Since 21=X ,ZZ=Y;Z4=X,
2%y; X'=R,X*=d;x'=r,x?=¢ and since the coordinate trans-

formations at the two considered points are

X =R cos }

, Y=Rsin &

x

n
i

rcos @ , y

rsLn(p

from (Al.41) we obtain the following expressions for

the components of the shifter:

g4.4= oS ((p-@\) ‘, 91-2 R sin ((p—(b)

gty - Lsin (@-¢) , gl = cos (O- )

Using now (Al1.40),; we easily obtain the components
UR of the vector Vv when shifted from the point(R,@)
to the point (r,@):

v' = V'cos (¢-¢)+ RV?sin (cp—(b) ,

"

y? 47 V?sin ((I)—(P>+ %Vzcos ((I)—cp)

. 8
The shifters Q. grepresent another example
of double tensors, and applying them to an arbitrary
tensor by parallel shifting we perform the conversion

of indices, e.g.
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A K t
g'K T'PG=T'PQ

If g9,, and GHNare components of the fun
damental teﬂsors corresponding to the coordinate sys
tems x® and X" at the points X and X of the space,
from (A1.19) and (Al. 41) we obtailn

az* az® _

1]
9% 8% 9t = Gae o~ oxt = Gy

. K
Let g, , g » Gy andG be base vectors
for curvilinear coordinate systems xFand XKrespectivg

ly. According to (A1.16,17) we have

or 9:z“ v 0x" o
= = = e = e
2 ox®  ox"™ T 7 2 0z ’
[+4 K
GK=ﬂ=aZ gl! ) GKzax e‘x
~Toxk axX 0z* ~

The Euclidean shifters may be defined as scalar prod-

ucts of the base vectors considered at two different

points of the space,

. R
%ngk"'ng ’ gK§K=9.K
(A1.42)

and we may write the following formulae:
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i
-

Gy QkK=%KL= e (A1.43)
~ Al.

¢ _
Gy Tk = e

00
£
A

EN

The infinitesimal displacements dr at a

point X are vectors of the form

i 9z% |
dr =dx" ¢; = - dx’ eq |

~ ox" (Al1.44)
and the square of the displacement dr represents the
fundamental (metric) form for the space and for the

considered system of coordinates,

ds? = drdr =9 g; dx' dx? = 9ij dx' dxt .

(Al.45)

~

Hence, the fundamental tensor in the Euclidean space

1is the metric tensor.

Physical components of vectors and tensors
are defined only for orthogonal systems of coordinates
<3L} =0 fOYL=#}>. If we write for the base vectors
2L=PH got , with hi=|%1

colinear with the base vectors, evidently we have

, where 9,, are unit vectors
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and

Qy, = (not summeot) .

Vi (A1.47)

We may also write gi=th;

~ ~

with

i ii L 1 L
ht = Vg , %o = Viﬁ?_ % (notsummed)kA1.48)

and from (Al.23) we see that for orthogonal coordinate

systems
Lt 1
g = gt . (A1.49)

The physical components of a vector are

scalar products of the vector and of unit vectors co-

linear with the base vectors. Thus, for the physical

components of a vector y , which will be denoted by
\Y (f)since the indices are neither co- nor contra-

variant we have

(A1.50)

Physical components of tensors are de-
fined in analogy to the definition just introduced for
vectors, €. g. for a second-order tensor we have

thd oty _ t%}

Vot gh  Vaug;;, Vavg, (A1.51)

b=
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Besides the decomposition of a second-order
tensor into its symmetric and antisymmetric parts,
for mixed tensors also may be introduced a decomposi-
tion into its deviatoric and spherical parts. The

deviator of a tensor I is defined by the expression

Di i R L

T ET‘.’} '%T'KGE s (A1.52)
and its spherical tensor will be

S+i. _ 1 Koe i

such that for the considered tensor we have

T =DT%} +5T%}

A. 2. Invariants,

Let Tyy,..., T(xy be tensor variables. Any

scalar function of these variables,

F(Tw, - Tw), (Az.1)

which remains invariant with respect to arbitrary co-
ordinate transformations 1is an absolute invariant of

the tensor I“\,”.,Lm.However, there are invariants on
ly with respect to some particular groups of transfor
mations. We are mostly interested in orthogonal trans

formations.

For a linear transformation of Cartesian co



180

ordinates

- A A A= A
2z = QT z”-+a*, zt= G¢L Z* +b ’ (A2.2)
we say that it is orthogonal if

Q = oet Qf“{u=t1 (A2.3)

}

and the matrix of the coefficients of this transforma
. . T -1

tion has the properties 9 =g , where T denotes the

transposition of a matrix, If Q=*4 | the transfor-

mation (A2.2) belongs to the ,group of full orthogonal

transformations, and if Q=+1 | we have the group of

proper transformations.
Functions (A2.1) invariant with respect to

the full orthogonal group are called isotropic invar-

iants, and if they are invariant only with respect to
a subgroup of the full orthogonal group, then it is
said that they are relative invariants with respect
to that subgroup. If a function is invariant only un-
der the transformations of the group of proper ortho-
gonal transformations, such invariants are called

hemitropic invariants.

If Tis a symmetric tensor of the second

order, the principal 1invariants of I are:

IT=11—' 5, T} (A2.4)

Yoy
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A Lg 4 m

nm 4 iR 4 m n
I, = ?Slfnn ToTL Ty

and all three invariants are 1isotropic.

Here we have used the symbols

Ly R
't € tmn

2
Il

)

8y, = 8yin = 6y 84 -8n8{

tmn

The principal directions of a second-

-order symmetric tensor are the directions determined

by the unit vectors m , such that Tgrﬂb='Tn“

~

or

(T%—Tﬁj'ﬁ%ﬁ’ =0 (A2.5)

and there are three such directions. Since the equa-
" tions (A2.5) are homogeneous, the nontrivial solu-

tions for n exist 1if

aet (TF-T8%) -0, (A2.6)
which represents a third-order equation in T

—T3+ITT2_-U-TT+:ET =0 y (A2.7)
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and the solutions T(a) are the principal values

(eigenvalues, proper values) of the tensor‘I .

If we denote by M(*) the vectors of a triad
reciprocal to the triad of the vectors M(a) obtained
for A =1,2.3% from (A2.5), it is possible to in-

troduce a coordinate transformation so that the new

Cartesian coordinates z “ are colinear with the
principal directions,
- A (A |«
2 =N z
°‘ 4 (A2.8)
2% = “(2) z > )
where .

(A o A (AY A b
Ne Mgy =0 m Ne Nixy = 0«
o () ) o (A) (A2.9)
The components T:t of -I with respect to

. hendl ¢ 4
the new coordinates z are

= A —a B (N
Ta=Ta N na ,

and according to (A2.5) and (A2.9) we have
Tia= TanSynd = T o, (A2.10)
AE AN mNe = ) OM - .

Hence, the principal values of a tensor T are its
components with respect to a Cartesian coordinate sys
tem with coordinate axes colinear with the principal
directions. With respect to this system of coordina-
tes the matrix of the tensor I has only diagonal
elements.

The powers of a tensor I are defined by the
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expressions

(A2.11)

and from (A2.10) 1t follows that

2 3
- A 2 = 3
Ti =Twop, Ta=Twda, .. .

Since T(ﬂ) are the solutions of (A2.7)

we have obviously

T(;nﬁﬁ = T T8 -T T8k + T 64 (A2.12)
or

3 2 _ .

T=1,7T -L.T+~W, 4, (A2.13)

which represents the Cayley-Hamilton theorem.

For an antisymmetric tensor M *PY =
=—Mba¥ of the third order, the corresponding second
order tensor, according to (Al.32) is given by

M = e ap MOPT (A2.14)

Because of the nonsymmetry of M for
the construction of the invariants we have to regard

. . : X
besides its components M, also the components
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pos =AM 3 -r . . LR
M7y =g Gev MY, which makes the list of in
variants larger than the list of invariants of a sym-
metric second-order tensors. There is one linear in-

variant,

=
=
]
()
Lo
=<
2
~

(A2.15)

but there are two independent quadratic invariants,
1 1 L m:
jH:M= o 6;% Mt M&m 3
) ] B . (A2.16)
L - m
and there are eight independent cubic invariants, etc.

If we write for I, the expression
4
I,= Te,,‘;a.YLM°‘/5W“, | (A2.17)

and apply the orthogonal transformation (A2.2) to the

components of M , we obtain

Iy= & €apy Q3 Q. a,r MY

Since

Capp Q5 QL QY = (det Q%) ey,y=tde,,y

and it follows that I, is a hemitropic invariant.

3
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. . 19 2 == . .
The invariants W, and "I, are 1lsotropic.

The joint invariants of a symmetric ten

sor ] and of a non-symmetric temsor ™M are:

~

quadratic Doy = Ty Mo =T MY (A2.18)
cubic 1ﬁ—TM =TT M™
, (A2.19)
2 .
]:I]:TM= TE MumMm!)

Possible are also other combinations of
one symmetric and one non-symmetric second-order ten
sor, which are not listed in (A2. 18,19), but it may
easily be varified that the listed invariants (cubic
and quadratic) are the only independent invariants.
For higher order invariants I have not tried to es-
tablish the list of the independent invariants.

Among the listed joint invariants, Il ,,

19 . . .. . .
and Il ;4 are hemitropic, and the remaining invari-

ants are isotropic.
The principal invariants of a symmetric
tensor I' may be expressed also in terms of the prin-

cipal values of T(ay ,



186

Ht
—
i}

T(n + T(z) + T(a)

-

Iy = T{Z)T(Z») + Ty Ty + Ty Tz )

(A2.20)
Ten Ty Tes

T
\

Sometimes 1t 1s useful to consider the
T,

moments , instead of the principal invari-

ants. The moments are related to the principal invar-

iants by the formulae

(A2.21)

In the theory of plasticity often is used the so-call

ed octahedral invariant Ar;

- Y |
3 _AT.=[Z I%-6 HJ “= g[(ﬂar T(mﬂ% . (A2.22)

If a tensor is decomposed into its spheri-
cal and deviatoric parts,
oA P o4 i\ sy L
T'd’— ?IT(S&-P(T& 3175&,)—.\’,"'T,& s (A2.23)

the principal invariants of the spherical part are

SITzIT?]ITz—;—IIE )S]IT=4_I3T ) (A2.24)

and the first invariant of the deviatoric part van-
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ishes identically,
I.="1I; =0 . (A2.25)

Since (A2.25) represents a relation
between nine components of a tensor, it follows that
a deviator has only eight independent components.

A second-order tensor can be uniquely
decomposed into its symmetric and antisymmetric parts
For a third-order tenscr such a decomposition 1is
more involved because we are searching for its irre-
ducible parts. Toupin B71] introduced the following
decomposition.

~Let M “é®*  be an arbitrary tenmsor of
the third order. Its irreducible parts are:
the symmetric part
SML“:: M(;m=

% (qu‘hwku MG, MLR;+M;¢LK+MML) (a2.26)

the anticymmetric part

AML"-K:M[L}K]=%(ML:‘K+M&K'L+MM}_MLR}_M}LK_ MML> v (A2.27)

the principal parts

Equ:L (MLH+ MXH _ M.ﬁua_Mm;> ,
3 (A2.28)

EMi}RZ% <M‘QK+ M}LK_ Mk}i_M}KL>
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The symmétric part M has 10 indepen-
dent components, the antisymmetric part has 1, and
the principal parts p™ and M have 8 indepen-
dent components each, so that the tensor ™M is de-
termined by 27 independent components of its irre-

ducible parts, and

M=M+ M+ MssM . (A2.30)

A. 3. Diifferentiation.

If V is a vector field in E3 with compo-
nents V% and Vg with respect to a coordinate system

L

X", the partial derivatives of the vector VY are

given by the expressions

VR VAR
ay = 0 %R 1-VK'_849’£:( + \}VQ> QR ' (A3.].)
9x™  Jx" ~ ox” 9x™ (me ~

v . ! V R
0 = a_gl +Vt ag = 9 L. VK g_t (A3.2)
ox™ ox™ ¥ ax" 2x" Um ~ 7

R
Vi = oV +{K vt (A3.3)
ox" mt .
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1l

oV R
Vi m - —{ }Vn ) (A3.4)
0x m?

represent the covariant cerivatives of co- and contra

variant components of the vector field !

The quantities

[3)
[tma] = 280 ¢ =«_<89mn L 280 asem> (43.5)
oxt =" 2

axt  9x™  ox"

are the Christoffel symbols of the first kind, and

K _ L, &n . a%ﬂ R
{m2}=9 Dm,n] e - q (A3.6)

~

are the Christoffel symbols of the second kind.

In general, if I is a tensor of contra
variant order p and covariant order ¢ , the co-
variant derivatives of 1ts components are tensors of

contravariant order P and covariant order Qq+1 ,

Tl __0 T,
RS TR , N T
9.8 Oxﬂ 1 (A3.7)
P ba o . S

L. blg-4 Lgged ---Lp | i
+a§ {Kt}T .. .u... o ka
e X R R | AR/ TR T

i)
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For the sake of brevity we write sometimes

for partial derivatives

8 _o . (A3.8)

The covariant differential of a temsor T

is a tensor of the same order, defined by the expres-

sion

P s . ,R
6T.-. = T ——_— ’R. dx (A3.9)
Let I be a time-dependent tensor field.

The absolute time derivatives of the components of

T =T(x.!t)are defined by the formula
- - R .
DT... _ ol ,pin 8% - 7000 (a3.10)
dt ot dt

For double tensor fields we define partial
. . . R .
and total covariant derivatives. If T.K(§,§j is such
a tensor, the partial covariant derivatives are de-

fined by

oT*k R "

T4y = ax: +{am} T (A3.11)
oT* M X

R K

T'K,L = —W —{LK} T'M . (A3-12)

If there is a mapping X =X (Z)., the total covariant
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However, when the vector field y is refered to an
arbitrary system of curvilinear coordinates x'

(A4.1) will cocbtain the form

. .
d,VR=—-{:m} V™ oaxt. (A4.2)

b

The vector field V®at a point X +dX has

the components

VK<§+d§)=VR(%)+OEVRde+... . (A4.3)

The difference between the field value of the vector
V at x+dx and V" +dV" is the covariant dif-

ferential,

V= V¥ (x +dx) Ve =(atv“+{$n}v'“) dx!.  (A4.4)

According to (A4.2) parallelism in Euclid-
ean space 1s defined (in the sense of differential
geometry) as a linear connection of the increment

&\/K of the components of the vector V* and
the componerts dx} of the displacement,

The law (A4.2) may be generalized writing

dVi<-[F VM odx! (84.5)

’

where f"ﬁn are arbitrary functions of position

and are called coefficients of connection of a line-

arly connected space Lgz.




191

derivative with respect to x' ana X' are defined

as a generalization of the classical rule

R R R L
Thge= Thee + Th Xy

‘ ) (A3.13)
T = Thl v T xb (A3.14)
where X%l and x%L are the gradients of the map-

ping X ==X . The chain rule of ordinary differen-

tial calculus also holds for tota] covariant differ-

entiation,

(A3.15)

A. 4. Linearly Connected Spaces.

Let V% be components of a vector field
in Es , refered to a system of Cartesian coordinates
and let us perform a parallel displacement of the vec
tor M' from a point Z toc 2 neighbouring point

zZ o+ dz . The components of the vector V will
remain unchanged. Denoting by ELV“ the change of the

components at a parallel displacement along dz we

may write

*

“d V¥ =0 . (A4. 1)
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In general, the coefficients f"ﬁ“
are not symmetric, and the antisymmetric part
Sé;(Erlﬁﬂ is the torsicn tensor of the space L
Generalizing the rules for covariant
differentiation to linearly connected spaces we may
write for the covariant derivatives of a contravari-

ant vector
Vi g vtergs Ve, (AL.6)

and from the requirements that Vﬁt transformes like
a mixed second-order tensor we obtain the transforma-

tion law for the cocefficients of connection:

¢ 9x™ Ox" aii+ 2x'  9%x!

Cix=T . X __ -
T axE 9%t ox! ox' axioxt (A4.7)
_pt Bx™ex” 3% @x" ox" 0t x "
= lmn — . — - . —
ox¢ 9x™ oxt  oxt ax® ox"ox"
From (A4.7) 1t follows that 5,;;‘ ig a tensor indeed,

, Parallelism in an L, is, according to
(A4.5), defined only for infinitesimal displacements.
1f ABC is a curve in L3 , the total increment A V™
of the components VR cf a vector transpofted par-

allelly from A to C along the curve will be

A VF®= /Stv* =-/rg*§n V™ daxt

ABC - ARC
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If AB'C 1is another curve connecting the
points A and C , the increment of the components of

the vector VE along this curve will be

. *
Anv‘R: /d,VK ,
AB'C
and the increments A'V*and A'WRare, in general, not

equal, i.e. the integral along the closed contour

ABCB'A is not vanishing,

AVE= @ dVE - G IV axt s AVE - ATVE

ABCR'A

Denoting - r'("; vT by ¢ f: and applying

the Stokes theorem,
R mi
§FLax! =Z/fw o F
F

where F is the surface enclosed by the contour
ABCB'A and d,Fm% are components of the surface

1 4
element, AF™ =-AF", wve have

AV® = [[RGN v dF™ (A4.9)
vhere ]
Romi®= 00 -0, Y+ M = T (A4.10)

is the Rierr;ann—Chri_sEc_)ffel_gzygﬁ;ure tensor.

If Romi?® vanishes at all points of the
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space, we say that this space 1s with absolute par-
allelisr (or with teleparallelism).

In Euclidean space the fundamental ten-
sor gy is ceovariant censtant, i1.e. 1ts covariant
derivatives are identically equal to zero. If an L,
admits a symmetric covariant constant vector field gﬂ’
we say thet the space L3z is metric. Let us assume
that an Ly with the coefficients of connecticn fni
is metric and that its fundamental metric tensor 1is

Qi , then we have
= ! b
Fipr= akgik— r&L Qe - rk}gﬁg= 0. (A4.11)

The integrability conditions of (A4.11)

are

<ae ak-akao 9., =0,

and after some calculations they reduce to

R nue)=0. (AL.12)
Hence, if the Riemann-Christoffel tensor for a linear
connection r}ﬁ is symmetric with respect to the
second pair of indices, the cconrecticn 1s metric.

The linearly connected space 1is Euciid-
ean if: 1° the ccefficients of connection are sym-

metric, 2° it is a metric space, 3° the fundamental

form of the space.
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ds? = g;; dx' dx?

(A4.13)
is positive definit, and 4° if the Riemann-Christoffel
tensor vanishes everywhere in the space. If all these
conditions are catisfied, it is possible to find a
coordinate transformation

xisxi(z1)zz,z3> (44.14)

2% = z“(x‘, x? ,x”) ,

such that the fundamental tensor with respect tc the

new coordinate system Z* ocbtains the form

ox' oxi
e EIRLE

(A4.15)

guﬁ:

In scme problems we have to deal with the
correspondence of a set of points of Fuclidean space
with a set of points of a linearly connected space

Ly . If x% is a system of coordinates in Euclid-
ean space, and u%¥ a system of coordinates ir Ly

there co not exist 1:1 finite mappings of the form
x' = x! <u.‘, w?, u,”>

w = u® <x', x?, x”)

(A4.16)

but only the local mappirngs of infinitesimal elements

dx‘and du®,

d.xL = @(:x) duw®
(A4.17)
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We assume that the relations (A4.17) are linearly in-

dependent,

det Gy # 0 (A4518)

so that there exist the inverse relatiomns

du® = G dx’ (AL.19)
The integrakility cenditions of (A4.17) read
2% =9, O¢-0,0 =0 (A4.20)

and those conditicns are, in generzl, not satisfied.

The vectors ey constitute in Esx three
vector fields and at each point there are lines the
tangents of which are colinear with the vectors Q.

The differential equations of these lines are

dx’ dx?*  dx?

(I):m @(za) (I)?“) ’ . (A4.21)

Let us &assume that there 1s a linearly

connected space with the coefficiente of conmnection
[qﬁ such that the vector fields @(;)constitute
fields of absolutelv parallel vecters, i.e. with re-
spect to the connection concidered the vectors @(a)

~

are covariant congtant everywhere in the space,
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9., (D(ﬁ) + r:e (I)(aa\ =0, (AL .22)

Transvection of this with QVz) and using the rela-

tions

O dE =68 O Dh =85 (AL.23)

we obtain

Con == O 0, 0% = O 8, O

. T (4.24)
It may be easily verified that substituting f“:n from

(A4.24) into the expression (A4.10) for the compo-
nents of R, +® will identically vanish. According to
(A4.12) it follows that the conditions for the space
considered to te metric are identically fulfilled.

From the preceding it fcllows that it is
always possible to associate a linearly connected
metric space to a nou-irtegrable mapping, and the
tecrsicon of this space does not necéssarily vanish.

The torsion tenscr of the cennecticn (A4.23)

is given by

Son = D& O (I)(':ﬁ = G ') , (p6.25)

and it 1s obviovs that the space associated to a non-
-integrable mapping will be Euclidean only if the tor

sion vanishes i.e. if the mapping is integrable (this
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1s a necessary, but not a sufficient condition).
The quantities obtained by transvecting
vectors, tensors etc. of Euclidean space with the

components cf the vectors @ay ®<“’,e.g.
~ ~7

)

Ve - yid @ T('{"(M=T%éq)(fﬂ(bgm (AL .26)

are ofren called non-holonomic components of those

quantities.
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