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PREFACE. '

The Conference of algebraists from Belgrade, Novi

Sad and Skopje took place in Skopje on February 1-3,

1980. There were 27 official participants with 20 re-

. ports from:

1. Faéulty of Saiences, Belgrade: 5 participants
with 5 reports (the papers Nos 1-6 in the contents) ;

TII. Mathematical Institute, Belgrade: 5 partici-
pants with 4 reports (Hos 7-10);

ITI. Faculty of Sciences, Novi Sad: 6 participants
with 4 reports (Nos 11-15);

IV. Faculty of Mathematics, Skopje: 10 participants
with 7 reports (Nes 16-21).

Beside the official participants, some other

mathematicians attended the Conference.

The representatives gave short reviews of the
teaching algebra in their institutions and in the
discussion some suggestions were given for impro-
vement of the algebra teaching from the methodologi-

cal and subject-matter point of views.

In a special debate it was unanimously welcomed

the initiative for organizing this Conference, Esta-



blishing that such meetings are very useful and signi-

ficant for interchanging scientific informations, di-

rect contacts and fruitful collaboration on many fields,

the participants decided:
-to include algebraists from all over Yugoslavia;

-the next Conference to be organized by the alge-
braists of the Faculty of Sciences from Novi Sad in
1981;

-the work on the Conference to be done in secti-
ons, following a particular programme;

—the reports of the Conference to be published
in a special book.

_This book of proceedings is a result of the above
decisions. The papers are published here in the order
in which they were presented during the Conference,
The papers No 6 and No 15 (in the contents), due to
the absence of the authors, were not communicated,
and the paper No 21 is a joint of two reports pre-

" sented on the Conference by the two authors separately.
Skopije

Editor: N.C.
December 1980
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- REMARKS ON SOME CONSTRUCTIONS IN ALGEBRA

=7 &7 07 SlaviSa:B. Prelié

g:.We start with an eiémplé.'it is well known [1],

" p- 185 that every universal algebra can be embedded

‘into-cdertaih semigroup.: For -instance, according to

this theorem, in case.of the groupoid determined by

B N

true-for:-ail: :x,ye€i{a,bl..

the table
(1)
" Twe have the'folldWing_asse:tioh: 1¢~
(2) There exists a set SD{a,b}, an operation-:

‘*)G&‘Sg;f S *andA,c«sSf—such3thath($;?§):is;ag

-semigroup and the eguality

xoy = (¥ %y

We describe a construction of such a semigroun:(S,¥},

‘whose ‘elements .will be generated by a,b and one new

element

of some,

that.

TR

c. In fact this const:uctipn_isian:ilpstration

general ideas we are dgoing to describe after

first extend.the;set..{a,b},~by“a_pew element,

2
z
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¢ say. Further, by Term(a,b,c,x), where x is a binary
operation symbol, we denote the set of all terms built

up from a,b,c and * (without any variables).

In connection with (2) form the following set
H(=(3)U (4) U (5)):
(3)

i.e.. all equalities of the form

(c*xa)xa = a, (cxa)xb = b, (cxb)sa=a, (cxb)xb=a,

xoy = (Cix)*y (x,ye{a,b})

(4) a#b
(5)

Further let Ax(=) be the set of the following formulas

(tl*tZ)*t3 = tl*(tZ*t3) for all tiGTerm(a,b,c,*).

(the equality axioms):

C(8) =t tyst, = tyst, 5t AR Sty = 85

ty = Aty =t = tyxty = tyxty (tiGTerm(a,b,c,*)),

Obviously any normal modell) of the set HUAx(=)

(of the set H as well) determines the required semigroup

(s, %y.

We point out that the set HUAx(=) 1is a set of

2)

basic Horn formulas.

Besides this, in algebra, there are many other
problems which can be expressed by means of certain
sets of basic Horn formulas. For instance, the problems
of isomorphic embeddings, constructions of free algebras

and so on.
We describe one method which is often useful for

solving such problems. This method is partly original.

The paper is deeply connected with [2].

e — e

'3

At first we construct the required semigroup (8,961

In the first step we search for some quasi-alge-
bra [2], which follows from the set HUAx(=). To achi-
eve this, define the equivalence relation ~ (of

Term(a,b, %)) as follows:

9 HUBAx (=) t, =ty

Using this definition it is easy to prove that:

(7 tl ~ t iff

Each member t of Term(a,b,c,%) is equivalent to at
least one term t~ having the property:

3)

If t° contains the symbol ¢, then after

every occurrence of c there is at most one occu-

rrence of a or b.

Let M be the set of all t”, where t€Term(a,b,c,x)

The members t” of M are called markers, For instance

a, aa, ¢, aca, ccace€M, but cab¢M.

mlm2 be the marker

which is obtained from the term mym, by using the
(3)):

Let my,m, be any two markers and let

substitutions (see

caa-——~ a, cab—'b, cba-— a, cbb— a.

It ig easy to prove that m, m, is unique determined by

My M, . For example, if m, = cacchb, m, = abca, then

m m, = cacchabca =

1 cacabca

cba - a

= cabca = bca

cab - b.

Denote by Q the set of all equalities of the form:



This set is a quasi-algebra.

In the second step we check whether the quasi-
algebra Q is incontractible. Using the way described
- in [2] it is easy to see that Q is incontractible, i;e.
that '

not QUAX (=) m =m,

where ml,m2 are some two different members of the set
M. The set Q is a consequence of the set HUBAx (=) .
That is why the equivalence

(8) HUAX (=) equiv. HUAM(=)UQ
is true.
In the third step we replace each term t of each

formula of the set H by the corresponding marker t-.
In such a way from the set H we obtain a new set H_-

s0 called the reduct of the set H modulo the quasi-
———— - = SEt 4 modulo the quasi
algebra Q.

Obviously the equivalence
(9) HUAX(=) UQ  equiv. Hy U Ax (=) U Q
is true. From (8), (9) if follows that
(10) HUAx (=) equiv. HQqu(=)u'Q.

We now "calculate" HO' For the set (3) we have

(3)Q = {a=al b=br a=a:, a=a}.

It is not quite easy to find (5) i.e. the set

Ql
(5)Q = {mlmzm3 = mymyms | my,my,mg € M},

The result is

Il

(ﬂQ {m = m |meM}.

5

In other words the quasi-algebra Q satisfies the asso-

ciative law. For the set (4) we have

(4)g = {a # bl,

bécause a,b are markers and therefore: a” is a, b~ is b.
As HQ = (3)QKJ(4)Q\J(5)Q we have the following
result (for HQ):
HQ ={a #btyim=m | meM}.
For the set H. we note the following:

Q ,
(11) The reduct HQ contains neither any equality m, = m,

between two different4) markers nor any member of

the form m # m.
From this and (10) it follows the following equivalence
(12) HUAx (=) equiv. Ax(s)uQu{a # b}.

The set Qu{a # b} 1is called extended quasi-

algebra. Generally, if Q is any quasi-algebra and D is

any set of some formulas of the form.

m, # m, (ml,m2 are different markers),

then the set QuUD is called extended quasi-algebra.

From the equivalence (12) we conclude that the
required semigroup is determined by any model of the

extended quasi-algebra Qufa # bl.

Obviously this extended quasi-algebra is consi-
stent (since Q is incontractible and a,b are two dif-
ferent markers as well). Therefore the set Qui{a # b}
has at least one model. One of models (S,%) (in fact

the marker model) is defermined as follows:

1° The set S is equal to the set M of all markers.



2° The operation ¥ is defined by

X =
My 72 my = mm,
In such a way we have completed the construction of the

required semigroup (S,%).

Of course to prove the assertion (2) we do not need
effectively to construct one semigroup (S,gé) satisfying
(2) . Namely, to prove (2) it is sufficient to prove the
existence of any model of the set HUAx (=), i.e. the
consistency of that set.

It is easy to see that the consistency condition is
equivalent to the following condition

(13) Not HUAX(=) b—a = b

i.e. that the terms a,p (all members of the given grou-
poid (1)) are not equivalent,

Suppose the opposite, i.e.
HUAx(=) —a =b

which is equivalent to>)

Hlﬁ
Ax (=)
i.e. the equality a=b can be derived from the set H

using the equational logic. Let

a=>h,

14 = - _
(14) a t, t, = t2,...,tk = b

be one of such derivations. By the substitutions
(cxa) xa - (aoca), (cxa) *b - (aob),
(c#b) *a -~ (boa), (c*b)xb - (bob)

from the derivation (14) we obtain a derivation of the
equality a=b in the given groupoid, which is impossible.
Consequently the condition (13) is proved.

2. We are now going to study the general case. Let
@ be a given set of operation symbols and [ a given set
of constants. By Term (@, ') denote the set of all terms
puilt up fromﬂénd @‘(but without variables). Further let
H be a set of some (pasic Horn) formulas, i.e. formulas

of the form
¢ll—|¢ll ¢1A---/\¢k =>¢k+l) ¢l/\-.-/\¢k:—|¢k+l
(k = 1,2...), where ¢i are of the form
t, =t 178, Term (2,7 )).
We also suppose that certain problem Qb, like the consi-

(t

dered, is expressed by the set H. We distinguish two

cases:
To solve the problem ganmans
1° to prove that H has a model,
or 2° to construct a model of H.

The considered problem QD belongs to the case 10,
As a matter of fact this problem is expressed by the
set H (=(3)U (4) U(5)) but with quantifiers
(38)(3*:52+S) as prefixes, i.e. © is exactly expressed

by the "formula"
(3S) (3*:5°~5) H.

Generaly in case 1° the problem P is expressed by H,

preceding by -some existencial quantifiers.

In this case to solve the problem &P it is suffi-
cient to prove the consistence of the set H. In the
literature there are many particular ideas about it.
For instance, we can often use the ideas which are

similar to those used in the considered problem.



. . . o
In this paper we are more interested in case 2.

We sketch, step by step, one solving method similar

to the method used in the considered example.

In the first step we search for some guasi-algebra
which follows from the set HUAx(=).

To achieve this
we use the definition of the type (7).

In the second step we check whether the quasi- '

algebra Q is incontractible using the way described in [2]4

If Q is contractible,
ties of the form

then there are some equali-

m, = m, (ml, m, are different markers)

which follows from QL)AX(=). Then using such ecualities
we reduce the set M of all markers to some its proper

subset Ml’ and form a corresponding quasi-algebra, Ql say.

We proceede in such a way, until we obtain some

gquasi-algebra which is incontractible.

In the-third step we form the set H the reduct

of H modulo Q, by replacing each term t of every formula

0

of the set H by the corresponding equivalent marker t”.
We also replace the formulas of the form

m=mA ... An=n = M=M,, M =MNA...An=n = m  #in

1 2

m; = m, = m # n (ml,mz,m,n' are markers)

b —
\'4 my my, my # my, m # m,

respectively |

Then, similarly as in the example (see (10)) the
equivalence B

(15) HuUAx (=) equiv. H uaAx{=)UQ

Q

is true. The members of the set H, are of the form
Oyr by A e Ad = ¢kf}’ O N A =10y 4

=1,...) where $; are some equalities of the form

m, = m, (ml,m2 are markers) .

For the set HQ

The sentence (11) is either true or false.

there are two possibilities

If (11) is false and HQ has some member of the
form m # m, then the set H is inconsistent and conse-
guently there is no universal algebra which is a
solution of the problem @, -

If (11) is false and certain equality m; =m,
between two different markers is a member of the re-
6)

duct HQ, then using all such equalities we reduce

the quasi-algebra Q and go back to the second step.

If the sentence (11) is true we form the corres-—
QUD (D is the set of

all members of HQ which are of the form m,y # m,, where

ponding extended quasi-algebra

m, ,m, are different markers). Then from (15) we conclude

the following equivalence

(16) HUAX (=) equiv. QuUDUAx(=)UJ,

where J is a set of some implications of the form

(17) M) = DA LAY =Ny sy g =

1 D41

m, =n,A...Am (k=1,2,...]

1 1 ’ k

and m., n,
i i

= my = oMy, Ny

(1<i<k) are pairwise different markers.

The marker algebra - whose members are markers
and operations are defined using directly the equali-

ties belonging to the quasi-algebra Q@ - 1is a model

for Q, for QuUD, for QUDUJ and also a model for H.
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In this way the mentioned method is completely
described. We also add the following remarks:

(i) By the described method the consistency problem
for the set H is also solved.

(ii) The obtained model, i.e. the marker algebra is,

in fact, a model of H generated7) by the
constants belonging to T uU@.

3. At the end we give one problem in which a non
basic Horn set of formulas appears but which can be
solved in a similar way (searching for an incontractible
quasi-algebra Q which is a consequence of the correspon-

ding set H, after that forming the reduct H,, and so on).

Let J2 be a field with two elements 0, e defined
by the tables

+ 0 e - 0 e
(18) 0o lo e o lo o
e 0 e

and x2 + x + e =0 be an egquation in x.

The problem is to construct the root field for

this equation. We sketch one way of solving.

Let H be the set of the following formulas

((19) y...u(23))
0+0=0, . O+e=e, e+0=e ete=0
(19) 0-0=0, 0-e=0, e-~0=0, e-e=e
~-O'/=0., -e=e, e_l=e
(20) 0 #£e
(x+y)+z=x+(y+z), x+t0=x, x+(-x)=0, xty=y+x
(21) (X-y) -z=x-(y-z), x-e=Xx, x#O:?x-x_lze, X*y=Yy-X

X (Y+Z):X'Y+X'Z

11

(22) a“ +at+te=20

(23) 0™t =0

where a is a new constant symbol and x,y,z are ele-
ments of the set’ 7

(24) Term(O,e,a,+,-,-,_1)

The formulas (19) U (20) are members of the diagram of
l the given field J2, the formulas (21) are the field
axioms, the formula (22) expresses that a is a solution
. of the given equation and g?e formula (23)
|

simplify our consideration ’.

is taken to

Obviously any (normal) model of these formulas
determines the requiredg) field.

In this case about the relation v, introduced by
(as (7))

t, ~ t iff

1 2

we have the following assertion

HUAx (=) t1 =ty

Each term (a member of the set (22))is equivalent

to one of the following terms (i.e. markers)

O, e, a a+te.
For instance

0 1.0, since 0 '=0€m
a i ate, since a(ate)~e and HUAX (=) - a#0,
which can be proved in the following way
(3) HUAx (=) U {a=0} |— e=0
(ii) HUAx (=) |— a=0 = e=0, from (j)

by the Deduction theorem
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(333) HURx(S) |—e#0 = a#0

(jw) HUAx(=) | a#0, since e#0€ H.

One quasi-algebra 0, which is a consequence for the
set HUAx{=), is determined by the following equalities:

0+0=0 O+e=e O+a=a 0+ (ate)=ate
e+0=e e+e=0 et+a=a+te e+ (ate)=a
at0=a ate=ate ata=0 a+ (ate)=e
(ate)+0=a+te (ate)+e=a (ate)+a=e (ate)+ (ate)=0
(25)
0-0=0 0-e=0 0-a=0 0. (a+e)=0
e-0=0 e-e=e era=a e- (ate)=ate
a-0=0 a-e=a a-a=ate a- (ate)=e
(at+e) -0=0 (at+e) e=a+e (ate)-a=e (ate) .f{ate)=a
-0=0, -e=e, -a=a, -(ate) = ate;

07 l=0, el=e, a l=ate, (ate) =ate
It is not difficult to prove that HO is equivalent to the
set {e#0}. Further, from the set QuU{a#0}1UAx(=) we

obtain the following inequalities
(26) e#0, a¥0, ate#0, aze, a+e#e, ate#a.

Finally we conclude that the set (25) U (26) deter-
mines the required field. '

We point out that a' similar way can be used to
construct the root field of any given equation (on some
field F).

b i.e. model in which the sign = is interpreted

as equality.

ey

e e W T —————— e
e ———
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2)
Each member of that set is of the following type

by M9y PIA e A = by b1 A e AdpTTéR 4
(k=1,2,...) where ¢; are formulas of the form
tl = t2 (tl,tzeTem(a,b,c,*))-

3) . . .
We write X1X2’ xlx2x3, .. instead of Xy * Xo
(xl*x2)*x3, ... respectively.

4) different as terms.

>) i.e. the equality a = b can be derived from
the set H by using the equational logic.

6) To speed up the algorithm we can also use every
equality of the form m, =m., (ml,m2 are different
markers), which is a conseguence of HQLJAX(=)
(by propositional logic).

Similarly, if a formula of the form n#m
is deduced from HQLJAx(=), then the problem
17 has no solution.

7) Other such models are the homomorphic images
of the marker algebra corresponding to the con-
gruences of the marker algebra which preserve

(i.e. satisfy) the conditions DUJ.

8) In any field we may use the definition 0—_l = 0.

) If a is a solution of the equation x2+x+e=0,

so is e+a.
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ON NUCLEI AND PSEUDO-AUTOMORPHISMS
OF pn-ARY QUASIGROUPS
Branka P. Alimpié

In the binary case, for ‘a quasigroup (Q,+) there
exists the left (right) nucleus if and only if there
exists at least one right (left) pseudo-automorphism
[1]. In this paper we introduce i-pseudo--automorphism,
i=1,...,n, for an n-ary quasigroup, and we establish
analogous connections with i-nuclei [2] of the same
quasigroup.

Let (Q,w) be an n-ary quasigroup. If a?_l is an

arbitrary element of Qn_l, we shall denote it by a.
The bijection L,(a) of Q, i =1,...,n, defined by
. i
xL. (3) def aJ_—lxan--l
i . | i

by the sequence a.

w, is called i-translation of (Q,w)

.For any mapping ¢ : Q - Q, a$¢ denotes the sequen-
ce a1¢...an_1¢. .
The bijection X : Q - Q with the property
XL, (%)} = xL, (x1), | (1)
where X = x?—l, is called i-regular bijection of the
n-ary quasigroup (Q,w), i =1,...,n. Let ni be the

group of all i-regqgular bijections of (Q,w). The set

15



16

def _ -1

Ni——{aEQ I Li(a)Eﬂi}

is called i-nucleus of the n-ary quasigroup (Q,w). The

set Ni with respect to the operation o, defined by

EoiB = ELi(B), is a regular semigroup. For any n-ary

quasigroup (Q,w) there exists the nucleus N, if and
only if there exists some eeo™! such that
(Ver)XLi(E) = xX. (2)

In that case, the group ﬂi is a homomorhic image of Ni'

Let E, be the set of alt seQ™ satisfying (2).

For a binary quasigroup (Q,
lities hold [1]:

-) the following equa-

N_ = fR = {fp |

r

N, =ell = (ex | reL},

where e (f)

peR},

is the left (right) identity, & (®) is the
group of left (right) regular bijections, and N, (Nr)
is the left (right) nucleus of the quasigroup (Q, )

In the n—-ary case, we have an analogous result:

Lemma 1. N, = E.0, = {EHEEEi, xeni}, i=1,...,n.

Proof. If eAGEEini, then xLi(x)Li(eA) =

XL (X)L, (e)x = xL; (X)) = xL; (X)) = xL, (RL; () \) =

xLi(EL. {ex)). Hence, eXE€N,.
1 1

Conversely, let EEN_LL.

the equation

Since (Q,w) is an n-ary

quasigroup, a = §Li(3) in X has uniquely

determined solutioan €, which belongs to Ei'
xLi(e)Li(a) = xLijeLi(a)) = xLi(a)

for all x¢cQ. Thus EeEi,

Indeed, from
we obtain
and a = eL.(a)€E.N,.

1 1 1

Theorem 1. The i-nucleus Ni (i=1,.

quasigroup (Q,w) is a left group.

..,n) of an n-ary

Proof. A semigroup is a left group if and only if it

XLi(E) = X,

17

is isomorphic to the direct product of a left zero

semigroup and & group. (Ei'ol) ii a left Zero seTi—
group f€E,, eoif = eLi(f) =e), and iy 1s a

group. Let us prove that .Ni £=3

(for e,
EiX ﬂi.
Let ¢:E;X ny - N, be the mapping defined by
(€,)\)¢ = €r. First we shall prove that ¢ is a bije-

ction: 5 _F, = (VxeQ)xL; (@) = xby ()
= (Ver)xL.l_(E))\ = xLi(?)u
= (¥xe€Q)x) = Xy
= A = u.
Since ) is a bijection, ex = Tr = = ¥. Thus,
A =Fy = r=une=9%f = (e,x) =&,u).
Since Ni = Eini, ¢ is a bijection of Eix ﬂi onto Ni'

Finally we obtain

(&, 1) - (F,u)) 6 = (€0, T, ame = (e, lu)d =

= Eap = &L, (Dy = &L (Fw) = &ro;Fu = (e, 290, (E,u) 0.

Thus, ¢ is an isomorphism, as required.

Pseudo-automorphisms of n-ary. quasigroups. Let

(Q,w) be a binary qua51grouo. A bijection ¢ of the set
Q is called a right (left) pseudo—automorphlsm of (Q,-
provided there exists at least one element a of O, cal-
led a companion of ¢, such that (¢xa, ¢, ¢ka)

(s, oo ¢%)] is an autotopism ©of (Q,°)-

The set of all companions of a left (right) pse-
(af), where a is an arbi-
trary companion of 4, R (&)
right (left) regular bijections of (Q, )

udo-automorphism is a®
is the set of all

Dj, We prove
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an analogous result for n-ary quasigroups.

Let (Q,w) be an n-ary quasigroup, Feo™ !, and let
$4: Q . Q be a bijection of the set Q.

The mapping ¢ is called i*pseudo—automorphism.

(i =1,...,n) with a companion a proveded
XL, (¥)¢L; (a) = x¢L, (x¢L; (a)). (3)

In other words, ¢ is an i-pseudo—automorphism

' n+1)

1

o = ¢Li(a), k=1,...i-1,

¢. We denote this autotopism by.(¢,§)i.

with a companion a if and only if (a is an auto-

topism of (Q,w), where

i+l,...,n, O-i=

For n=2, we obtain the left and right pseudo-auto-
morphisms.
Lemma 2.

For any n-ary quasigroup (Q,w) there exists

at least one i-pseudo-automorphism if and only if iEi £ 8.

Proof. If e €E,;, the identity mapping I of Q0 (and
every automorphism of (Q,w), too) is an i-pseudo-auto-

morphism with a companion e.

Conversely, let ¢ be an i-pseudo-automorphism with a

companion a. The equation a = §¢Li(§) has uniquely

determined solution e. We prove that Eé:Ei.'From (3) we

have

XL, () ¢L; (a) = x9L, (edL, (@)) = xoL, (a)

=> xLi(e) =x = .eeEi.

COROLLARY 1. For any n-ary quasigroup (Q,w) there

exists at least one i-pseudo-automorphism if and only
if Ni £ 8.

Let Pi be the set of all i-pseudo-automorphisms
of an n-ary quasigroup (Q,w).

An autotopism, too. Thus, we obtain
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Lemma 3. If a is a companion of an i-~pseudo-auto-

morphism ¢, and ) €1N,, then al is a companion of ¢,

too.
Proof.
XL, (x) 9Ly (@r) = XL, (x) L, (a) A (since ren,)
= x¢Li(§¢Li(E))A (since ¢ P;)
= x¢Li(§¢Li(E)A) (since 1€ ;)
= X¢Li(§¢Li(§A)) (since 1€ ﬂiL

Lemma 4. If a is a companion of an i-pseudo—auto-

morphism ¢, then Li(5¢oi§) =,Li(5), for every E(EEi.
" Proof. Since
= xLi(e)¢Li(a).=

x¢Li(€¢oi5) = x¢Li(€¢Li(§)) =

x¢Li(3), for every x€Q, we obtain-

_Li(€¢oi5) = Li(E).

Lemma 5. The set P., with respect to the composi-

tion of mappings, is a group. S

Proof. Let ¢,y €P,, with companions a und b, re-

spectively. Since

x9L; (@) vLy (B) = x¢yL, (avL; (B)) = x¢vL, (@vo,b),

the product of autotopisms (¢J5)i and (WfE)i is the
autotopism (¢9, EWOiB)i. Thus, ¢¥€P, with a compa
nion EWOiE} )

The identity mapping I belongs to Pi with.amcom~
panion E'eEin .

Let ¢€&€P,, with a companion a. We prove that
1 . . LT — R e o .
® G.Pi, with a companion eL, (&) Y4 l, €€ E,. Since
(¢,aXi is an autotopism, it follows that (¢, a)lluis

xLy GE (@ T = xe Tl G, @ N Y
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and, for X = e (E'EEi), we have

1,-1 -1

xL, (@) 7Tl = xe 1y-t

Li(ELi(E)“-¢ ).

Hence, Pi is a group.

Let A be the group of all automorphisms of (Q,w).
If o€s4 , and —e{eNi, then a€P; with a companion a.

Thus, A is a subgroup of Pi'

Further, if
then a¢ € Pi

¢E.Pi

aed,

with the same companion a. Hence, every

with a companion a and

i-pseudo-automorphism ¢ of the coset <£¢ has the same
companion a.

THEOREM 2. Let Ki(¢) be the set of all companions
of an i-pseudo-automorphism ¢ of an n-ary quasigroup
(Q,w). Then

K.l(qb) = czn, .y where Cy = {bl_Li(a) = Li(b)}.
Proof. Let 565K1(¢). By Lemma 3, we have

cyh, = {balbecy, Aéﬂi} € K, (¢).

Conversely, if EGEKi(¢), then Lzl(E)Li(E)e My, and

— -1 — — - =1 ,— -~ —
Li(bLi (b)Li(a)) = Li(b)Li (b)Li(a) = Li(a).
Hence,

= =1 = - _ = N : I |
bLi (b)Li(a) =.bXE Ca' and b = (bA)x ~e Céni'

COROLLARY 2. ¢€A = K (#) = CM, = E.N, =N,.

e i i i i
aEEKi(¢), then CE = Ei¢oia, and

Lemma 6. if

cardC— = cardE;.
a i

Proof. By lemma 4, Ei¢oi§ € C. Conversely, if
E;ECE’ let e be the solution of the equation §¢0i5 =b.

We prove that Eein. Since

XL, (€)¢L; (a) = x¢L; (€9L; (A)) = x¢L; (B) = x¢L,(3),
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we have xLi(E) = x. Thus EtEEi and Cy € E ¢o0,a.

defined

Let us consider the mapping <I>:Ei - Cg

by er E¢oi5. Since E¢oi§ = f¢oi§ = e¢ = f¢ =
e = £, for every E,?e&Ei, ¢ is a bijection of E, onto

CE' Thus, cardEi = cardcg.

COROLLARY 3. Let (Q,w) be an n-ary quasigroup. If
Ei # $, then cardNi = cardKi(¢) = cardEi-cardni.

Proof. By theorem 1, we have immediately cardNi =

= cardEi-cardﬂi. Since

A =By = L (@1 =L;Bu = * = AT =b,

E,EECE and A,p €M, the mapping Cyz X n—
defined by (B,2) > Bx is a bijection.

for every
R, (9) = Czfy
Thus,

cardEi~card”i =-cardca’cardﬂi-= cardKi(¢).
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' SOME RESULTS ON THE EXTENDING OF MODELS

Marica D. Pre8ié

In this paper we consider so called A-extension
of models which is a generalization of the usual notion
of extension in the'following sense. The modelc¢£2 is
a A-extension of the model o&& (dﬂl and o”z are in the

languages L., L2 respectively) ‘iff the domain of A

is a subsetlof the domain of 0W2 and the operationsland
relations ofc%zl are represented (by means of the
mapping A) by terms and formulae of da2' The precise
conditions for the mapping A are given in Definition 1.
We prove some general results which parallel and are
deeply connected with the well known results due to -
Eo$ [6] and Malcev [7].

We start with some known definitions and asserti-
ons which we use in what follows. First of all we note
that each first order language L is of the form OUR
where O and R are the sets of operation and relation
symbols of L. As usual, we denote by 0{(n)(n=0,1,...),
R(n)(n¥l,2,...) respectively the sets of all n-ary
operation and relation symbols of L. If M is a model
(i.e. realization) of L and f e€0O(n), peR(n), then M
is the domain of o/ and fyr py are the operation and
relation of ol corresvonding to f, p respectively. If

X'is the set of variables, for example

23



X =,{xl,x2,x i

37"
then by Term(X,L) we denote the set of all terms built
up from_the operation symbols of L and variables of X.

If t is a term built up from n different variables,
- 1)

Xyre..,X,  say, then we say that t is of length n and
we write t(xl,...,xn). Similarly if F is a formula in
the language L having'n free variables, Xyree.0X saY,

then n is ‘called the length of F and 'is denoted by
F(xl,..,,x ) -

Further, For (X,L) is- the set of all formulae in L
built up from the varlables of X. In what follows we use
the symbols l,u2,..- .as meta—varlables.

Deflnltion 1. Let Ll’LZ be flrst order languages,

0@', 6%7 ‘their models and

A ; Lf—+ Term(X , L )k)For(X L, ) ] .ki)

a mapping Wthh as51gnes to each operation symbol
f EIj - a term £ € Term(X,L ) and :to each relation sym-
bol “peL,

' a formula eFor(X L, ) providing that

£, % are oF the -same lengtns as. f 0 respectlvelyz).
We ‘say ‘that oﬂl_ls a A-submodel’ of oW (and’ oﬂ ‘is a’
A—extensron of OW ) 1ff ‘the fol1ow1nd condltlons are

satisfied:

(1) rees
iii ' (V . -y EM) fM (ul,...,u ) —fM (uln--,u)
hw W%,“”ueM)pM(u ?qu)¢$¢>;u,“;a)l

1
) If t contalns rio varlable it is of length zero.

2) . .
A mapping of this type is called a term-formula

representation (or TF-representation) af the language
Ll in the language L

2
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for each ceol(O), fEOl(m), peRl(n) (m,n=1,2,...),
where Ew v f& ’ 6M are the constant, operation and
i )

2 2 2 o
relation of ouz defined by the terms C, f (of the len-

gth 0,‘m respectively) and the formula 5 (of the
length n).

Using the preceding definition it is not difficult
to generalize the notion of isomorphical embedding in
the following way. '

Definition 2. Let L,,Ly be first order languages,

oAlyr o#, their models and A a mapping of the form (1)

satisfying the condition that the corresponding opera-
"
tion symbol f and term f as well as the corresponding

relation symbol @ and formula & are of the same len-
gths. We say that c4ﬁ is A-embeddable in oﬂg'iff there

is an injection ¢: M; = M, such that the following

conditions are satisfied:

Pay

(1) ¢CM = Cy
1
(ii) (Vul,...,umeMl)
™\
¢fM (ulli--lum) = fM (¢ulr---l¢um)
1 2
(iii) (Vul,...,une:Ml)
A
le (ul’.."un) <:> pMé¢ul,'..’¢un)
for each Ceol(O), feol(m), p € Ry (n) (n,m=1,2,...),
where E& ’ ?& ,‘3M are the constant, operation and
"2 2 2

relation of Mé defined by the terms 6, E\(of the length

0, m~- respectively) and the formula ? (of the length n).
We emphasize that the notion of A-submodel (and

accordingly A-embedding) is closely connected with the

usual notion of submodel in the wav we shall describe.
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Definition 3. Let L be a first order language and D

a set of explicit definitions of the form:

D(C) c = tyr
D(f) f(ul,...,um) = t2(ul,...,um),
D(p) o(ug e, u ) ES Flug,.nn,up),

where tl, t2 are terms in L of length O, m respectively,
F is a formula in L of length n and C, £, p are new
symbols for L, i.e. they do not belong to L. The lan-
guage LD obtained by adding to L all new operation and
relation symbols defined by the explicit definitions of
D is called a D-extension of L.

‘Using well known theorems about explicit defini-
tions[G]it is easy to prove the following theorem.

Theorem 1. Let L be a first order language, D a
set of explicit definitions of the form D(C), D(f), D(p)
and Lp corresponding D-extension of L. Each model o#( of
L can be extended, in the unique way, to a model GWb of

LD in which all the definitions of D are satisfied, and

conversely each model OW of L. in which the definitions

D
of D are satisfied can be restricted, in the unique way,
to a model o/ of L. Note that the domain MD

The following theorem links the notions A-submodel

equals M.

and D-extension. ) ’ ,

Theorem 2. Let L L, be first order languages,

_ ’
cﬂcl, aﬁ& their models}and suppose that 041 is a A-sub-
model of 042 wheré A is a mapping of the. form (1)
satisfying the conditions of Definition.l. .

Theh there is a set D of explicit definitions of

the form D(C), D(f), D(p) such that Oﬁg.is a submodel

of %{2[)
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let L, be a first order language, D a

Conversely,
and OQED D-extension

set of explicit definitions in L2 .
i a sub-
of cﬂ%. If the model 641 of the language L is

model bf :ﬂéD, then there is a mapping
AL Term (X ,L,) U For (X,L,)

satisfying the conditions of Definition 1 such that

M. is a A-submodel of M,- ‘
) Hint. If aﬂl is a A-submodel of oM _, then D consi-

sts of definitions of the following form:
N\
C = 6; f(ul,...,um) = f(ul,...,um),

Pl
p(ul,...,un) — p(ul,...,un)
i he
Conversely, if °&i is a submodel of OQZD’ then t

unique mapping A is the following:

C £ p
A =
tl t2 F

(ceo, (0), feo {m) , peRl(n)) '

where the formulae

C = tl’ f(ul,...,um) = t2(u1,...,un3,

p(ul,...,un) <:f> F(_ul,---,un)

are elements of D.

i : nguages
Definition 4. Let Ll’ L, be first éerder languages,
the cor-

D a set of explicit definitions in L2' L2D

her
L2D Further,

responding D-extension of L, and L,<&

let F2 be a formula in L2.

is expessible in the language L,
CXpESS-P-%

such that

We say that F,
iff there is a formula F1 in Ll

Db F, &> F, ' (2)
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For example, if Ll = {f,p}, L2 = {xs0}, D = {£(x) = x#x,

p(x) & (Yy) o (x,y)}, then the formula

Ex) (Vy)a(x4x,¥) = (Vy)o((X«X) % (X4%) ,y)
is expressible in L, by
(Ax) p (£x) = p{u"x)

Theorem 3. Let L,+ L, be first order languages,

Lyp- Further let oWl,
aﬂé be models of Ll' L, such that a&l is a submodel of
M.

2
universal formula Fl in Ll the following implication

L2D a D-extension of L2 and ng

D" Then for each formula F2 in L2 expressible by a

oﬂzrz Fz—vof(l}= F (3)
holds.
Proof. Suppose that
(4)

cﬂzzkz F,
holds. By assumption of the theorem we have

Di— F| <= F,

\

wherefrom it follows immediatelyv

| N oﬂ(le= F,
Since F2 is in L2 we conclude
%ZDt: F, 1iff ofl(zi:: F .

From the preceding two equivalences it follows that
A i Y

hkE F,  iff S Fy

and using the assumption (4) we obtain

Ay =Ty

Since<d%i is a submodel of dﬂ;D and F.

1
formula, using the well known theorem [6] we deduce

is a universal

b

ges,

29

0451}= F,
which completes the proof.

Using the notion of A"sﬁbmodel, Definition 4 and

Theorem 3 may be reformulated in the following way.

Definition 47. Let Ly, L2 be first order langua-

A a mapping of the form (1) and F, a formula in

L2. We say that F2 is expressible in the language Ll

iff there is a formula Fl in Ll such that

F, = F (5)

1 2°

Theorem 3 7. Let Ll, L, be first order languages,
~ a mapping of the form (1),
, in L, and<7%1, o&& models of L, L,
such that oﬂ& is a A-submodel of o@é. Then for each

(in the

i.e. N 1is a TF-repre-

sentation of L

formula F2 in L2 which is expressible in Ll
sence of the preceding definition) by universal formu-

la'Fl,the implication (3) holds.
Using the notion of diagram the following theorem

can be easily proved.

Theorem 4. Let O¢G,<¢%é be models of the langua-
ges Ly, Ly, in L, and D(dﬁl)
a diagram of oﬂa obtained by adding new constant sym-

bols to L, - the names for elements of Ml' Then dﬂl is a
A-submodel of aﬁa iff 045 is a model of D(o@i). :

A a TF-representation of Ll

We now prove the theorem which gives necessary
and sufficient conditions for A-extension of a given
model to some model of a given set of formulae. The
theorem parallels to the corresponding theorem due to
(6]

Theorem 5. Let L,, L, be first order languages,

Gﬂi-a model of L

f.0os

A~ a TF-representation of Ll in L2

}I
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and F a set of formulae in L,. v@a can be A—extended3)

to some model of ¥ iff for each formula A2 in L2 which.

is expressible by a universal formula A1 in L1 the

following condition

£ v a, =M= A (6)
holds.

Proof. The condition (6) is necessary, for if cﬂ%
is a A-extension of Uﬂ& which is a model for . that
o@% is a model for each consequence AZ of Z. 1f A2 is
expressible by a universal formula A, in L. then by

. 1 1
theorem 37 the following implication
M= n,— M A (7)
holds. Further, using the assumption d%2k= F we obtain
g o> E=n, (8)

From (7), (8) we conclude immediately (6). Conver-
sely, suppose that for each formula A, in L, expressible

2 2
by a universal formula A. in L., the condition (6) is

satisfied and that o@& c;nnot ée A -extended to any
model of &. Using the preceding theorem the latter
assumption yields that the set D(o%&)LJ.gr has no model.
By the compactness theorem it follows that for some
finite subset K of D(c#{) the set ?LL@ has no model.

Let a;,...,a, be all names of elements of M, appearing
in K and let

F(al,...,an)

be the conjunction of all formulae of X. The formula F
being the conjunction of some formulae of D(o&&) conta-

ins no variables and no quantifiers. Further, if G is

3)

i.e. there exists a model cﬂ% of é? which is a
A -extension of cﬂg.
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the conjunction of all formulae of E, then it is easy
to verify that G is just F Since K L;g-has no model
we conclude that neither has the set {F}L)g: wherefrom
it follows lmmedlately

Al o -1F (@ajr---rap ).

are new for L,. (9) yields

(9)

as the constants al,...,an
F (10)
g (Vx preesr¥g) OF (XpsonerXp)e
Let us consider the formula

(Vxl,...,x )‘1F (X reeerXy ) (11)

i ressible
Obviously it is in the language L, and is exp

in L1 by the universal formula

. (Vxl,...,xn)'1F (Xl""’xn)' (12)
5ince F(al,...,u ) is the conjunction of some formu-
lae of D(dﬂ )y, it follows immediately that
MW= Flagee--iap) (13)
wherefrom we conclude:
Notﬁll}:: ( xl,...,xn)'-iF (xl‘,...,xn)- (14)

(10) and (14) contradicts to the assumption (6) and the

proof of our theorem is completed.

By means of theorem 5 it can be proved the follo-

llcatlons.
wing theorem which has a great number of app

Theorenm 6. Let Ll’ L2 pe first order languages,
g'a set og formulae in~L2 and A a TF-representation

of L, in L,. Every model dﬂ of L; can be A—extendei
to some model aﬂ of the set & iff for every conseq
uence A of £ whlch is expressible in L1 by a universal
formula A~ the following condition

15
F- is valid (15)
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holas?) .

In the following we list some applications of the
preceding theorem. '

1. Every model of the language {p}, where p is a
unary relation symbol, can be A-extended to a model of

the formula
(Vx,y) (a(x,y) = aly,x)) (16)

It suffices to represent p by the formula a(x,x).

2. Every model of the language R, where R contains -

only unary relation symbols can be A-extended to a
model of the formula

(Vx,v,2) (e (%,¥,2) = alz,y,x)). (17)
Namely, if peR, then for 5 we choose the formula
alXep,r X)),
where , is a new constant symbol,

3. Every model of any relational language R can
be A-extended to a model of the formula

(Vx,y) (a(xxy) A aly*x) => x = y) (18)
We note that in this case the relation symbol p € R(n)

is represented by the formula a{txt), where t is a

term of the form (... ((pxx.)x%x.) X )
1 2) e X

{0 is a new constant symbol corresponding to o).

4)

We note that in the case when L. contains the

. 1
equality symbol =, the notion F~ is valid is defined as
folLows: F~ is satisfied in all normal models of L i.e.

. l '
in all models where = is interpreted as equality.
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4. Every model of any first order language L can

be A—extended to some model of the set 37:

yX)
Vx,y) (a(x,y) = aly o)
(Vx,v,2z) (x*y) x2 = X* (y*z).
Hint; First We define the binary operation O as
follows:

xoy = (axx)xy (a is a new constant symbol)
Further, if £e&0(n), then f is the term
(... ((f'éxl)o xz)... o xn)
(f is a new constant symbol corrgsponding to f)
and if o € R(n), then p is the formula
a(t,t),
where t is of the form
(... ((onl)o X,) .0 O x,)

(7 is a new constant symbol corresponding to o).

Remark. In his doctoral thesi’s "gubalgebras of
groupoids™ g .Markovski has recently obtained several
results for Q-algebras which are very closed to the

results of this paper.
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TWO REMARKS ON BOOLEAN ALGEBRAS
Zarko Mijajlovié
1. Boolean formulas and modal logic. Let LBA =
= {+,.,7,0,1}
(shortly BA) with the natural interpretations of sym-
bols of LBA' A
Foryp, the set of quantifier-free formulas of Lpa-

dencote the language of Boolean algebras
TerL" the set of Boolean terms, and

Further, let Sentqg denote the set of all modal pro-
positional sentences, where L denotes the modal neces-
sity operator, and M the modal possibility operator.
The subscript S5 is used to denote the modal logic S5
which has, besides axioms of propositional calcalus,

also the following axioms for modal operators:

L(¢ = 9) => (Lé = L), M¢ => LMé.

The inference rules are Modus Ponens and the necessita-

Lo = 9,

tion rulé: + ¢ implies +L¢.

We show that a map

LBA——> Sens 5

can be defined in a natural way. To define g let
¢ €Fory g,
. A

ned as %ollows:

o:TermLBAkJ For
is defi-

. Then the modal transform of ¢,

- Bl1l occurences of Boolean operation symbols

35
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+,.+7,0,1 in ¢ are replaced by logical symbols Vv ,A,7,
"false", "true", respectively.

-Each occurence of the equality sign = in ¢ is
replaced by strict equivalence =, and the sign < by

the strict implication —3.
Then the following theorem holds:

Theorem 1.1. Let ¢€EbrLBA. Then ¢ is true in all
Boolean algebras iff oo

S5, i.e.

is a theorem of modal logic

BA = ¢ PFE by 0.

Remark 1.2. In above, if u,v are Boolean terms,

then the subformula u=1 of ¢ can be replaced by Lou,

and v >0 by Mov.

_ Example 1.3. Let $ €For;  be (p=l) A(q <p’) &
- . B

<> (p-q=1). Then ¢ is Lp A 19 3 71P) & Lipaqg).

As BAE é we have F‘Sso¢.

It should be remarked that an approprlate logic
for quantifier-free formulas, call it I —loglc, can be
designed. To be more precise, the quantifier- free
fragment of predicate calculus can be axiomatized ta-
king all instances of tautologies for ForL, then axioms
for the equality sign =, and two rules of inferences:

Modus Ponens, and the substltutlon rule g(x;' wEETermL.

The completeness theorem holds for any set Tg;ForL.

Thedrem 1;4.

T|-'¢ iff T E b
Here, T FE ) denotes that ¢ has a deduction from T

in % —loglc, and Tk ¢ ‘means that (the universal
closure of) ¢ holds in all models of T.

)
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As a consequence of Theorem 1.4. we have the fol-

lowing. Let Tg, be the theory of Boolean algebras. Then

may be considered as a formalization of the theory

Tea
what probably

of first-degree modal sentences of S5,
may add a new feature to a semantical theory of modal

logics.
Proofs of the previous theorems will be published

somewhere else.

2. Horn Boolean sentences. It is well-known the

following theorem: .
Let ¢ be a Horn sentence 1)
BR & ¢.

(Vaught) .
2 = ¢, then

in the language LBA' If

Here 2 denotes two-element Boolean algebra.

It was first S.Predic¢ (1976, private communication)

who observed that procedures of solving, and forms of
solutions of certain Boolean equations can be transfe-
red from two-element Boolean algebra to any Boolean
algebra. These ideas are developed in [4], where it is
shown how Vaught 's theorem makes the greatest part of
the teory of Boolean equations trivial. We give some
new evidences for that. First, we give an elementary

proof of Vaughts theorem.

1) Horn formulas over a language L are defined as
follows:

-Elementary Horn formulas are defined as all ato-
and all formulas of the form _wlA..

ca b LY
n

mic formulas of L,

oAy, = ¥, where Yys-- are atomic.

n
- Every Horn formula is built from elementary Horn

formulas by use of A, VY. 3.
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Proof of Theorem 2.1. let ¢ be an elementary
$ € ForLBA Then,
¢ holds on all Boolean algebras 2n

First,

Horn formula, Assume 2 = ¢. by a

Horn s theorem,
n€{1,2,...}. As every finite BA is a power of 2, it
follows that ¢ holds on all finitely generated BA~s.

¢ is universal, hence BA k& ¢.

Now, let ¢ be any Horn sentence, Thern ¢ is equi~-
valent to a formula 8 in prenex normal form, where the
w(xl,.
use of Skolem function symbols, guantifiers in 6 are
1,,...,tn built from
Skolem functions so that for the Skolem expansion TEA
' S .
of Ty, we have Tg, | ¢ ¢ v(t ,...,t ). As 2 k& ¢,
for a skolem expansion 2° of 2 we have 27 f= yl(t ,....t ).

is complete,

matrix ..,xn) of € is also a Horn formula. By

eliminated, i.e. there are terms t

The set of Boolean functions in 2" i.e.
every function £:20
that tl""’tn

But u;(tl,.. .,tn)

-~ 2 is Bodlean, hence we may assume

are Boolean terms, and so

n

is elementary Horn formula (as it does

not contain quantifiers),
BAi:w(t1 ..,tn).

of Tpp, ¢4 ¥ (t;,-..,t ) is in the language L
TBAF:¢ ¢:§w(t1,...,tn); hence

thus by the first part of the

S . . .
proof, Tpa 1s a conservative extension

Ba’ S°
BAE 4.
We remark that the proof of the above theorem can

be obtained by use of Theorem 1.1

'TBAF ¢, i.e.

and Carnap decision
“procedure for modal pr09051tlonal calculus S5, cf. [2],

p. 116, hence by use of purely syntactical transformations.

As an application we_shall consider the following

system of Boolean equations over a Boolean algebra‘B.

a,.x
11 + ...+ : = -
1 ) ’ alnxn- bl

(s)

------------------------

b € B, 1<i, j <n.

a. .
1]

gbzw(tl,"..,t ).

39°

be the matrix of the system (S) and
We shall be interested when (S) has a
£ B. The following theorem
-and a

Let A= Hain
b=(b1,...,bn).
solution for arbitrary b
gives the necessary and sufficient condition, -
description of solutions if this condition is satis-—
fied.

Theorem 2.2. Let A be the matrix of the system
(S). Then the following hold in B:

T
© = ala =1
1 vyl...yn3x1...xn AX = ¥y & )
m
T is the identity matrix, A* is the tran-
spose of A.
2° ATA =1 :g;vyl. Y, V¥ Xn(AX =y &
X, = DyA..AXy =D.)>

D. is the determinat obtained from the ma-

i

trix A by replacing i-th column by the ve-
: . determinant of

(yl,...,yn) The

matrix A is defined by

= 2__a
pep 171

P is the set of all permutations of {1,2,...

ctor y =

det (p) - -9npp?’

,n}.

: o
proof. Let ¢ denotes the formula in 17, and ¥

the formula in 2° First, we observe that both these

formulas are Horn formulas, as Ax=y can be repre-

ented as the conjunctionof the ecuatlons of the sys-—

. tem (S) . Thus, if we prove universal closures of - ¢,V
in the Boolean algebra 2, then by the Theorem 2;1, b
and ¥ will hold in all BA ‘s . Therefore we check 1° and
2° in 2.

10 ( =) Assume -
= : 1
2B VYY .Yy 3}{ s Axly.. _ - (1)
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= < 3 < .
Let a; (ali,...,ani),nl < i £ n. Then from (1) it
follows that for each b€2 there exist xl,...,xné_g
. n
so that b = iél Xiai’ i.e. a;,...,a, span 2, so

al,...,an are atoms of g?. Hence, it may be assumed
that a.,=(0,...,0,1,0,...,0), 1 stands on i-th place,
thus A A=I. (<& ) If ATA=I, then x=ATb satisfies
Ax=b, b€ 2".

2° Assume 2= ATA=I. Then all entries of A are
0°s and 17s, and each row and each column has exactly
one occurence of 1. Thus we have, also, 2 & AAT=I. Let
A denotes the symmetric difference, Then (2,4,-,0,1) is
a field, and x+y=x8yfxy. By the ortogonality of row
vectors and, also, column vectors in A, it follows that
(S) is equivalent to the system (SA) obtained from (S)
by replacing all occurences of + in (S) by A. If in the
definition 6f determinant, + is replaced‘by 4, we have
det(AT)det(A)=1, i.e. det(A)=1, thus by Cramer “s rule

_ A A
2 F Ax=y & X;=D; A ... A X =D,

A
Di is the determinant in terms of A.

Again by the ortogonality of row vectors and column
vectors in A, the symmetric difference in D? can be
replaced by +, therefore

2 F Ax=y <& X;D; A .. /\xn=Dn. -

The system (S) is also considered in [5], and the
part 1° of Theorem 2.2 is proved there, however by use

of other methods.
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of a truth-filter in a De Morgan lattice which is re-

It is simple to prove that gular. It is our aim to obtain Stone-type theorems
about these filters, i.e. to find necessary and

suff1c1ent condltlons for existence of a truth filter

LEMMA 1. (DeM) xvy = XAY, XAY = XVYy

holds, vhere V and A are l.u.b. and g.l.b. in (L,<).

contalnlng a gq,ven filter or a given point. To begin

Separate study has been given to the structures with, we are deveWOO:Lng some necessary notions and
. 1 1 =—
defined above. These have been called De Morgan latti appropr*ate algebraic apparatus.
ces in Monteiro [1960:\, distributive involution la-

ttices (i-lattices) in Kalman [1958], and quasi-Boolean D—ef——B-
algebras in BiaZnicki~Birula and Rasiowa [1957]. Most . ) I(p) = {x&L | (ial,...,anéA) x = a3 V.- Van}
.commonly used name is the first one. We shall use it. F(p) = {xeL | (aal, .,aneA) X 2 ayn - /\an}
De Morgan lattices were investigated in standard T = (xelL | x =% Ax}. I, = I(TO)
manner (see Rasiowa [1974] ). The rise of interest in © )
i . 5 = I = XV R = = F(T
them is connected with their applications onto various Ty {xeL X x vV} 1 ( 1
logical systems. Main device are so called truth-filters. A= 1{xeL | x€nl}, anA = {anx | x €A}
. AB = (X A | xen and €B},
Def. 2. A filter F in a de Morgan lattice L is A t v Y
_ . . _ [a,b] = {x€ Llasx<b}.
i) consistent iff —J(E@x€L)x€F and x€F) E :
ii) complete iff (VxeL)(x€F or XgF) ' I(A) and F(a) will be called jdeal and filter
iii) truth-filter iff it is complete and consistent.® génerated by the set A. T, and T, will be called set

LEI‘H‘&A 2 F t . é)j zeroe alld et ()f u
. s a r]]tn_f]]ter fE . k ~ S S nltS

% llowi lemma states some usefull properties
(Vxel) (xeF iff X ¢F).® / The following lemm )

It is obvious that the truth-filters corresponds , of the notions 1ntr_oduced above.
to the ultrafilters in a Boolean algebra. _ LEMMA 3. Let x,y€L, then:
| | i ET & X £ X, xeT_  and <X = yeT .
Belnap and Spencer [1966] has proved that i) x o e = o Y o
i i - % d > x = yvyeT,.
THEOREM. 1. There exists a truth filter in a De ii) xeT, < X 2 %, x €T, an v =y 1
Morgan lattice L iff (C3) (Vx €L) X # x. » iii) XAX €T, XV-)ZGTl.
We will call De Morgan lattlce satlsfying - (c3) iv) TO =T, Tl = T,
regular. ) -

v) F is a filter iff F is an ideal.

\

The theorem above states the mere fact of ék’isten_ée_
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vi I = F =

i) IO Fl, Fl IO.

vii) T(A) = F(R), F(&) = 1(&).

viii) L is reqular iff ToﬁTl = dg.

ix) A filter F is consistent iff AT = @.

o

X) If F is a truth-filter, ther F is a prime
filter.

xi) If F is a truth-filter, then FoF and
FNI = '

o= ®-

Proof., Tedious, but straightforward.
Def. 4. Let pGTl, define fp:L'—» L as
fp(x) = pA(PVvVx), for xe€L.®

We will call the functions introduced above

p-mappings.

—L—M—Ai' Let pquTl_ and X €L, then:

i) fp(x) = pvipAx)
ii) fp is a homomorphism from L into L.
iii) fp(L) = [.B,p].’
iv) fpofp = fp.
v) prfq = ff (q)°
p
vi) fp.=’ fq = p = qg.
vii) xeTo => fp(x)eTo, xeT1 => fp(x)ETl.
viii) xeI = fp(X)é I, X€F; = "fD(x)eFl.
ix) fp(p/\X) = f,(x), fp'(pvx) =p, -
f,(Pvx) = £,00, fp(EAx) = p.
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x) If T is a truth-filter, then xeT = fD(X)C—T.
Proof. Straightforward. m
iff

LEMMA 5. (a AT N T £ 0 (Fp eTl)fp(a)'eTo.

Proof. Simple application of (vii) and (ix) from

Lemma 4. B

THEOREM 1. (aATl)mTo # @ iff (a/\Fl)ﬂTo # @.

( =)
( &= ) Let (a/\Fl)ﬂTo # ¢, i.e. l(_at.there'

feF;, such that anfeT/ (1) . By the
definition of F, we have that there exist pl,...,pne

Proof. Trivial, because of T1 c Fl'

exists

1

T1 such that £ 2=

ces AP
(2) it fqllows that

and aAf 2 anADiA -

Py ANEERIEA Pn
(2) . Apolying (i) of Lemma 3 onto (1) and

a/\pll\ ;../\pneTo (3)

for some Py ..,pneTl.

Applying fp onto aApP; A --- A p, and using

(ii), (wvii), (viig) and (ix) of Lemma 4 we have:.

f (aAp, A ... Ap.) = f_(aAp, A APs:_4) =
Py 1 n P, 1 n-1

=f (@AAf_ (pP)A .c. AE_ (P _,y _
b, p, 1 p, "n-1l) =

1 1
fpn(a)/\pl A on /\pn-.le’l’o

i

(4)

where pi""'prlrleTl' Hence, (3) 1is reduced to a
similar formula (4) with the number of unites reduced
Repeating this procedure we will obtain that

n-1
for some p n-2 1
1 r P reesP s P ET
2 n—-1’ “n 1

by one.

.)ETo

fn—l(fpn‘-Z(...(f 1 (£ (a))).. (5)

pl 2 pn--l pn
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holds. As, by (v) and (vii) of Lemma 4, a composition of
p-mappings is a p-mapping, we infer that there exists
fp(a)€ To' Because of Lemma 5, the

(aATl)ﬂTo # §.8

peT; such that

last is equivalent to

COROLLARY 1.1. implies

aeIO (a/\Tl)ﬁTo#gé.

T T - om
aeIo Fi- Hence,

(aAFl)mTo 7£ le andl

Proof. ac¢ I, implies that

aAgea/\Fl. But,

by theorem above

a/\aeTo, so
A

(a Tl)ﬂTo 0. =

Now, we are ready to prove our main theorem.

THEOREM 2. Let F be a filter in a De Morgan lat-

tice L. p ig contained in some truth-filter T iff

(FATl)F\TO = g.

Proocf. ( -:) ) Suppose the opposite - i.e. let
there exists a truth-filter T=F and (FA T T  #&
o
which implies (aa TN TO # ¢ for some a<F, which

is equivalent (according to Lemma 5) with (3pe¢ Tl)fp(a)éTc.

As ace¢F&T, we have auJv T, and (according to (x) of
Lemma 4) fp (a) € T. Hence, T(\TO # # which contradicts

(xi) of Lemma 3.

( <= ) Suppose (F/\Tl)ﬂ T, = 9. We will prove the
existence of the truth-filter containing F in several
steps.

O

17 Filter G = F(FuTl) is consistent.

If pnot, by
such that gegG.

ack

(ix) of Lemma 3, there exists geTO

By definition of G, g > aAr
1. Bs geTo,
o (@AF))NT # 8
to Theorem 1) equivalent with

where

and

rEF(Tl) = F we have that

aArertT i.e. which is (according

(a /\Tl)ﬂ TO # @ which

implies (F /\Tl)ﬂ'To # §. A contradiction.

v
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2° The set of all consistent filters containing G

has a maximal element.
GE €.

closed over the unions of chains (proof is simple) .

This set € is non-empty as ¥ is also

Hence, by Zorn’s Lemma, ¥ has a maximal element T.
39 op is a truth-filter and co_ntains F.

FcG<T, so, T contains F. T is consistent since

it belongs to € . It suffices to prove that T is

complete.

If it is not the case, we have that for some
a €L, a, a¢T. Then the filter T is a proper sub-
filter of F(T,a) and F(T,a) so they don’t belong

to €, hence, they are inconsistent. By (ix) of Lemma

3 (i—lqllqzeTo) (q, € F(T,a) and qzeF(T,E). By their
construction we have 9; 2 t;~ra and q, 2 t,Aa for
some t,,t,€T. Then it follows that 4, vda, 2 tlA

t, Aflava) and as avaeT we obtain that q,Va,eT.

Hence, TN I, # ¥ which contradicts the consistency of

= = I
T because of T2F(T1) F IO. "

COROLLARY 2.1. There is a truth~filter containing
a iff (a/\Tl)nTo = fg.

Proof. Let Fa be a filter generated by {a}. The-
{a} iff there
exists a truth-filter containing Fq- By Theorem 2, the
(Fa/\ Tl)hTo = @, which is,
because of the definition of Fa’Tl’
(@aAT INT = g.m

re exists a truth-filter containing

last is equvalent with

T , equivalent to
o o :

CQROLLARY 2.2. Let a,b€L such that -1a < b.

There exists a truth-filter T such that a T and
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béT iff (aABATl)mTO = g.

Proof. Because of the completeness of every truth-
filter, the filter with desired property fulfills a€T,
heT and aabe&T. Because of Corollary 2.1 such filter
exists iff (a/\E/\Tl)m T, = 7. B '

COROLLARY 2.3. There exists a truth~filter in a
De Morgan lattice T iff L is regular.

Proof. ( =—» ) If there exists such a filter T,
XET &> X¢T holds for all xeL (Lemma 2). Hence

X ¢_§ for all x, i.e. L is regular.

( <= ) If L is regular then, by (viii) of Lemma 3,
Tlf\To = . Let pET, (there is such a p because of
Xvx eT, if (p/\Tl)ﬂ To # @ there is qeT, such
that fq(p)e'ro (Lemma 5) but, also fq(p)ETl which
is a-contradiction. Hence, there exists a truth-filter

in L. &

Hence, Belnap and Spencer.theorem mentioned at the
begining, is proved as a consequence of more general

theoremn.

Note added in print. The Corollary 1.1 leads to a

natural question: Is aesIO equivalent to (a,\Tl)r\To £ p?

It is obvious that this egﬁivalence could simplify all
results_and,criteria. But the;answér is negative. The
counter-example is an>appropriéte complete lattice. The
proof can be found.in the paper mentioned in the footnote
at the begihing. ) - )

51

REFERENCES

[1]'A.R. Anderson, N.D. Belnap, jr., :

[1975] Entailmant - The Logic of Relevance and

Necessity, Princenton University Press
[2] N.D. Belnap jr., J.H. Spenser,

[1966] Intensionaly complemented distributive
lattices, Portugaliae Mathematica, vol.
25, pp- 99-104

[3] A. Bialnicki-Birula, H. Rasiowa,

[1957} On the represantation of quasi-Boolean
algebras, Bulletinh de 1l’Academie polonaise
des sciences, vol. 5, pp. 197-236

{4] J.A. Kalman,

[1958] Lattices with involution,

Transactions od the American Mathematical
Society, vol. 87, pp.485-493
[5] A. Monteiro,

[1960} Matrices De Morgan caracteristiques pour
le calcul pfopositionnel classique, Anais
de ‘academia Brasileira de ciencias, vol.
32, pp. 1-7

[6] H. Rasiowa,
[1974] An algebraic approach to non-~clasical
' logics, North-Holland publishing co.,



Algebraic conference
Skop3ije 1980

'LOGIC: SEMINAR IN BEOGRAD -
: M. Kapetanovidé

Seminar-in .mathematical logic was.founded in

Mathematical.Institute_ih'Béégréd“more:than ten years 'ﬂ

“ago and has been taking place’ in  the Institute ever

since. Originally it was a joint seminar in logic, 7
algebr; and~numbef'theory and the present -seminar -
resembles- that one in a sence that the main -connections
between algebré and_loéic éré'sYstematically{egploréd;

" ‘There is“a'considerable numbér of regular parti-
cjpants at Seminar meetings (héld wéekly),'Théyxinclu—
de Instituté membres, and_teacheys:ffom“the Faculty of .
Science andAMathematiqs as well as ffém some other
faculties and:aléo from Novi Sad. The current heads Qf
Seminar are prof. dr. S.B.PreZié and doc. dr Z.Mijajlo-
vié. . o

The range of subjects examined in seminar lectu-

res has been wide and almost no important area of lo-
gic has been totally neglected, but the one treated
most extensively has certainly been model theory with
its various applications. It all started with basic
facts on predicate calculus of the first order, valid
formulas and axjomatization of some mathematical the-
ories. The essence and the central role of the compac-
tness theorem was made clear and after that the con-
tent of several chapters from the book "Model Theory"

of Chang and Keisler was presented in all details.

53
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Another interesting subject that has been payéd atten-
tion to is nonclassical logic including intuitionistic,
relevant and modal calculi and taking care of both
semantic and proof-theoretic aspect. The importance
of algebraic theories that arise naturally in‘this con-
text, such as Boolean and Heyting algebra and Linden-
baum algebras in general, has been pointed out all the
time and their properties considered. The notion of the
so called reproductive solution of an eguation was used
by S.B.Prefié¢ to develop a method of solving some
Boolean (and even more general) equations. Recently the
idea has been put into work of treating propositional

calculi as special first order theories with equality.

Something must be said about the leading role of
prof. S.B.PreSi¢ in Seminar. It is mainly due to his

enthusiasm, guidance and pedagogical work that Seminar
has been advancing steadily.

Algebraic conference
Sk op je 1980

FUNCTIONAL EQUATION OF GEMNERALIZED ASSOCIATIVITY

A. Krape?

The functional equation of associativity, either
in its most general form or in some special case, Eas
been studied by many mathematicians: SuékeYié; Aczel,
Belousov, Hosszu; Belousov; Schauffler; Devide; Pre-
§ié; Milié; and others.

| The most striking of all results about associati-
vity equation is probably the Four quasigroups theorem
(see [1]). '

Here we give the general solution of generalized

associativity without any assumptions about functions

involved.

THEOREM 1. The general solution (on a nonempty

set S) of the generalized associativity equation

Alx, Bly,z)) = C( D(x,y), 2} (1)
is given by:
Alx,y) = (£) (%)
B(x,y) = P{x,y)
Cci(x,y) - {gx) (y)
-Dix,y): = 0xsy)

55
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where:

(a) P and Q are arbitrary groupoids on S,
(b) T is an arbitrary 3-groupoid on.S. such that

kerP 0 kerQ ckerT,

{(c) £f:8 - ?é and g:S - 9; are arbitrary functi-
ons from S to the set ?é of ‘all .transformations on
S, such that ' ' '

fP(x,y) = o, go(x,y) = Ny

p and X being defined by:

A = =
xyz pyzx T(x,y,2) .

If o and y are equivalence relations on 82,-then:

Ix,v,2z) ay (u,v,w) & x = u Ay, 2z) o (v,w)
(x,y,2) vy (u,v,w) & (x,y) v ku;v) h z =w
and

SR S vivg

The following theorem, giving the ‘associativity
criterion for binary operations, is an easy consequen-
ce of Thl. o

THEOREM 2. Let A be~a'biﬁary oneration dn S and
T(x,y,z) = B(x, A(y,z)). Then, A is associative iff_.
9o = {(A(x,v), Axy) lx,gc S} is a functidn frém.ﬁ(S,S)
to 9é and (g.x) (y) = A(x,v) for all xc AiS.3) and "y S,
Also, from Thl we can easily prove the Four quasi-

groups theorem if we assume that A,B,C,D in (1) are
quasigroups.

In [2], Schauffler proved the following theorem:
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Theorem 3. For any two guasigroups A and B on S

there are quasigroups C and D (on S) such that (1)

holds iff 151 < 3.

The following theorem, analogous to Th. 3, is

also a consequence of Th. 1.

Theorem 4. For any two groupoids A and B on S
there are groupoids C and D (on S) such that (1)
holds iff S is infinite or IS] = 1.

The proofs and other examples are given in [3].
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Algebraic conference
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ON SYMMETRIC WORDS IN NILPOTENT GROUPS

Sava A. Krstid

Let G be a group and FG(xl,;..,xr) the group
freely generated by Hyree X in the smallest varie-
ty of groups containing G. Let A be the group of auto-

morphisms of FG(Xl""’Xr) induced by the mappings

X, - x& 1 £i<r,

1 i’
where o runs over the group of permutations of the set
{1,...,r}. Clearly, the set
r -
Sg = {WEFG(Xl""'Xr) |w = aw for every oAl
is a group, and we naturally call it the grouo of

symmetric words (or operations) in G in r variables
r r-1

. r . - .
Xl""’Xr* The mapping ar—l' SG SG defined by
r =
a5y (W(X1’7"fxr)) = w(xl,...,xr_l,l)

is a homomorphism.

All of the notations we have introduced above one
can find in P¥onka’s articles [1—3]_Among other things,
he (in [2] ang [3]) showed that a;ll is in fact an
isomorphism for the case of G free nilpotent or nilpo-
tent of class <3 (in both cases with an indispensable

assumption that r is greater than the nilpotency class
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of G). The following theorem, which is a generalization

of these results, was stated in r3] as a problem.

|
Theorem.- Let G be a nilpotent group of class n. ﬂ Algébraic conference
For every r > n the mapping ag_l is an isomorphism. i Skopie 1980
The complete proof of this theorem that we presen- .
ted at the Meeting is to apear in Publ. Inst. Math. OW THE ACTIVITY OF THE SEMINAR FOR SEMIGROUPS
REFERENCES . . Dragan Blagojevic
[l] Plonka,E. Symmetric operations in groups, Colloq. It has been done very little in the semigroup the-
Math. 21 (1970), 179-186 : | ory in Belgrade till lately. Dragica Krgovidé was the
[2] Pionka,E. On symmetric words in free nilpotent groups, only one who has published in that field. Two recent
Bull. Acad. Pol. Sci. 18 (1970) 427-429 events started the work on semigroups: the first was
L3] P¥onka,E. Symmetric words in nilpotent groups of appearance (defining) of anti-~inverse semigroups, and
class >3, Fund. Math. 97 (1977) 95-103 . the second was M.Petrich’s arrival in Belgrade. S.Milié

and his group have worked on antivinVersé semigroups.
They have already published some papers on this subject,
and they will probably give us detail information

about it, since they -are present here. T will inform

you about the results of Petrich’s arrival in Belgrade.

Mario Petrich, one of the world experts for semi-
groups, was staying in Belgrade during a school-year
1978/79. In Mathematical institute he gave lectures on
structure of regular semigroups in two-semester course
based on his script "Structure of regqular semigroups”,
Montpelier, 1977. He also held a seminar for amalgama-
tion of semigroups. There were five regular partici-
pants to both the course and the seminar: B.Alimpid,
D.Krgovié, V.8imié, A.Xrape¥ i D.Blagojevié. Petrich
also had several consultations with participants of the

seminar. All of us agreed that Petrich’s visit to Bel-
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grade was very useful because this eXcellent expert was
always ready to direct attendants in their work, to make

comments and to help, whénever he was asked to.

After his departure we decided to continue with our
work in the semigroups. B.Alimpié became a new chief of
the seminar. Our method of work is following: we choose
an interesting subject, somebody presents principal known
ideas abodf it, and then we go on studying and reading
papers, constantly trying to find out something new, if

possible. We also try to keep connection with Petrich.

Since the seminar has beqgun only recently and
because of the fact that we are all the beginners in
semigroups, it is self-understanding that there has not
been any important result so far. The present partici-
pants of the seminar have either exposed the results
of the studies they have been engaged in till now, or
they will do it soon. Now absent Vida Zimié worked on
the equations in the free semigroups, especially on the
equations of the form w = W, where w is the mirror
image of the word w. I have worked in formal language

theory up to now, focusing my attention on normalization
of grammars.

Unfortunately, we must admit that there has not
been enopgh cooperation between us and the group I men-
_tioned at the begining. We can not set the blame on one

side only, and we shall try to immrove this cooperation.

We also cordially invite algebraists from other
mathematical centers in Yugoslavia to coonerate with
us in the field of semigroups.

Thank you.

Algebraic conference
Skop3je 1980

ON BI-IDEALS IN SEMIGROUPS

Dragica N. Krgovié

If @ is the traﬁslational hull of a semigroup S,
then the set N of all inner bitranslations is an ideal
of 9. Clearly, NCf xA, where T and A are the sets of
all inner left and of all inner right translations of
S. In this paper we prove that QN (Fx4A) is an ideal.
ofIQ. It will be denoted by T. Introducing the concept
of the bi—idealizer of a subsemigroup in S, we deter-—
mine the bi-idealizer of A in A x P. If S is a glo-
bally idempotent or reductive semigroup, then @ is the

bi-idealizer of W in A X P.

The reader is refered to [1] and [2] for all

concepts not defined in the paper-

Let A be a subsemigroup of a semigroup S. The
greatest subsemigroup of S having A as an ideal [bi-
ideal] is the idealizer [bi—idealizer] of A in 8, to
be denoted by ig(A) [bi—is'(A)].

TLet e, = {(x,p)EArxP | xy(rz) = x(yp)z} and

g = {(r,0)eAXxP | x(Ay)z = (xp)yz} for any x,y,z €S
r

and Q_ = Qt(ﬁ Qr. It is easy to verify that Q{, Qr
o .

and Qo are semigroups.
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LEMMA 1. Let I be an ideal of Qo such that
Fpxp (D = 95

Proof. Let (x,p)€ i
(A,p)(ks,ps)él and

Let x,y,2€ S. Then

Then

A x P(I). Since Nc I we have
(As,ps)_(klp)el sSES.
A A, = (AXx_, ceITco. W

(A,o)‘( y py) ( y opy) _ e

x(AAyz) = (pry)z, i.e.

ry x,y,z€S. Therefore, (i,p)€2_. Also, (A ,DVKX,D) =

= (nylpyp)e Ic®, and we have x(kykz) = (xp.p)z, i.e.

for every

have x(Ay)z = (xp)yz, for eve-

xy(rz) = x(yp)z, for every

A c i.e. = -
Thus ( ,D)C.Qo, i.e (1) 2

TAx P
If' S is weakly reductive semigroup, then Qo = Q-

Let S be a globally idempotent semigroup and (x,p) € Q_,

i.e. xy(xz) = x(yp)z for every x,v,z€S. For X,Y€S,
we have

x(xy) = (uv) (Ay) = uv(iy) = u(vp)ly = (uv)py = (xp)y.
Thus

(\,p) € 0. Therefore, @, C @, which implies 2, = a.

Thus, if S is a globally idempotent semigroup, then

Q{ = Qr = Q.

According to Lemma 1, we have

LEMMA 2. Let S be a weakly reductive or a globally
idempotent semigroup. If I is an ideal of @ such that
NcI, then @ is the idealizer of I in AXP.

PROPOSITION. 1% If S is a weakly reductive or a

globally idempotent semigroup, then

axpt™ =i 4p
THEOREM 1. In any semigroup S the following hold:

(Q) = Q.

i) nct.

ii) T is an ideal of g.

*
See [2], V.1.1l. Proposition.

ncIrlca., .

x,y,z€ S. Therefore,(X,p) € ,.

bally idempotent semigroup, then
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ii)

then N =

f S is left or right reductive semigroup,

(=N

I
.

pProof. i) It is easy to verify that
n={(gey) | (¥X,y€S) (xsy=xty) }

Thus '(xs,ps)eﬁ for every SE€S.

ii) Let (As,pt)e'ﬁ and (A,p) € 2. Then

(Agroe) (Ayp) (A Arpep) = (ksp,ptp) and x(sply =
= xs(Ay) = xt(Av) = x(tp)y  for every X,y € 5. Therefore,
(xs-p,ptp)en. Also, (x,p) (A spy) = .(Ms'pxt)e” is

proved analogously. Thus, T is an ideal .of Q.

iii) Let S be a left reductive semigroup and
(As,pt).eTT. By left reductivity, we have

(Vx,y € S) (xsy=xty) => (Vye€s) (sy=ty) = j‘s = Ag-
Thus (A ,0,) = (A s0y) €0, so that N<fl. By i) we
have f=M0. If S is right reductive, then

= (AS:DS) en.

(As:pt)

According to Lemma 2 and Theorem 1, we have

COROLILARY 1. If S is a weakly reductive .or a glo-
1rXA(n) =T and
leP(m = Q.
It is easy to verify that the next statement holds:
PROPOSITION 2. The following conditions on a se-

migroup S are equivalent:
i) S is reductive.
ll) ()\alpb)EH @a = b.

iii) ()\a,pb) el = a=b.
There exist semigroups for which N # T. For

example, consider the next semigroups:
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a b ¢ a4 la b ¢ 4
ajla a a a ala a a a
bla a a b bla a a a
cla a a a cCla a a b
d|la a ¢ 4 dla a b ¢
T=nU{Oy,0)) T = Ul (x,p ), () )}
- arPelriftarPy
n#n T#n '

— S is a weakly reductive - S is not a weakly

semi . .
igroup. reductive semigroup.

In the next examples we have n = T.

|la b ¢ a la b c 4
ala a a a ala a a é'
bla a b b bla a a a
cla a ¢ d cla a a a
dla a ¢ 4 dla a b b
~ S is a-weakly reductive —S.is not a wea}:c'iy
but it is neither left nor ".feducﬁive'semigroup.
reductive semigroup. ' | -

Let’ @ = {(A,p) EAXP | xy(kz)u: X(yp)zu} '3 is

a subsemigroup of A XP.

PROPOSITION 3. In any semigroup S We Have

i) N is a bi-ideal of Q,, @_ and g
{ r o’

ii) T is a bi-ideal of Q,, 2,

r o and Q.

Propf. i) Let .(X,p)eﬂ,. and
Then ()\,p)(—jQ’_, - )
= (Vy.zeS) (p

(')‘s’ps)'()‘t'pt)e'n'
¥x,y,ze5) (xy(kz) = x(yp)z) =

v(Az) T Pyp) )

Thus (Xs,ps)()\,p)()\t,pt) = (x

s()t) ’D(Sp)t)
- ()‘S(At)'ps(,\t)) € N. Therefore, N is a bi-ideal of Qﬁ.

for every
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Analogously, N is a bi-ideal of Qr so that N is
a bi-ideal of Qo.

ii) Since QOCSZ — @, we prove that W is a bi-
(A,p) €T, i.e. xv(rz)u = x(yp)zu
(As.ot) » (A, »p,) € M. Then
) and xs(iu)y =
X,y €S. The-

ideal of &. Let
X,¥,2,u€S. Let

g ) () (3 s ) = (ks-(m), ° (tp)v
= xt(Mu)y = x(tp)uy X(tp)vy for every

refore, T is a bi-ideal of Q.

" LEMMA 3. If B is a bi-ideal of 2 such that
NcBcCQ, then
bi-i(B) = ®.
Fpxpt®) -
s,t €S. Therefore, ()‘s(kt)’

Proof. Let (A,p)& bi-i Then (A .p ) (3,0)

'(Xt,ot)GB for every
D(Sp)t)EBCQ. Thus, xs(it}y = x(sp)ty
X,¥,8,t €S, i.e. " (A.,p)< Q. Since B is a bi-ideal of g

we have Q@ is a bi-idealizer of B.in AX P.

for every

According to Proposition 3 and Lemma 3, we have

PROPOSITION 4. If S is a semigroup, then @ is the
bi-idealizer of M in AXP. ’
If S is a reductive or a globally idempotent se-

migroup, then @ = Q.

‘COROLLARY 2. Let S be a semigroup. Then

bi~i, . = Q.

then AxP(n)

i) If S is reductive,
ii) If S is a globally idempotent semigroup, then

bi—iAXP(I'I) = Q.

Let & (X) be the full transformation semigroup
(the semigroup operation is composition of
is defined by

on a set X

mappings: if. a,8 € ¥ (X), then ao0B
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x(aoB) = (xa)B (x€X)). Let QT*(X) be the dual semigroup
of ¥ (X) and

- P - : X )
ZA(S) = {(A,0) G (S)XF(S) | x(y) = (xp)y).
THEOREM 2. In any semigroup S the following hold:
i) &£(8) is a semigroup. '
ii) A = 2 |
{(r,p) € &(3).
iii) N is a bi-ideal of &2(S).
&2(8) .

Proof. i) By a straightforward verification.

p > s = Pygr for every se.S .an.d -

iv) N .is a bi-~ideal of

(AN x = A_0x) = s0x) =
(xp)bs = (xp)s.= x(}s)

ii) Let
= (SQ)X =: ASO

s,X €S. Then

X, X ) = -
’ (oos) Xp ) -

iii) Let Ogrog) s (xt,pt)err and “(X,p) € &AS).
Then o - e s =
'(AS,ES)(AID)(A£.pt) = (Aslltlpsgot)-

According to ii)}, we have

A AX, = A =

s Tt spAt .A(Sp)t’

PsPPt T PsPae T Pyt
Since (sp)t = s{it),. we have

& (8). - . o
iv) Let...()\s,p_t),‘ ()\u,pv‘)eﬁx and ()\10)62(3):
Xsy = xty, xuy ='xvy and x(iy) =

M is a bi-ideal of

i.e. A (xp)y for
everyn.X’YGZS; éf?o%d;ng t? i;),"(}Slgt)(k}o)(Au,ov) =
B ‘}sk§u'pt°Fv) - (A(so)u’gt(XV))’ Then “x(spyuy =
= x(sp)vy =

xs(\W)y = xt(Av)y for every -

x‘,"'yeS. The~
y) €T B

refore, (sp)u’ "t (av

B |

. 6%

LEMMA 4. Let S be a globally idempotent semigroup
and let B be a bi-ideal of 5£(S) such that nNaBdg.
Then

i) bi-i (B) =&(S)

x

ii) bi—lAXp(B) = Q.
] Proof. Let (A,p) bi"igf*x gN(B)g Then (A .o )"
-(A,p)(xt,pt)(EB for every s,t &S. Then (ASAAt,
Dsoot)EJBCSL Thus x(ASAAty) (xpsppt)y and

xsA(ty) = (xs)ety for every x,y,s,t€5. Since S is a
globally idempotent semigroup we have (A,p) € &2(€8),
i.e. i) holds. '

ii) Evident by i).
According to Theorem 2 and Lemma 4, we have

COROLLARY 3. Let S be a globally idempotent se-

migroup. Then

i) bi=i (M) = bi-i (my = &i(s).
7K T 7% &
ii) b1—1A>(P(ﬂ) = bl"lA_xP(ﬂ) = Q.
REFERENCTES i

[11 Clifford, A.H. and Preston, G.B., The algebraic

theory of semigroups, Math. Surveys No. 7, Amer.
Math. Soc, Providence, Vol. I (1961}

LZ] Mario Petrich, Introduction to semigroups, Columbus,
Ohio 1973 '
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INTERPOLATION FORMULAS OVER FINITE SETS

Koriolan Gilezan

Let El,...,En be n finite nonempty sets (not
necessarily pairwise distinct) and p = |El X e X Enl.
Further, let E be a set containing two distinguished
elementé w and e, with & # ¢, and endowed with a una-
ry operation *:E - E, a partially defined vp-ary opera-

tion o:EP E and a partially defined (n+l)-ary ope-

ration °:En+l_;, L. Whenever the values q(yl.--..yp)
and .(zo,zl,...,zn) are defined, they will be denoted

b 0. ] i . i —
Y yloyzo...oyp and Z2Zyo---92 respectively. Fi

nally suppose the given operations fulfil:

(yyoB8yy°---2Byplo...oly; e85 °---"Bj ;3 n)o
O(YI.AQO...og)o(yi_'_logi_'_l’lo...OBi_'_l’n)O... (l)
s o(yponll...OBpn) = yi ,

for any yl,...,ypng, BLk € {w,e} (h = 1,...,i-1,i+1,

.-.,p; k =1,...,n) such that ehk(h) = w for all
h =1,...,i-1,i+1,...,p and some k(h)€ {1l,...,n}, and
for all i =1,...,p. The exact meaning of this axiom

is that the elements (yhOBth... (h = 1,...,i-1,

°Bhn)
as well as the left side of
(1), exist and the equality holds.

itl,...,p), (Y¥e€o . og),
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THEOREM. Under the above assumptions every function

1
fulfils the identity

£f : BE. X ... —_—
E X En E

f(xl,...,xn) =

=a €k ,.2. .0 €E [f(a « ) *x. L an]
1 1’ M AN n|_ 1,..-,n .Xl o...OXn_.

Here, the right side stands for the result of the
operation O applied to the p elements of the form indl—
cated within the brackets, while for every x,aE‘Ek_
(k =1,...,n), x* is defined by

e if x = a,
x® ={

lw if x # ao.

This theorem is proved in:

C.Ghilezan, S.Rudeanu, Interpolation formulas over

finits sets, Publ. Inst. Math. Nouvelle serie, tome 25
(39), 1979, pp. 45-49

Algebraic conference
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PARTIAL QUASIGROUPS

Janez USan, Zoran Stojakovicé

In thlS paper some 1nvest1gatlons on partlal qua-
51groups and some related structures are described. The
oaper is based on the work-of a group of mathematicians
from Nov1 Sad whose papers are llsted at the ‘end Of the
paper. Tne emph531s in the paper is not’ on listlng “de--
tails and theorems (whlch ‘the ‘reader may find in: the
llterature)l but on expos1ng general‘ldeas and*motlves
for an 1nvestlaatlon of certaln structlres and on for*

mulating some problems for further work

"~ 1. Partial gquasigroups are extensively investiga-
ted, but the main directioen in these investigations,is
the problem of embedding. The question when a partial
quasigroup can be embedded in a quasigroup, the connec-
tion between the order of a oartlal qua51group and its

domain and the ~order of the qua51group in wich the par—

- tial qua51group 1s embedded, revresents the main’ Dro—

.blem in the 1nvest1gatlon of oartlal qua31groups. )

Here we give another dlrectlon in. the 1nvest1ga—

tion of partla1 qua31grouos rFhe qua51groups are clo-

sely related to many other structures - for example,
to geometric nets, affine and progectlve planes, co-

des, graphs, varlous experimental and statistical
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designs etc. Some of these structures are completely
characterized by systems of quasigroups of certain
type. However, most of the mentioned structures can
be naturally defined and they exist (possibly a little
weakened) also in the cases whén there are no quasi-
groups which correspond to them. It can be shown that
in this case these structures are characterized by
systems of partial quasigroups, and the prOpérties of
these structures can be determined from the correspon-
ding properties of partial quasigroups. This kind ;f
investigation is the subject of the present paper and
the papers listed at the end.

2. Because of the limited space we shall not qgive
here the definitions of well known basic notions,
as quasigroup, isotOpy/ orthogonality etc.ﬂ
141, [15], Tie! and [17].

which can
be found in

Probably the best known is the connection between
quasigroups and geometric nets. We give the definition

of a k-net:

Let T be a nonempty set and let Ll""'Lk‘ k >3,
be nonempty mutually disjoint families of subsets of
the set T. The elements of T we call peoints and the
elements of the sets Lir-vilL
k
(T'Ll"'

"Lk) is said to be a
iff the following holds

we call lines (or

blocks). Then

k-net

a) every two lines from different classes L.,L.
i

(i,jefl1,...,k} = Nk) have one and only one common
point,

b) every point from T belongs to one and only one

line from every class Li (iEb&).
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If T is a finite set, then all lines have the
same number n of points, each of the classes Li(iG;Nk)
has exactly n elements and T has n2 voints. n is ca-

lled the order of the_net.

A special case of the geometric net is an affine

plane: a n+l-net of order n is an affine plane. From

" an affine plane by a simple procedure a projective

(f1s], T17], [18]).

very closely related,

plane is obtained

Nets and guasigroups are
(of order ) there corres-
[15], 171, [18D

to every 3-net diff-

namely, to every guasigroup
ponds (by a procedure described in
a 3-net (of order g). Conversely,

erent coordinate quasigroups can be associated, but

"all these quasigroups are isostrophic, so, to every

3-net there corresponds a class of isostrophic quasi-

groups.

Algebraic proverties of guasigroups completely
detefmine geometric vroperties of the corresponding
nets, so these geometric properties can be successfu-
ily investigated using'the theory of quasigroups. That
is the reason why some authors call geowetric nets
algebraic nets - ([17]}).

Orthogoﬁal sysfems of quasigroups have the funda-
mental role in the investigation of geometric nets (and
also in the inVestigations of many other mathematical
structures) . Namely, every k-net of order n defines
and is defined byra'corresponding system of k-2 or-
thogonal quasigroups of order n. From there it follows
that affine and projective planes can also be comple-
tely characterized by orthogonal systems of quasigro-

ups (by a well known procedure of M. Hall).
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Besides the described connection between quasigroups
and nets, there exist:ivery close connection between

quasigroups and one kind of codes.

If Q is a nonempty set, then every subset K of the
set O° is called a k-code. The elements ©f K we
call words, the set Q is called an alphaket and. its
elements are called letters. The words (al,...,ak),
(byse-e,by)

ming distance) d iff they have exactly d different com-

from K are said to be on a distance (Ham-

ponents. If d is the minimum of distances of different
elements from K, then we sav that the code K is of the

code distance d.

It can be shownthat to each quasigroup of order g
there corresponds a 3~code with q2 words of code dis-=
tance 2. As it is the case with geometric structures,
orthogonal systems of quasigroups have very important
role in the study of certain classes of codes. One way
to establich connection between orthogonal systems of
quasigroups and a class of codes is given by the fol-

lowing proposition.

To. each system of k orthogonal quasigroups of
order q there corresponds a k+2-code with q2 words
ovef an alphabet of g letters of code distance k+1

and vice versa.

..In a siﬁilar way the connections between quasi-
'groupé and other structures can be established. For
example, closely related to quasigroups are bhlock
designs and various.statistical designs..In the -graph
theory quasigroups are also used, the complete oriented
graphs are characterized by horizontally complete gua-

sigroups.
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3. As we said before, all these structures (pos-—
sibly a little weakened) can be defined also when the-
re do not exist guasigroups which characterize them.
From an orthogonal system of quasigroups a code with2
q2 words is obtained, but codes which do not have (¢
words are extensivelv used. There exist much more
"noncomplete" graphs then complete. The guestion is
why geometric nets (and also affine and projective
plz=nes) should have the same number of lines in every

family of lines?

In all these casses (and also in some other) we
naturally obtain partial quasigroups by which these

structures can be characterized.

First we shall define k-seminets [1], which re-

present a generalization of k-nets.

If in the definition of k-net the condition (a)

we replace by the condition:

(a”) every two lines from different classes L.,

L. (i,jé;Nk) havée at most one common point,

then the structure (T,L ...,Lk) which satisfies

ll
the conditions (a”) and (b) we call a k-seminet.

is called the

L-order, and the number n. = maX{cardi|{€_L1L)...L)Lk}

The number mw = max{cardLiIiEZNk}

is called the T-order of the k-seminet. It is easy to
prove that in every k-seminet n < m. L-order and T-or-

der generalize the concept of the order of the k-net.

3-seminets are special casses of halfnets of V.
Havel [}].
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In order to get an algebraic characterization of
k-seminets we need the following definitions ([l],
5]
57) .

Let QO be a nonempty set and DC OXQ, D # @. If
A 1s a mapping of D into Q, then (Q,A) .is said to be

a partial groupoid.

A partial quasigroup is a partial groupoid (Q,B)
A(x,b) = ¢

= ¢ have solutions for x and v in Q, then these solu-

such that if the equations and Ala,y) =

tions are unique.

Let (Q,A) and (Q,B) be partial groupoids of
the same domain D = &OA = B, D C Ox0Q. A and B are

said to be orthogonal iff for every for which

a,beqQ
the system of eguations

A{x,y) = a, B{(x,y) = b,

has a solution, this solution. is unique.

If (Q,B) is a partial groupoid such that
cardBA = p, then if "p < q it is possible that
(Q,A) be orthogonal to itself. If p>qg, two ortho-
gonal partial groupoids are always different.
OAB‘(X,-y)_dif(A(x,y) s Bx,v)),
then A and B can be said to be orthogonal iff OAB is
a bijection of the set D on the set j{OAB (by

'"ﬁZOAB we denote the range of Opp) -

"The orthogonal partial operations A and B are said
to be regularly orthogonal iff for every (i,j)éEjEOPB
there exists J €0, 37 # j, such that (i,j’)}g}BOAé

or there exists i7e€Q, i~ # i, such that

If we introduce

(i7,3) € ROAB“
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A partial quasigroup (Q,A) is regular iff the

following conditions are satisfied:

(¥, ) (i) ep = (339 G5 7 A (1,57 ed)]v
| v[@i9) =7 A 7 eD)]),

({1} xQ) N D]y

Vi, 3 [a,3) = £ = ([(E5)
’ | v,
= (A3 () £ G530 AaE30) = o)].

The set of different partial operations of the sa-

(ox{3}) N D] =2

i

me domain is said to be an orthogonal system of rartial
operations (ISPO) if each pair of the operations from
this set is orthogonal. If each pair of the operations
is regularly orthogonal we call such a system a regu-

larly orthogonal system of partial operations -(ROSPO) .

Some properties of partial quasigroups are consi-
dered in [5]; here we give only some theorems on cha-

racterization of k-seminets.

Theorem 1. ([1]) To each 3-seminet there correspo-

" nds a regular partial quasigroup and vice versa.

Theorem 2. ([1]) To each k-~seminet, k > 3, there
corrésponds a regularly orthogonal system of k-2 re-

gular partial quasigroups and vice versa.

The m~dimensional k-seminets are already being

studied.

A class of codes can be also characterized using
partial guasigroups. The following theorem generalizes

the main result from [6].
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of code distance k-1
aq<p,

of partial quasigroups

k =2 2,

lettres,

over an alphabet of g
there corresponds an orthogonal svstem
(0SPQ) of k-2

on a set of g elements, with the domain of p elements,

elements defined

g<p, and vice versa.

The preceding theorem can be generalized for
[5]) .

A procedure for a construction of systems of la-

n-ary partial gquasigroups (see

tin rectangles (which are a special case of partial

quasigroups), codes and k-seminets is given in [3].
The main result which enables that procedure is the
following theorem (the proof of which is based on a

result of Houston ([4]).

([3]) If there exists a permutation

L

Theorem 4.

(ao,al,...,aq_l) of numbers O0,1,...,g-1, such that
for every kéENm all menbers of the sequence
bk = 5 ( ) (mod ¢q), i = 0,1,...,g9-(k+1),

TS B RS S R O |
are pairwise noncongruent modulo ¢, then there exists
a system with m+1

mutually orthogonal g x (g-1)

latin rectangles.

It can be shownthat to every k-code of q2 words,

k 2 3, of code distance k-1 over an alphabet of q
letters there corresponds a k-net. If for some k and g
k-nets does not exist,

k-1

then the maximal k-code of code
distance over an a.iphabet of g elements has the
cardinality smaller than q2. In this case the maximal
code ghould be searched

g defined on a set of g elements. To the maximal k-code

for among the OSPQ of cardinality

then there corresponds an 0SP0Q of maximal cardinality

of the domain of its elements. Does there a kK~seminet

"have

ST
correspond to the searched OSPQ (and when it does under
what conditions)? This question is equivalent to the
following: can every OSPQ defined on a finite set @
(and if it can, under what conditions) be embedded
in an ROSPPQ defined on Q. '

It is accustomed to call an orthogonal system of
quasigroups (0SQ) :© complete iff for every 0SQ 1~ we

-

ICSL"=E =1 A similar definition could be

given for 0OSPQ.
In [ﬁ], [8] and [9] a different kind of "comple-
tness" of OSPQ is considered - a “"completnes" which is

related to the cardinality of the domain of the opera-
tions from OSPQ.

An OSPQ 3y =
called D-complete iff for every OSPQ 1~ = {Kl,.,.,ik}

{Al,...,Ak} defined on a set Q is

on Q we have

A.c B, AN,

1 1 ..AB B => B =K A...AR =K.

(Q,n)

(Q,A) we have

is complete iff for
AcA — A = B.

A partial quasigroup

every partial guasigroup
An important class of codes are complete codes.

A k—code K of code distance d over the alphabet Q
is said to be complete iff for every k-ccde K of code
distance d over the alphabet Q the following holds:
KX =K = X.

Theorem 5. ([7]) Let I = {A1""’Ak} be a D-com-
plete OSPQ on a set Q with g elements,; where k < g-1.°
Then, by the construction from [5], the corresponding

k+2-code of code distance k+1 is complete.

To illustrate the questions which were discussed

and which are related to D-complete OSPO we give some
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theorems from [f] and [9] .

Theorem 6. ([7]) If =t = {Al,..u,Ak} is a D-com-
plete OSPQ on Q, k < g-1, where qg=card Q, then

carbol A, >q.

Theorem 7. ([9]) Tor every even natural number g
I = {Al,Az}
cardQ = g, such that the following holds

there exists a D-complete OSPQ over Q,

where
cardcﬁAl = cardoZA2 = qlg-1),

where neither of the operations A, and A, is complete.

The preceding theorem is proved using horizonta-

1ly complete cuasigroups.

Some other properties of D-complete OSPQ are de-
termined in [7].

Another question which arises from the relations
between k-seminets and partial quasigroups is the

following.

Let (Q,A) Dbe a partial groupoid. By A, we deno-
te the set of all first coordinates of the wpairs from
A, by Ay the set of all second coordinates and by Az
the range of A. Usually it is "tacitly" assumed that
Aquyqu = Q. However, in some cases partial quasigro-

ups which do not satisfy this condition appear.

A partial quasigroup

([8]) iff

(Q0.,A) is called compressible

Ay 7 QAA, #0AA, 7 0.

The partial quasigroup from Tab. 1. is compressible

and reqular. To this partial quasigroup corresponds

33
the 3-seminet from fig.l. But to this 3-seminet,
according to the construction from [1], there corres-
ponds the partial quasigroup from Tab.2. So we could
say that the partial quasigrbup'from Tab.2. is a "comi-
préssionﬁ of the partial quasigr@up from Tab.1."

1

1203 | el T | b
11 2 BRE i X ala | b |c
2301 \\ _a .
3. 3 2 S c c b
e -
4 |-
Tab.1l. Fig.l. Tab.2..

Some questions concerned with compressability of
[7].

At the end we make a remark on embedding of parti-

partial quasigroups are discussed in [8} and

al [n,m] - guasigroups ([13]).
Let Q be a nonempty set, n,m natural numbers and
. n . .
: - ) i £ ) nto
f.(xl,_..,xn) f(xl,...,xn) a mapping from Q i

Qm.(Q,f) is called an [n,m] - quasigroup iff for every

injection ¢:Nn - Nn+m there exists a unique sequence

. n+m - . —

(ol,...,bn+m)€_Q such thgt b¢(1) aT""'b¢(n) a,

and : . _
f(bl,...,bn) = (bn+1""’bn+m)'

Ln,m] - quasigroups are a convenient generalizati-
on of n~ary quasigroups. If we define a partial [n,m] -
quasigroup as it is done for partial quasigroups (see
[13]), then we have the following:

Thedrem'B.,([13]) Every vartial [n,m] - quasigro-
up (Q,f) can be embedded in an [n,m] - quasigroup
(7, £7). ' '
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BASIS CLASS OF ONE CLASS OF SEMIGROUPS

S. Crvenkovidé

The following definition is given by E.S.Ljapin
(3] (virz, s5):

DEFINITION. Let M,N,P be three classes of se-
migroups such that McNcP. The class M is a basis
class for the class N relative to the class P iff the
following conditions are satisfied:

a) Every semigroup from N can be représented as a

union of its subsemigroups which are from the class M,

b) Every semigroup from P which can be represen-

ted as a union of its subsemigroups from M is in N,

~.c) None of the subclasses M° of the class M satis-
fies the condition a). '

Let S be a semigroup. Denote by gk the class of

semigroups such that
k
S€-:§k (Yxes) @yesS) (A w, = Vi),
i=1
where w.,v, are elements of the subsemigroup [{x,y}]
generated by x and y. Take M to be the class of semi-

groups from _S_k with the following property:

[ 1y

d) In each semigroup U, of M there must exist an

87
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element ag which is not contained in any subsemigroup
of the semigroup UO belonging to M and not iiomorphic
to U,. Obviously, M is the basis class for S relative
to the class of all semigroups.

For k=3, w =xmr WH=YyX, W =xnl v =Ymr v =Xm'+1y.
1 2 3 %3 1 2
and V3=x we have that S'=8

2
n* According to [1] '

(Theorem 2.1) . it follows that [{x,y}:l is a group. The
| : X *.

group [{x,y}] is finite and be.l.ongs to im,n [1]

(Theorem 2.3). Take all such groups, that satisfy the

condition d), to be the class M. M is the basis class
*

for S

relative to the class of all semigroups.

From. a,8 GI[{x,y}] and am=8m, Ba=am+18 S it follows
that [{a,s}] is a subgroup of [{"x,y}] [1] (Theorem 2.3).
[{X,Y}]-EE iff [{a,B}] = [{x,Y}] for all o,8 € [{x,y-}] .
If «,8 e'[{x,Y}] we have that - S

_ (Is,t€2)e = x%y* ana  (Qx.2cz)s = xKyl.

[fa,8}] = [tx,y}]<(]a,B,c,De7) xSy By B Ky B -
R X/\(xsyt)c(xky{)D #‘y). : : :

: T .20 =2 ——— 2
Cyclic groups H = {e,x,x",...,x } and ' K = {e,y,y",
e y™ 2 are subgroups of the group '[{x,y}]'.' The
intersection R

P=HAKR=(x™ ,x"%, L % M sey=iyB1 ,y 2By, L yTB gy

determines the number of elements of the group. [{x,y}] .
s t\A, K £ B '
Xy

{(x7y ) )T = x
if and only if ' _ | _ )
KASHBE-1_ - (At+B{+m B seim BBD 4 piapmke)

i.e. if and only if there exist 4, 95 € 2 such that

As+Bk-1 = o oy
a

89
At+Bf+m &2_1)— st+m iBz—l—) k{+ABmkt = dg 8y '
and
qud, =yq881 . ‘
An algorithm for determination of A and B is given in [2] .

REFERENCES

[1] S.Bogdanovié,S.Crvenkovié, On some classes of
semigroups, Zbor.rad.PMF-Novi Sad, br. 8, 1978

[2] S.Crvenkovié, On some properties of a class of
completely regular semigroups, Zbor, rad.PMF-
Novi Sad, br. 9, 1979 _

[3] E.S.Ljapin, Semigroups, Trans.Am.Math.Soc. 1974



Algebraic conference
Sk op j e 1980

Qr - SEMIGROUPS
Stojan Bogdanovié
A semigroup S is called a Qr_semigroup'if every
right ideal of S is a power joind semigroup. Here we
give a characterization of weakly commutative Qr_se—

migroups.

_Theorem- [2]. A semigroup S is a weakly commuta-
tive Qr_semigroup if and only if one of the three
possibilities holds:

1° 5 is a power joind semigroup,

2o S is a group,

3% 5 = MuUG, where G is a group, the identity e
of G is a left identity of S and M is the unigue maxi-

mal prime ideal of S and power Jjoined.

Commutative Q—semigfoups are considered in [5], _

the results of [5] are extended on quasi-commutative

semigroups in [}], and Putcha’s Q-semigroups are

investigated in [3]. The notion of weakly commutative

semigroup was introduces by Petrich in [6].
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ON SOME CLASSES OF SEMIGROUPS

Svetozar Milid

In this papér we give an account of investigati-
ons on some subclasses of the class of regular semi-
groups, i.e. the class of anti-inverse semigroups [1]

and classes of (m,n)-anti-inverse semigroups [2],[3L [6].

A semigroup S is regular if

(VYa €S) (Ix €5) (a = axa).

The notion of regularity is first introduced by
J. von Neumann in [11] for elements of a ring. An ele-
ment of a ring is regular if it is regular as an ele-
ment of the multinlicative semigroup of the ring. Re-

gular semigroups under the name of demi-groupes inve-

rsifs are considered by G. Thierrin [12]. An important
subclass of the clasé of regular semigroups is the
class of inverse semigroups. The notion of an inverse
semigroup is first introduced by V. V. Vagner [16] and
G,_Thierrin-EIB]. :

A semigroup S is inverse if

(va€s8) (3, bes)(aba = a A bab = b).
A semigroup S is- anti-inverse if

(Va€s)(IbesS)(aba = b A bab = a).

93
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The class of anti-inverse semigroups, denoted by
d@, is a subblass of the class of regular semigroups.
Denote that the intersection of the class of anti-
invefse semigroups and of the class of inverse semi-
groups is nonempty. J. S. Sharp [9] the class of anti-

inverse semigroups calls anti-regular semigroups.

I. Anti-inverse semigroups

Two elements a,b of a semigroups S are said to be
mutually anti-inverse provided that aba = b, pab = a.
A semigroup S is anti-inverse semigroup if each element
in S has its own anti-inverse in S. Examples of anti-
inverse semigroups are: a left zero semigroup (xy = x),
a right zero semigroup (xy = y), a band (x2 = x), a
cyclic group of order 2 and the group of quaternions.

In the following theorem we characterize semigroups
in the class of.

Theorem 2.1. [1]

s €A — (V¥xes)Byes) (x2=y2/\ yx=x3y/\ x5=x)
Theorem 2.2. [1] |

se & (Vxes) @yes) (xi=y? A xl=(xy) 2 A x0=x) .
By Theorem 2.1. we obﬁéiﬁ,thg follo@ing

Corollary 2.1. [1]

(1) Every anti-inverse semigroup S is a regular
_ semigroup.

(ii) Each element in S has its own unity.

(1ii) Anti-inverse elements from S have the same

unity. .
.(iv) If x2 = e (e is it i

% X its own unity), then the

element x is permutable with each of his anti-inverse
elements.
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(v) If x and y are mutual anti-inverse elements,

2 2
then x2y = yx2 and xy = Yy X.

(vi) If for x€S an anti-inverse element is

y €S, then so are also: xy, xzy,.x3y.

(vii) Every anti-inverse semigroup $ is an intra-

regular semigroup [7].

For details of proofs of Theorem 2.1., Theorem
2.2. and Corollary 2.1. see [1].

We give the following two consequences of the

above theorems.

Theorem'[l; p;23][9]. Let S be a semigroup. Each
element of S has a unique anti-inverse‘element in S

if and only if $ is an idempotent semigroup (band).

Proof. Sufficiency. Let S be an idempotent se-.. .
migroup, then each element x of S is its own anti-

inverse. Let us suppose that for x anti-inverse ele-

2 2

ment is some y # x. Then x = x" =y (Theorem}271.)=

= vy, thus x=y, a contradiction.

Necessity. If y is the unique anti-inverse for x,

then in virtue of the Corollary 2.1.(vi), xy is also

2

. . 2 . 2
anti-inverse of x and so y.= Xy. Since x~ =y = (xv)

(Theorem 2.2.), then multipiYingvy = xy by y from the

right we get y2 = xyz, i.e. x% = %3 which multiplied
by x3 yields ..x7- = xsku'and this in view of x5'= X

' 2
(Theorem 2.2.) yields the requested idempotency x = X

Theorem [1;'p.n2il[9]g;L§t S be a sémigroup. Any
two elements of S-are antirinyerses if and only if &
is an abelian group in which each element is its. own

(group) inverse.
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Proof. Let S be a semigroup in which any two ele-

ments are mutually anti~inverse. Then, by Theorem 2.1.

we have

V%) (Vy) (x2 = y2, yx = x°

2 4

whence, for x = y we have x° = x°,

(Yx) (Vy) (xy = yX).

Since (VXEZS)(X4 = e) (e is the

3 _ -1 . _ 1
=x 7, i1.e. x = Xx 7.

unity, Corollary 2.1.(iii))

we have x

Conversely, as S i1s an abelian group in which

~1 ,
X = X 7, we have (VxeiS)(x2=e) where e is the unity of

the group S. Then
(Vx) (vy) (x2 = y? = (xy) e)

and by Theorem 2 2. the proof is completed

Let P be a nonempty subset of a semigroun S. Denote
by [P] the subsemigroup of S generated by the set P.
Denote by Aa the set of all anti-inverse elements of

the element a in the semigroup S, i.e.

A =

a {xes |

[1].

group and a€ S. Then for each subset I
[akJIa]

By the theorem 3.1.

axa = X Axax = al.

Theorem 3.1. Let S be an anti-inverse semi-

<A_, GI_:=
a a a

is a subgroup of S.

we obtain

(i) If the set I

then GI
a

a has exactly one member and

a€ha

a’ is the quaternion group.

(ii) 1If a<€I_  and 1, has exactly two members, i.e.

I, = {a,b}, then GI, is the Klein group or the cyclic
group of order 2.

(111) If I_ =¢ and a?

the cyclic group of order 4.

#ea

, the dgroup GIa is
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The groups in the cases (i), (ii) are anti-inverse,

while the group in the case (iii) is not anti-inverse.

By the theorem 3.1. we conclude that every anti-

jinverse semigroup S is covered by groups, i.e.

U/ GI

a€s

The following theorem gives a necessary and suf-

S =

ficient condition for a group G to be in A .

[1].

—

Theorem 3.3. Let G be a group. Then

G ¢ A (vx€C) (3yeq) ([(x,yr] €4 ).

From the proof of theorem 3.1.

[{x,y}]

Klein groun

we have that
is either the group of quaternions or the
(which is the union of cyclic groups of
order 2} or a cyclic group of order 2, or the trivial
group.

‘Note that the theorem 3.3. is valid if G is a
semigroup [5].

The following definition is given by E. S.
(Chapter VIII §5 [8]).

Lapin

Definition (basic class). Let M,N,P be three clas-
ses of semigroups such that Mc:Nc:P. The class M is
basic class for the class N, relatively to the class P,

if the follow1ng condltlons hold:

a) Every semigroup from N can be represented as

the union of its subsemigrouos which are from the class M.

b) Every semlgroup from P whlch can be renresented

as the union of its subsemlgroups from M is in N.

" '¢) Any subclass M of the class M does not sati-

sfy the condition a).
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For the class of semigroups having the basic class
in the sense of previous definition, we shall say to

have basic class in the Lapin’s sense.

Denote by ﬁ? the class consisting of the trivial.
group, cyclic group of order 2 arnid of guaternion group.
%, w=A, P=¢
"of all semigroups, then we have:

(5]

the sense of Lapin for the class of relatively to &.

If M = and'SP_is the class

Theorem 3.3. The class J@ is a basic class in

Different characterizations of anti-inverse semi-

groups by the aim of ideals can be found in [4],[5].

IT.(m,n)-anti-inverse semigroups

'In the paper [2] are cosidered semigroups satisfying

n

(1) (xy)mA_x =

(yx) (3y) (x™ = y"A XM = x)
where m,nE&MN. We denote by JP
for which (1) holds.

inverse semigroups is the same as 593 5 i.e. A =
. ’ .

n the class of semiqroups
It is clear that class of anti-

75 5

The folloWing question arrises: for which m,n a

semlgroup S satlsfylng the condltlon (1) is-an anti-inve-

rse sem1grouo°

The answer of thlS questlon is glven in [2], where

an algorithm is given, by whlch for arbltrary 1ntegers

m and n, we can establlsh if a’ semigroup S is an anti-

inverse Semlgroup or not. So we have:

/lnC A, A 9” C% (n>1), 9;11 2’c‘-04,"
. ‘ ) ‘ . . C . ,
;~ f mcefé y c A
and so on.

t

B |

"ups of order m,

For exanmple, if in a semigroup £ hold

(Vx)(iy)(xl6 = y16/\x16 =

seA.

16
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(xy) N

X = x)

then

Also, in every semigroup the following formula

is true

(Vx) (3y) (x°2 = 920 %02 o (x9) 02 A %182 o x) = (k) (x%x) .
The class — is not a subclass of anti-inve-

rse semigroups for m > 2. This class contains all gro-

and so the cyclic group of order m,
which is not an anti-inverse semigroup.

9;’n, in [3], [6] is considered

i.e. the class of semigroups for

Beside the class
*
also the class S/Hln
which

(2) (Vx) (Ay) (x™ = yP A yx = ¥y Ax? = x).

An element y of a semigroup S is said to be
anti-inverse for an element x if

milarly,'

(,n) -
Si-
(m,n) *-anti-inverse element is defined by (2).
Denote by Ma (resp. M;) the set of all

(resp.

(1) is satisfied.

(m,n)-anti-inve-
rse elements (m,n) *~anti~inverse elements) with
respect to the given element a€S. Then the following

theorem is valid

Theorem 2.1. [3(. L 9
Theorem 2.1. [ ]- tet se¢ v x,n (ffﬁ'n), then for
every a €S and every I;c:M; (I Ma)

.GI;. [a\JI;] (GIa: [av

.
is a group.
As a consequence we have
s C
efj*m
s€ S

—_ﬁ? S =

C

= s
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Now we shall prove the following
Theorem. Let S be a commutative semigroup. Then
cx = C .
5/ m,n me,n

Proof. Let SE& Sﬂ*m n and x € 8 arbitrary. Then
- r

there exists y €S which is (m,n)*-anti-inverse with
m+1

respect to x, which implies yx = X y; hence, by the
n+1l

supposition on S, we have Xy = X y. As x,y<;GIX,

where I is chosen so that y€I , we have x = Xm+l'

i.e. X" = ey for all x€5S.

As Xn—l is an idempotent, the proper unity e, of:

the element x and its (m,n)*-anti-inverse ¥y element are

equal. By the matter of fact

: - - - m, n-1
e, = < 1 _ (™ 1)m _ (Xm)n 1 _ (v™ _
n-1,m n-1
= = - e .
vy ™) N v
So
m
= ym = e o= x e, =Xy = (xy)

and S€ 5inn'

Conversely, let S€ Spm n- Then from xm =y =

= (Xy)m, where y is an (m,n)-anti~inverse for X, and'by

: . m m m -
the commutativity of the semigroup S, we have y = XY .

Hence, by X,yeGIX, X0 = e, for all x€S. In this case

(Vx) @y) (x" = y" = e AYX = Xy Ax" = x).
As yX = XYy = e Xy = xmxy = xm+ly; we obtain
*

se & m,n-

In [6] is given an algorithm for determining_a
basic class in the sence of Lapin for the class Sf*m n
I
(m,n€M) .
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- ON THE LINEAR COMPLEMENTARITY PROBLEM

D.L. Karc¢icka

Several important for the applications mathemati-
cal problems can be formulated as the Linear Complemen-

tarity problem:

Find n-vectors w and z which satisfy the condi-

(LCP) tions w=g+Mz, w20, zx0, sz=O, where the vec-

tor g and the matrix M are given.

The (LCP) has received a remarcable attention.
Very often a paper on (LCP) can be found in the publi-
cations: Mathematical Programming, Linear Algebra and
its Applications, Journal of Optimization Theory and
Applications. But, there is no answer on the qguestions
of existence and uniqueness of solution, and computing

solutions for any matrix M and vector g.

For certain classes of matrices, or for special g,
there have been developed constructive procedures for
solving the (LCP). The most of them evolved from the

[2] and

the Principal Pivoting Method of Cottle-Dantzig [}].

Complementary Pivot Method of Lemke-Howson

Relative to (LCP) Lemke- £3] defines the classes of

matrices:
@ : Me®)

a solution exists for all q;
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the solution (w;z) = (o,wI;zI,o)(IkJ£ = {1,...,n},
” : INI = @) is computed applying the formulas
:X{ : me K &> a solution exists for all g for 3 . -
which a nonnegative solution of w = g + M-z exists. 2p = M9, wr =0
(4)
obviosly, & C "X . In particular the 9Dfmatrices - - -
B ' wp = qp f Mpzoe zp = 0.
(:positive principal minors) and more general the: E- = = = S
matrices (Vo#xzo 3i:x;>0and (Mx),>0) are g -matrices; _ For M = (a+l)P-E (M=E-(a+1)P) let
the & -matrices ((M)ij < 0 for all i and j such that q, = max {qg,} (qr = min{g.})
. . <3< <9<
i # j) and the copositive-plus matrices (xMx20 for 1 1=] 2 (s )1—3~n
= - = .+ at+l—-n r
all x z o, (M+MT)x =0 if x'Mx = o0 and x > O) are t=n"(r), s jél qj Ar
K-matrices. where #(j) = ij &> (M)ijj = *a.

- - p) f '
We consider the (LCP) for M of type The (LCP) is infeasible if s < 0 and n-2<asn-1 (s < 0

t((a + 1)P - E) (1) and a=n-1). The pair of vectors (w;z) = (0;—M_lq)
is a solution if s < 0 and a>n-1l, or s > 0 and

n-2<a<n-1 (if s < 0 and n-2<a<n-l, or s =2 0 and

where a is an arbitrary real, P is a given permutation

matrix of order n and E is the nx n-matrix all of

whose elements are unity. a>n-1) . Otherwise, the set of indices I corresponding

to the solution (4) can be obtained applying the fol-

Though (1) has a very special structure, it need lowing algorithm:

not be a K-nmatrix for any a. g

Step 0. Initialize v = 0, I' = {1,...,n},
For a+ 2 ~n >0, M€;9(7[4] and in the case when a 3 iy _ a . 1
soluti ] - ' ’ r, = r, 4, = » S, = s and go to step 1.
lon exists, it can be obtained performing one v+1 v
block pivot on a principal sub-matrix M, (card I = Step 1. Set I =1 - {4,} and test r, #1,
= r < n) of type (test r = &,).
. : 5 v+l .
t((a + l)PII ~ Brp) (2) 1.1, If yes, then I =1 gnd M, ; is of type
I (3) (oxr type (2)); stop!
a + 1 - T
or ( JPr-g Er-g “er .
+ T 1.2. If no, then go to step 2.
J ~1 (3) -
s St = 1 =
where T1°UJ = T, card(I°NJ) = r - 2 and Step 2. Set v v+l, find qr\ . max{qj},
€r- and -1 -1 " jer’
e. are r-1- - - =
J r-l-vectors all of whose elements are unity. As {v n (rv) ( {v n (’{v—l))’
T 1 )
1 P + —_ n . . = . — = . ) -
Yy IT Py EII] is the inverse of (2) s, équJ +(a+1 n+v)qrv (s, jéqu +(atl-ntv)q.)
and pT and test s < O:
1 I°J ez . v
a+l T 18 the inverse of (3)

_eI, ~(a+l~r)
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2.1. If yes, then I = ¥ and MII is of type (2)
(of type (3)); stop!

2.2. If no, go to step 1.

A modification of the algorithm can be used for
solving:

a) The parametric (LCP) [5], [6]

w = (gqtep) + Mz, Vv =2 o,z 2 c,w z =0,
a-parameter;

b) The dual pair of LP-problems [7]

min{pzlg + Mz 2 o, z 2 o},

c) The quadratic program [8]

T S
min{x MM, x | Myx 2 cl.
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BI-TDEAL SEMIGROUPS

B. Trpenovski

- We call a semicroup S a bi-ideal semigroup iff
all subsemigroups of S are bi-ideals in S, i.e. B< S,
Bzg B => BSB< B. Bi~ideal semigroups were introduced
in [6] in an analogous way as the left-ideal semi-
groups were introduced and studied in [3] and L7].
It seems, however, that the way the structure of left-
ideal semigroups is described in [3] —-and- [7] is
not appropriate in the case of bi-ideal semigroups. So,
we explore here the idea from [2] to-give a structu-
ral'déscription for bi~ideai semigroups. First, let us

gucte some of the results from [6]1

Theorem 1. Let S be a bi-ideal semigroup. Then the
following hold: ' S '

(1) (VaES.)' aSa C<a>, vhere <a> is thé cyclic
subsemigroup of S generated by aj; '

(ii) 8 is periodic and [<a>|<5 for all a€Ss;

(iii) The set E of all the idempotents of S is a
rectangular band;

(iv) (Je€E)(VYxES) xe, excE, &

In what follows we suppose § to be a bi-.deal se-

migreup.
' 109
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Let us put P = S\E, where E is as in Theorem 1.

We shall establish some properties about P and S.

a) It is easily seen that P is a partial semigroup,
i.e. (Y X,y,2€P) if one of the elements (xy)z and
x(yz) belongs to P, then ();y)z, x(yz) € P and (xy)'z =
= x(yz).®

From Theorem 1 it follows that

b) (Vx €P)(ImeN), where N is the set of posi-
tive integers, such that xmg—f P. (In fact, ({xe&P)
x5¢ P). Because of this property we may call P a peri-

odic partial semigroup. |

A subset R of a partial semigroup Q is said to be
a partial subsemigroup of Q iff [x,yER and xye€Q,
then xyeR]. A partial subsemigroup R of a partial se-
migroup Q is said to be a bi-ideal in ¢ iff x,y &R,
Xqy €Q, QGQ. implies =xgye R. If all partial subsemi-
groups of a partial se'm'igroup Q are bi-ideals in Q,
then we call Q a partial bi-ideal semigroup. We can
show, now, — '

c) P is a partial bi-ideal semigroup.

Really, if B is a partial subsemigroup of P, ){,yeB
and xpye€eP, peP, then B* = <B> 1in S is a bi-ideal
in S and therefore xpy € B*. But, from B*\BSE and
PNE = @ it follows that xpy€B. m

Let ey be the idempotent in <x> and let us put
$(x) = e . Then,

d) ¢:P - E is a homomorphism.

If xy=z, X,y,z2€P, then zx=xyx&€<x> in S, i.e. 2zx=

=xk, k€{1,2,3,4,5}. Let xm=eX. From zx=xk it fol-

111,

m__ m+k-— . . m+k-1
lows that zx"=x" K 1, i.e. ze =e ., since X

X
= exxk 1 is a idempotent (th. 1 (iv)) which belongs
to <x>. Now, 22e =ze_=e_, z3e =e and so on, so that
X X X X X .
=e_. Simi e = nd then
e e =6, Similarly we have e e "€, a

e e =e e e e _¢c<e > so that e_e =e which means
Xy 2 XY 2 z Xy "z
that ¢(x)¢(y) = ¢(xy). @

Let =%,y€S and xye€ E. Then in a similar way as
above we can prove that ee =e and eye=ey where

e=xy. Now, xy=e=eexeye=exey=¢ (x) ¢ (y):
e) x,yeS, xYy€E = xy = ¢(x)¢(y)-m

If we put ¢(e)=e for all ee€ E, then from the de-
finition of ¢ and e) it follows that we can extend

¢$:S -~ E to be an epimorphism.

Conversely, assume that P is a periodic partial
bi-ideal semigroup, E a rectangular band, PNE = ¢ and
¢:P -~ E a homomorphism. By putting ¢(e)=e for all
e€ E, we can consider ¢ as a mapping from S =.PUE
onto E such that ¢|P is a homomorphism. We define an

operation in § by

Xy as in P if x,y€ P and xy is defined in P,

Xy = {cb(x)cb(y) otherwise.

Let us show that S is a semigroup. Let x,y,z€S.
We consider the following three cases: '

(i) If one of (xy)z and x(yz) belongs to P, then
as P is a partial semigroup, we have that (xy)z,
¥{yz)EP and (xy)z = x(yz).

(ii) If both, xy and yz are not defined in P, then
{x,y)z, x(yz) € E and by the definition of the opperation
in S and the associativity in E we have that

(xy) z= [‘b (x)¢ (y)] ¢ {(z)=4 (%) |__¢ (v)¢ (z)] =x(yz) .
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(iii) Finally, if at least one of =xy,yz (for
instance xy) is defined in P but neither of (xy)z S=(P,E,¢) where P is a periodic partial bi~ideal semi-
and x(yz) is defined in P, then group, E a rectangular band,.  P(ME=§ and ¢:P+E a ho-
momorphism. @
(xy)z=¢ (xy) ¢ (z) =(¢$-homomorphism) = ’

_ - L. . At the end, using Theorem 2, let us quote some
= [¢(x)¢(y): ¢(2)=(associativity in E)= o _
examples of bi-ideal semigroups.

=¢(x) [¢(y) ¢ (2)] =(definition of ¢, o
- - Examples

- h_ = = ( z) .
or ¢-homomorp Lsm)=¢ (x) ¢ (yz)=x(yz) 1) Every rectangular band jg a bi-ideal semigroup.

De e the semigroup just constructed b s=(P,E, ¢). _

not 9 P .y o 2) Let A be a nonempty set, E-rectatgular band
We shall prove, now, that S=(P,E, ¢) is a bi-ideal )
and ¢:A-E any mapping. Then S=AUE 1is a bi-ideal
semigroup . . . . .
semigroup with an operation defined as follows:

Let B be a subsemigroup of S, x,y €B and sé&S. .
¢ (x)¢(y) if x,veEA

It is clear that B*=B\E is a partial subsemigroup of )
: ' Xy if x,y€E

P. So, if xsye P, then xsye¢B*c B since P is a Xy =
partial bi-ideal semigroup. Let xsy is not defined | ¢x)y if xeA,ye€E
in P. If xy &B*, then xy is not defiped in P and : ' x¢(y) if X€E,yeA.
. xsy=¢(x)$(s)¢(y)=(E is a rectangular band)= - | 3) Let E be a rectangular band and B, a partial
=¢(x) ¢ (y)=xy C B. | semigroup defined as follows: (i) X,y €B, XAV —> Xy

is not defined in B ;(ii) x€ Bk - xze Bk (k=2) ,
Finally, if xye P, then xyc B* and, because of the 2 3 5k’3 g
K k X", x € By {(k=3), x°,x7,x € B, (k=4) . Further, let
periodicity of P, (xy) € E for some k€&UN. Let (xy) =e. ] R k
: : ¢:B, - E be a mapping such that, if x € Bk’ then
We have that e €B\B* and, since ¢ is a homomorphism, }E

. ) ¢ (x7)=¢(x). Let us extend ¢ to a mapping from S=B, UE
p(x)d(y)=¢(xy)& E. Now,

_ onto E by ¢(e)=e for all e€ g If we define an ope-
k k~
o (xy)=[¢(xy)] "=¢[(xy) " J=e. ration in S by xy=¢(x)é¢(y), then S will be a bi-ideal

So, again we have that semigroup.

xsy=¢ (x) ¢ (y)=¢ (xy)=e &€ B, REFERENCES
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n-DIMENSIONAL SEMINETS AND PARTIAL n—QUASIGROUPS

Kiril Stojmenovski

It is shown that there is an equivalence between
the theories of n-dimensional seminets and regular

partial n-quasigroups.
O, First we give some necessary definitions.

Let Q be a non—emptv set, Dco”, and A be a map-

ping from D into Q such that:

A(al,...,ai_l,x,ai+l,...,an)

:A(al’”"ai—l’y’ai+l""”an) = X =Y (0.1)

for each i€{1,2,...n}. Then (Q,A) is called a parti-
al n-quasigroup with domain D. If ae€Q and i€{1,2,

,...,n¥1}, then b_ . is a subset of o™ defined by:
’

b . = {(X1’°"’X

a,i ne1) Ixi=a, A, ..ox)=x 3. (0.2)

n+1

A partial n-quasigroup (Q,A) is said to be regu-
laxr if the following statement is satisfied:

(R) The domain D of (Q;A) is non-empty and if

A(ai,...,an)_=

an+1’

then the sets bal,l"“"ba

n+1,n+1
are- -distinct. -

Let (Q,A) and (Q7,A") be partial anuasigroﬁps
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with domains D and D’ respectively and let a;,...,a

n+l
be partial bijections from @ into Q”. (By a partial bi-

jection o from Q into Q7 we mean a bijection from a
subset of Q into a subset of Q7). We say that (al,...,

+.s® ,q) is an isotopy from (Q,A) into (Q~°,A”) if:

(xl,...,xn)ED = (al(xl),---,an(xn))ED',

A(D) is in the domain of LI (0.3)
un+l(A(x1,...,xn)) = A’(al(xl)""’an(xn))’.
for every“(xl,...,xn)ejD. In that case we say that

(0,A) and (Q~,A”) are isotopiec. It is clear that if
one of (Q,A), (Q7,A")
also regular.

is regular, the another one is

Let P ke a nonempty set and let Bl""’Bn+1 {n 2 2)
be nonempty mutually disjoint collections of subsetsof
P. The elements of P are called points and the elements
of the sets Bv are called blocks. We say that (P; Bl,
»-+¢B_ ;) constitutes a structure of n-dimensional
seminet (Qr n-seminet) iff the following two state-
ments are satisfied:

{SN) (i) For every point p&P there exists a
unique sequence of blocks b (b, €B,) such
that {p} =b,MN...Nb

1700 Ppp
n+l° .
(ii) For every i€ (1,2,...,n+l} and every sequ-
ence of blocks bl,...,bi_l, bi+1""’bn+1 such that
b €B , the set b N...Nb,_Nb, . N...Nb_
at most one point.

1 contains

1. Here we will show that every regular partial
n~quasigroup induces an n~seminet.

Let (Q,A) be a regular partial n-quasigroup, and
let P (the set of points) be defined by:

117
Po= {lxy,everx ) VAR, eeeyx ) = x 0 ) (1.1)
Every non-empty set:
bx,i = {(xl,...,xn+1)€iP lxi = x} (1.2)
is called a block, and the sequence of blocks Blsewns
B 3, is defined by: - '
B, =
i {bx,i 'bx,i # 4, xeql (1.3)
~"From (R) if follows that P # @, and that Bise-
--+B .1 are nonempty and disjoint.
If p = (a a Y€ P, then b b
171 + ’ LI
. n+1 al,l’ ! an+1,n+1
is the unique sequence such that bé vEB, and {p} =
v, :
= bal'l(\...(\bah+l’n+l. If bav’\{efx) (v=1,2,...,m),
7then balyln..'nban = (allhhtlan_l_l)l where an+1 =
= A(al...an). Also if bav LEB,, (v =1,..i-1, i+1,..
. . ’ '
..,n+l, i<n+l), then
b ...b_ Nb N ... = tp,q}
. l o o o . -_._ . . o s 0 - > q
ay, . a;_q,1 1 ai+1'1+1 an+l'n+l E

implies that

P = (al'“”ai—l’x'ai+1""'an+1)'
q = (al,...,ai_iy,ai_,_l,...,an+l),
a

nt+l .= A(al-_. .ai_l,x,ai+1..,an) =

= May...ay gvaggyeeean)i

whence by (0.1) we obtain that x = Yy, i.e. » = q.

J_

Th;s cqmpletes"the p;qof that (P;Bl""Bn+1) isg

an n-seminet.




118

If (Q,A) and (Q7,A7) are isotopic, then it can be:
easily shown that the corresponding n-seminets are
isomorphic. |
7"an+1) is an isotopy from (Q,A)
P - P” defined by:

Namely, if (al,..
into (Q~°,A7), then the mapping ¢

¢ 2 (agreeeiang) = leg @)y eeray g @pgg))

induces an isomorphism from (P; Bl""'Bn+1) into (P?%;

.Bi,...,Bn+l).
2, Now we will show that every n-seminet can be

coordinatized by a partial regular n-quasigroup.

Let (P;Bl,...,Bn+l) be an n-seminet such that
m =-max{|Bi|li =1,2,...,ntl} and let Q be a set
with I1Ql = m, If fi:Bi - Q0 is an injection for
each- 1 =1,...,n+l, then a partial n-ary operation

A can be defined in Q by:

A(.ql,..,,qn) =qpy & (3b1""’bn+l; .b\)eB‘))

byN...Nb . #@, q =£ b))

From (SN) we obtain first that. A is a partial
n-qugsigroup, and it is regular as well, for_‘Bt,..
«--sBo41 are disjoint. ‘ S

Certainly, (Q,A) depends on the injeétibns

SN
of injections

and the set:Q. Assume that the séquence
f1:B; ~Q induces the partial n-quasi-
_fl:Bi' - Q;l— the
n-quasigroup (Q7,A"). If we put a, = £7f
from Q inté Q~. Then

group (Q,A) and the injections
. , then we
get a partial bijection o,
(Gl,...,qn+l) is an isotopy from (Q,A) into (Q~°,A")..
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Example. Given a 2-seminet as in Fig, 1 with:

k;\b

Fig. 1.

05,2

X

)

3,2

= {b

= {p

2,17 P22

1,17 P1,27 By 4%

},

= {b3’1, b3,2, b3’3},

max{IBiI]i.G{l,2f3}= 3,

Q:

2

b b
, 2,1 22
P NN
'b1,2
1,3
1f
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ON A CLASS OF NORMAL.SEMIGROUPS

P. RKrzZovski

A semigrouﬁ S is called normal if xS = Sx for
all elements x of S (S.Schwarz [1]). It is considered
in this note the class of normal semigroups with the
property Sx = Sx2 for all x of S. Two characteriza-
tions for the semigroups of this class are obtained
here.

1°

Sx = Sx2

. If a semigroup S is normal and regqular, then
for all x of S.

Proof. If x €85 and X = xyx, then

Sx = SxyxSSxSx = S°x°< Sx® = Sx.

The following example shows that the converse
does not hold: If S is a semigroup such that S| > 1
and ISZI = 1, then obviously Sx = xS = Sx2 and S
is not regular.

23. A semigroup S is normal and has the property
Sx = Sx2 for all x&S if and only if S is an infla-

tion of a semilattice of groups.

Proof. Let S be a normal'semigroup with the pro-
2 for all x&S. Denote by T the set of
all regular elements of S. We shall prove that T = SZ.

If zES2 then there exist x,y,u,v,s,t€Ss such that
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Z = Xy = uy2 = uy2v = Xyv = (xy)2s = xytxy,

which means that z €T, i.e. Sng. The inclusion
Tgs2 is obvious. Now we shall prove that T is normal,
If x,y€T, then there exist s,u€&€S such that xy =
= SX = SXusxe€ Szx = Tx and this implies that xT<cTx.
By symmetry Tx& xT and thus the semigroup 82 =T
is regular and normal. According to [4], 82 is a semi-
léftiée of groups. We note that idempoterits of S are
in the centre of S [1], and thus the set of idempo-~
tents E is a subsemigroup of S§° = T.

Define a transformation ¢ of S as follows. If
X €S, then x2E 52 and thus there exists an idempotent
e such that x2€ Ge' Then ¢(x) = xXe defines a tran-

sformation of S.
If x,y€S and XZEGe, yzer,then:
{x_y)zef = xyxyef = xyxeyf = (xy)2
and thus (xy)zeGef,. i.e.
o (xy) = xyef = xe.yf = ¢ (x)¢(y).

Moreover, there exist u,v€S such that

It

x(ye)f = x(uyz') bl

¢ (xy) xyef

_ 2 _ 22
= Xuy” = Xye = vx e = vx~ = Xy.

Therefore ¢ is an endomorphism of S which fixes
the eleménts of 82 and this implies that S is an

inflation of Sz.

Conversely, assume that T is a semilattice of gro-
ups, and S is an inflation of T. Then, clearly,T is a
for each t€T,
and this implies that S is also a normal semigroup

normal semigroup such that Tt = Tt2

satisfying the equality Sx = Sx2 for every x of S.
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ﬁ. Let S be a normal semigroup. The following

statements are equivalent:
(i) Sx = Sx2 for all xe8S;

(1i) N(x) = {yes | sxgsy} for all x € S.

Proof. (i)==(ii). First we shall prove that
F={yeS | Sxgcsyl}
is a filter which contains the element x.

Let y,z€F. Then Sx&Sy and Sx<Sz and since

2 4
S8x = 8x” = 8x° = Sxxzxg_:SxngSySz = SzyzE Svz,

it follows that yzerF.

Conversely, if yz&€F, then 8Sx€Syz<Sz and
SXSSyz = ySz € yS = Sy which means that y,z€F,
i.e. F is a filter. Since Sx€Sx, it follows that
Xx€F and this implies that N(x)< F. To show the inclu-
sion FEN(x) we use II.2.10 of [3]. Tf yeF, then
x2€Sx €Sy<J(y). Since - x26Nl (x) NI(y), we get -
yeN2 (x)' C_:'N(x)' "and so F CN(x). Hence F = N(x).

(i.i__)..:>(i) Obviosly szg Sx for any x€S. Sin-

2 . X : :
ce X €N(x), it follows that Sx<;—Sx2. Therefore

Sx = Sx2.
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3A E[JHA KITACA HOPMANHW MONYTPYNH

N. KpxoBcKwu

Bo oBaa CTaTMja ce pa3rjiegaHu HopManHWTe nonyrpy-

nu (xS=Sx 3a cekoj X€ S) kou ro saposonysaaT ycnosorw
2

Sx=Sx" .

Ako nonyrpynata S e HopManHa M perynapHa, Torauw
Sx=xS=Sx2. MeryToa o6paTHOTO HE BaXM. Ha npumep, ako S
e nonvrpyna Taksa wTo [S| > 1 #u ISZI = 1, Toraw SXx=

o
=xS=Sx2, 4o S He e perynapHa (17), co wTo mMokawyBame

AeKa oBaa Knaca e nowupoKa OTKONKY wara S e nonyMpexa

2
op rpynu. 3a KnacaTa nNonyrpynu Sx=x8S=8xX poGusame
fABEe KapaKTEepUCTHUKM: '
. 2
S e HopMafiHa nonyrpyna co CBOJCTBOTO Sx=8Sx akKo

. . o
U camo aKko S e uHbdNauuja Ha nomyMmMpexa of rpynu (27).
Ako S e HOopManHa, Tofam cnegHuBe MCKa3u Ce eKBuU-

BaneHTHU:

o]
. . “
(i) sa cekoj] X & 5, Sx=Sx

= {(y€SISxesy} (3

O
~—
e

(ii) sa cexoj x€8S, N(x)
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ON QUASIVARIETIES OF GENERALIZED SUBALGEBRAS

S. Markovski

Throughout this paper we shall use the usual
nctations and notions of the theory of models, assu-
ming that all languages are first order languages wit-
hout relational symbolsdifferent from =, where = deno-
tes the equality symbol in the given language. The aim
of this paper is to give a generalization of Theorem

(M), by using a generalization of Theorem (3.).

THEOREM () ([2], p. 274). Let L g L, be two
languages and let 21(22) be a set of Ll—quasiidenti—
ties (Lz—quasiidentities). Then the c¢lass K of all
Ll—algebras A € ggzgzl, for whiqh there exists an
L,-algebra B € Modr, such that $B is an L,-exten-
sion of A&, is a quasivariety. n

THEOREM (1) ( [1]). Let L, & L, be two langu-
ages and let I be a set of Lz—formulas, let a@ be an
L,-algebra. Then there exists an L,-extension B of A
such that B¢ Modl iff A is a model of the set of

all open Ll—formulas, which are theorems in the theory
defined by X. O

Here by a quasiidentity we mean a formula of the
form ¢, vV ...v¢, V¢, where ¢rdyraaarty (k 2 0) are

atomic formulas (or identities), i.e. formulas of the
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form ¢ = p, where ¢,neTerm (L). A quasivariety is a
class K of L-algebras such that & = Mods, where X is

a set of quasiidentities.

1. Generalized subalgebras. Let L, and L, be two

languages such that LlﬂL2 does not contain operational

symbols. (This assumption is only for technical reasons,
as can be seen from what follows.) For e.ach n-ary opera-
fEIj

£7 = fA(Xl’“"’Xn) contains no more than n

tional symbol let a term £ € Term(L,) be given

such that

distinct variables. Then an L.-algebra £ is said to

1
be a A-subalgebra (or generalized subalgebra) of an

L,~algebra % iff e 1<1B| and

= A 1.1
(al,...,an) £2 (a (

B
£€L (1f] = n, n =0,1,2,..),

E% ..,an)

al,...,anesloél
Let /4 be an L,-algebra. We are asking under what
circumstances there exists an L2~algebra 23 belonging
to a class of L2—algebras X, such that /4 is a gene-
ralized subalgebra of £ (for a given ?). We shall

give here an answer which is a generalization of
Theorem (L).

for all

Let the languages Ll,L2 and the mapping ~ be as
above. Let ¥ be a set of Lz-formulas and

I’ = Z\J{ﬁxl...xn = fA(xl,...,x )IfeL; }.

THEOREM 1 ([s], [7]). an L,-algebra A4 is a
-subalgebra of some L,-algebra % € Modz iff A sati-
sfies all open formulas, which are theorems in the

theory defined by the set of formulas = °.

Proof. Let A4 be a "~subalgebra of an L,-algebra
S5 € Mods. Form an expansion & of %3 for the language

. = A . .
LlU L2 by putting fe Ll = f‘C(bl oo ,bn) f.a(bl , e

b))y

n

as in the proof of Theorem 1.
Modz:
—%0

from &
fo)
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for all b,...,b €| 4], ferL, (Ifl =n, n=0,1,2,...).
Then o4 is subalgebra of %]Ll, € € Mods”, and so every

open L,-formula, satisfied by %, is satisfied by A too.

rConversely, suppose that o4 satisfies all open
Ll—formulas which are theorems in the theory defined by
%7, Then, by Theorem (L), there exists an L L)Lz—algebra
<C‘J’GModz ¢ such that o4 is an Ll—subalgebra of ¥. Consider
the resfriction V@ILz. Since TeModi~, we have BeModx

and, furthermore, for all feL,, ayreeesa €lAl,

qu(al,_.,.,an) =f<g(al"'°’an)
(as A is an L 1~subalgebra of &)
f%?(al,.,.,an) = £ (a

PUCTERRY
(as ﬁ:%]Lz)

So, (1.1) is satisfied., o

)

78y

2. Malcev’s theorem for generalized subalgebras.

Now we shall give a generalization of Malcev’s theorem
in the case when generalized subalgebras are considered
Since the usual notion of subalgebra can be obtained

as a special xind of generalized subalgebra, the proof
given below is another proof of Theorem (M) too (and
more elementary, in author’ S opinion).

THEOREM 2.Let L, 1L, be two languages and ” be a

given mapping (deflned as abowve), and let Z'(Z') be a

set of L j~dquasiidentities (L2 quasiidentities), Then

the class K, consisting of ail Ll—a1gebras d@eModr

which are ~-subalgebras of algebras belonging to the
Mod Z,, is a quasuvarjety.

Proof. Denote by zg the set of ail open L —formulas

It suffices to prove that

= Modr’, where Lj consists of all quasiidentities
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We may assume that x, contzinsonly formulas

Of the fOllOWlIlg fOII[l.
9% ¢ . 2. ]
1 Vieeeo V I n ) ( )

¢1v Y %n (2.2)
APV e VIS Vi Ve Vb (m,n,k,p > 0) (2.3)

where ¢i-are atomic formulas (iden@ities). |
Let % = Z,UZ,U {fx;...x) = £00x,0ox )L E €T Y.
Then 23 is a set of quasiidentities, and
™M =(MZ3)\ngy_c_>gz°.
Since each one.element Ll—algebfa belongs to M,

we get that X, does not contain formulas of the forms

(2.1). The free LIUL2

and so every formula of the form (2.2) is equivalent to a

formula of the form ¢, for some i:lsiem. As Modz, is

—algebras belong to the class ModZ3,

closed under direct products, we have that every formula
of the form (2.3) is equivalent to a formula of the

form 19 Ve VT V¢k+j’ foxr some J:1 < j £ p. 0
A simpler formulation of Theorem 2 is given by:

THEOREM 2°. The class ¥ of all “-~subalgebras of

algebfas.bélonging to a quasivariety @ is a quasivariety.g

The folloving problems arise about the class K:
1) give a convenient description of the quasivariety IK;

2) under what conditions K isa variety, when @ is a variety.

Remark. If the languages L, and L, contain relational
symbols, then Theorem 1 still holds. In this case, for a
~ relational symbols p, we put p” to be an L2—fbrmula
with no more than n free variables (|p|/ = n). Then, in
addition of (1.1), we put
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4;4 (al,...,an) =T iff Pé%(al,...,aﬁ) = T,

Furthermore, if p” is an atomic formula, then Theorem 2

hol@s too (with corresponding preformulations; of course).
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POLYADIC SUBSEMIGROUPS OF SEMIGROUPS
G. Cupona, N. Celakoski

This work is an attempt to systematize a part
of fhe results on generalized subsemigroups of
semigroups obtained wup to now mainly by the
authors of this paper. The majority of the re-~
sults is already published and we usually quote
the paper where the corresponding result is pu-
bljished. ?he results published here for the first
time are 3.119 and the most part of §5 and §6. We
give also proofs to some known results in §4 with
a purpose.to illustrate the so called indirect
method, i.e. the usefulness of Post. Coset Theo+
rem for investigation of n-~groups by using binary

groups.

'§1. Universal enveloping semigroups

Let A = (A; F) be an algebra with a carrier A
and a nonempty set of finitary operators, F = FyUF3U
...L}FnLJ..., where Fn consists of n-ary operators
belonging to F. Denote by A the set of "semigroup
defining relations” a = a,a,...a where a = fal..fa

172 n’
in A. Then the semigroup A™ with a presentation

n

<A; A> (in the variety of semigroups) is called a uni-

versal enveloping semigroup for the algebra A. If
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u = aj...a (av€ZU is a word on A, then by u® is de- -
noted the element of A" determined by u. Define a map-
ping A : A= A" Dby 1A : a=a". Then we have the fol-

lowing universal property of Aﬁ.

1.1°. If A = (A;F) and AT = (A7;F) are F~alge-

a homomorphism, then there exists

such that A7 =

bras and ¢ : A - A~
a unique homomorphism ¢~ : AN - A"
= o™

(We note that if ¢ is an epimorphism or isomorphism,

then ¢* has the corresponding property but it may happen

¢ to be a monomorphism and ¢* not to bej; [7].)

a semigroup S such that Ac<¢'S and

a

fa.a, ... a ala2 ceoo@y

172 n -~
for every n-ary operator fe€F and a, ,a2,.,.,aneA. if,

in addition, S is generated by the set A, then S is

1.2°. A is an F-semigroup iff the mapping a: ar a®

is an injection from A into A*. (Then we can assume
that A”® is a covering semigroup of A and it is now

called the universal covering of A.)

' The cardinal number ]All of the set A, of all

elements a® of A", when a€h, is called the semigroup

grdgr of the algebra A, and if IA | = 1, then A is

fcisiebiote % =iy edia=! Poaibanivoduniiiiifagemghy Pucye e

1=3 . Every algebra is a subalgebrauof a semigroup
singular algebra ([4]).

It is easy to determine the universal enveloping

semigroup of a semigroup singular algebra A = (A3F).
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First, let JIp be the set of naturals defined by

Jp = 1{n-1 | F_# (J_}_.,. » _(1.;)

and let dF be the greatest common divisor of the ele-

ments of J. Then
1.4°

. If A is a semigroup singula¥ algebra, then

AN is the cycllc group with order dg ([4]5;

It is natural to ask the questlon what are the .
implications of the statement. that the unlversal_enve;
loping'semigroup A™ of an algebra A has correspohdiné
given propertles. We do not think that’ (1n general) ‘a
property. of an glves a good 1nformatlon about the stru-
cture.of A, but if A belongs to some speclal class of -
algebras (llke polyadic semigroups or groups) we usua-
1lly have a better situation. T '

§2.:Associatives

The class of F—semigroups is a quasi&ariety and a
convenient‘system,of axioms (in the form of guasiidenti-
ties) of this quasivariety is given in [2]. Here we
shall state some results concerning F-semigroups.

2.1°

dFEJF.

. The class of F-semigroups is a variety iff
(J and d are defined in §1, (1.1). )([ﬁ9])

An algebra A = (A F) is called a weak associative

—_———— em eSS E o=

if for any 'fe_Fn, geF and i€f{2,...,m} the fol-
lowing identities are satisfied:

gfx1 .. X bn—1 =-fgx1 ere Xoin-1

(2.1)

= 9%y e 11f

And, a weak assoc1atlve is called an associative if for

m+n 1°

any f-\_)anv+1l gkeFmA"‘l’ \)E{l,...,r}, Ae{l,,,,,s}
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such that

= = 4+ m 4+ ... + m
n1+n2+...+nr n ml 2 s’

‘the following identity is satisfied in A:

f1 .o frxoxi cee X TGy ees G Xgoe-e X (272)

“(In other words, A is a weak associative if con-
tinued products do not change by any replacement of ope-
rator symbols, and an associative if continued products

with same length are equal.)

Some connections between the classes of F-semigro-
ups, weak associatives and F-associatives are given in
the - next statements.

ELESf Every weak F-associative is an F-associative
iff F = F, = {f} consists of only one n-ary operator.
(In that case, the associative (A;f) is called an n-se-
E}group.) ([4])

2.3°. The class of F-semigroups is a subclass of
the class of F-associatives. ([191)

g:ii. Every F-associative is an F-semigroup iff
dFGEJF. (in.this case, it may be assumed that an F-asso-
ciative is, in fact, a dF—semigroup.) ([lﬂ)
Example. Assume that dF¢JF_ and let n be the
least element of Jp and p the least element of J, which
"is not divisible by n. Define an algebra A = ({0,1,2};F)

in the following way: -

- if g'éF&v m # p + 1, then gX Xy +.- X = U,
- if f€Fp+l, then .f22 .e. 2 =1, and
fx %, --. X, = 0 when (xo,...,xp) # (%L;;;i?)’

- ptl
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Then A is an associative but it is not an F-semigroup.

Thus, if dF¢JF’ then the class of F-semigroups
is a proper subclass of the variety of F-associatives.

Below we shall state some sufficient conditions under

‘which an F-associative is an F-semigroup.

2;50. If an F—associative'éisatisfies some of the

fdllowing conditions, then it is an F-semigroup ([2]
[20]):

(1) A is surjective, i.e.

(va € A) (Af €F) (Hal,...,anEA) a = fal...an.

rator fe€eF, ie€{l,...,n} and ays-.-,a
.oy aneA the mapping

i-17 3417

X fal e.. @,_,Xa, ... @

is an injection.

An associative A is cyclic if it is generated by
one of its elements. A description of the class of
cyclic F-associatives is given in [3]} We note that the
associative A in the above example is cyclic and it is
generated by the element 2.

As concerns the singularity of associatives we
have the following propositions.

2.6°. If an associative A is semiqgroup singular,
then [a] = 1. ([4]).

3:13' If'|F| > 2, then there exists semigroup
singular weak F-associatives; the class of subalgebras
of semigroup singular weak F-associatives is a proper
subclass of the class of weak F-associatives. ([4]).
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§3. n—-subsemigroups Qf semigroups

As we mentioned in 2.2°, an n-semigroup Q is an
algebra (Q,f) with an associative n—ary operation f.
Instead of fx,
If ao'a1’°"(as(n—1) | d
of Q, then all continued products ﬂ(éoyéll.--:as(n_y)
are equal in Q, and thus we may denote by [aoal.:.

coe X, We shall write_[x1 Xy eee X 7.

(s21) is a sequence of elements

any such a product; if s=0, then we also write [ao]

The universal covering semigroup Q7 of an n-semigroup

a

Q can be characterized in the following manner ([7],
[17], [18]):
Lo . _ . ' c _
3-A1 . Q_"_— QUQ,U...UQ _,, where 0, =0,
)

(al,...,ai) and b

{a1 -e.ay Ial,...,aiEQ}, _Qian = for i#j.

a =

3.29. Two sequences

a st b, iff there is a sequence

9 = (Ci,CZI,_,,ct)eth and nonnegative integers

po'pll""lpil -qolqll-"olqi, such that

O=po<p1<...<pi, O=qo<q1<...<qi, pi=qi=t

=1 (mod n-1), =1 (mod n-1), (3.1)

qv+1nq\;
[q

pv+1_pv
[ep

a

b
v

+1°'°Cp;]t v v_1+1"ﬁ?qv]'

The transitive extension of sf will be denoted by £.
if

v=1

Then, ayre-.,a bl,..,,biesQ, tHe equation a

Lo 4

i
b....b, holds in Q
1 i

1re-
iff (al,...,ai)l(bl,...,biL

e ool
1

Below we shall state some connections between the
properties of an n-semigroup Q and its universal cove-

ring semigroup Q”; it is assumed here that n2>3,.

3.3°. The semigroup Q™ is commutative iff Q sa-
tisfies the following conditions:

3s (n-vljo is

o°
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Q is commutative (i.e. for every permutation

(1)
|y - i, of 1,2,...,n the identity [xl...xn] = [xil .
|

[ooe Xy ] holds in Q),
T n

(ii) p = Q\{[a1 . an]l a,,...,a, €Q} contains
lat most one element. ([18 )
| . ,0 , .

3.4". Some covering semigroup of an n—-semigroup

commutative iff Q is commutative. (Djﬂ)

3.5°%. some covering semigroup of an n-semigroup
cancellative iff Q is cancellative. ([iS])

3,69,

QO is

Q" is a group iff Q is an n-group (i.e.

Vay,....a, ;€0 Ax;y e ([xa, ... a ] =a,

[a,--.a,_;¥] ([17])
3.7°. Some covering semigroup of Q is a group
iff Q is an n-group. ([1])

= an}).

3.8°. 0 is freely generated (in the variety of
n-semigroups) by B iff Q" is freely generated (in the
variety of semigroups) by B. ([2:§4])

| Assume now that %’is a class of semigroups and

denote by %f(n)_the class of n-~semigroups which are
n«subsemigroups of semigroups which belong to C. wWe
|think that the question of description of %€ (n) is

interesting when % is given in a convenient way.

As a consequence of a general result from the
model theory ([}4; p.274]) it follows that if ¥ is
;a variety, then Qf(n) is a quasivariety. We do not
known any convenient description of the set of varji-
eties of semigroups such that Q?(n) ié also a variety.
We shall state here some partia;_reSults conéerning
Fhis problem.

i
|
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3.99. Let QD be the variety of semigroups that
o +
satisfy the identlty xf = x* ™ and fi’ the variety
Then:

of commutative

(1) &P

-semigroups.
U -

(n)- is a variety iff n-1 is a divisor

r,m
of mor ré€{0,1}.
(ii) E?r (n) is a variety for any r,m,n. ([16])
l
3.10° 10°. Let obz'be the variety of left distributive

semigroups {(i.e. semigroups which satisfy the 1dent1ty
Xyz = XYXZ), and Q the variety of dlstrlbutlve {both

left and right) semigroups. Then oa (n) is not a va-

riety for any n 2 3, and oJ(n) is a variety for any
n. ( 16])

Let & = xil xi2 .o xj_p pe a (semigroup) term,
where iv€{1’2’3""}' Then IE;Ii is the number of iv

such that iv = i.

If € is a variety of semigroups defined
£ = n such that IEli = |n|i
., then “(n) is a va-

3.11°
by a set of identities
(mod n-1) for each i = 1,2,..
riety.

We note that in [5] it is given a description of
the class gD(n), where @ is the class of periodic se-
migroups, and in [}5} it is given a description of the
class g; {n) where Z; is the class of groups-

If € is a class of (binary) semigroups, it is

natural to ask for a convenient set of classes,

{ &, %3,...,?11,.. .}, such that &€ = "f and ‘?n
is a class of n-semigroups. There are several possi-
bilities of solution of that problem.
the following three of them:

Let us mention
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(A) Q€ §i1, iff

(B) Q¢ %i}”

semigroup S of Q,

© e,

It is clear that:

e ¥,

iff s€ ¥ for some covering

is defined directly,

o
3.12°, o< n” for every class & of
semigroups.

From 3.6°-3.8° it follows that (A), (B) and (C)
give same solutions if & is the.class of groups or
the class of free semigroups. If % is the class of
commutative semigroups {(or the class of cancellative
semigroups), then (B) and (C) give the same result,
but the results of (B) and (A) are not identical (na-

meer'i?n' is a proper subclass of Qil"

We note that if we'try to define the notion of
periodic n-semigroup by a definition of type (A) or
(B) we would obtain unsatisfactory results. For exam-
ple, if a ternary operation [xyz] is defined on Z by
[xyz] = x-y+z, then we obtain a periodic ternary semi—
group, but no covering semigroup of ( Z; [ 1) is pe-
riodic.

We also note that the classes of completely re-
gular and inverse n-semigroups are defined in [}1]
and [13] respectively by definitions of type (C).

§4. Universal covering groups

The well-known Post Coset Theorem ([8; p- 218])

gives a connection between the pblyadic groups and
binary groups.
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The proposition 3.6° is, in fact, a modification of

that theorem and, by this proposition, if Q
then O"is a group and it is called the unive-
We shall state here some

is an n-

group,

§3 that n =2 3.
4.1°. Let O be the universal covering of an n-

group Q. Then

(1) If al,...,ai, bl,...,biEQ, 1<i<n -1,

in @~ iff there exist

then a1 cen ai = b1 e bi

1"' n-—
(ii)

. a ,a., b ,...,bj €EQ =

17°°°771 1
=¢(al ces @y T b,
then Q* is the universal covering group of Q, Q7 = Q*,

(see 3.1°) is a normal subgroup of "

(iii) Q-1

and the factor group QA/Qn—l is cyclic with order n-1.
(iv) If al,...,akeQ, -al,...,ake % , then
1,0 k ER mod n-1).
alla22 c.. @ §.Qi & ooy +o..t o =21 (

The proposition 3.6° is used in [i] for obtaining
several axiom systems for n-groups. Some of them are:
4.2°. Let O be an n-semigroup. The following sta-

tements are equivalent:

(1) Q is an n-group.
(ii) For some K« €{1,2,...,n-2},
(VX seeesXy € Q) @x{,.-- PX o1 € Q) (Vy € Q)

[xl...xkxi..

.,C iGQsudlﬁmtﬁru%rﬁr.aﬂ=ﬂpru%rfr.bﬂ.

If O* is a covering semigroup of ¢ such that:

.. by in 0%¢> 1=3 (mod n-1)),

XK 1Y]FY =[yx{---x o1 ¥ ¥k

a xa

(iii) There exists an (n-2)-ary operation ( )*L

on Q such that for any xl,...,xn_ZIY'GQ the following

identity equalities hold:
-1

Xl"'Xn—Zy]'

x> X on Q

[yxl'"Xn—2(xl"'xn—2)_1] =y =[x, )

(iv) There exists a unary operation
such that the following identities are satisfied in Q:

= _n-2 n-2—
[x x “y] =y = [yx~ “x].
(v) There exists a unary operation x# X on Q

and for some s:0<s<n-2

such that for some p:0<p<n-2

the following identity equalities hold:
[xp§ Xn—p—2y] =y = [yxn_s_2§ xs].

The notion of free n-group is definied in the
class of n-groups in the usual manner, i.e. by a de-
finition of the type (C) of §3. The situation in this
case 1s not the same as in the class of n-semigroups
which is evident from the following results 4.30—4.60,
proved in [10].

4.3°, If Q is a free n-group with a basis B,

then QA is a free group with the same basis B.

4.4°9, If 0* is a free group with rank r = 2,

then Q is a free n-group.
f4;50. Q” is an infinite cyclic group iff Q is
isomorphic with the following n-subgroup of the
additive group of integers:
{(n—l)x+k[er}=Ak.
1<k<n~-1

where and k is relatively prime with n-1.

The n-group A is free iff kx = 1 or k = n-2.
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o
4.6 . An n-subgroup of a free n-group is a free
n-group oOr am n~group isomorphic with an n-group of the
form Ak.
We note that in the original proofs of the above
results are used the corresponding "binary results",

and the following property (see l.lo) of n-groups ([7]):

g;zf. If ¢ : Q- Q° is a monomorphism from an
n-group Q into an n-group Q7, then ¢4 : Q" - 9°* is
also a monomorphism. (In other words, if P is an
n-subgroup of an n-group Q and if P* is the subgroup
of Q" generated by P, then P*.is the universal covering
group of P, i.e. P* = p™.)

In the next propositions (4.80—4.130) are consi-

dered finite n-groups and it will be assumed there that

Q is a finite n-group with order qg =1Ql First we
have:

4.8°, The order of oA is (n-1) -q.

Proof. By 3.10, it suffices to prove that the set

Q; has q elements. Let ays+-.,3;_; €Q. Since (in Q")

al...ai_lx = aj..ed; 1V & x =y
it follows that the set

(x,y €Q)

A1reedy 19 (which is a subset
of Qi) has q elements. On the other hand, if b%,..,bieQ
and a,...a, -1 N

TR | 1 i-17-3i1Py-- Py
belongs to Q, from what follows that Qi = ay.-..a;

. 1-1Q’
i.e. lQiI = g. 3

X = bl"'bi’ then x = a

As an immediate corollary from 4.7° and 4.8° we

obtain the following generalization of well kno&n Lag-
([8; p. 222]):

o o
4.9, If P is an n~subgroupr of Q, and |P| = p,

range Theorem for binary groups

then p is a divisox of q.
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If a€Q, then the order of the cyclic n-subgroup
<a> generated by a is called the order_of a in Q, and
it is denoted by r(a). Denoting by T(a) the order of a

in 0”, from 4.7°, 4.8° and 4.9° we obtain:
4.10°. T(a) = (n-1)r(a) and r(a) lq. O

- Assume that a €Q and that a is the skew element
of a (i.e. a is the solution x of the equation [an_lx:|=a
in Q; see also 4.2°, (iv).) Then 2=n (in Q™ and

—_ A
this implies that ?(a) is a divisor of r(a). Therefore:

a = a

4.11°. r(a) is a divisor of r(a).®D

In [9] it is considered the class of finite n-

groups Q such that
r(a) = r(a).

(Vae Q)

Since ' R R e
r(a) = r(@) « r(a) = ¥@ =Tr@™ <&
(f(a), n-2) = 1, it follows that:

4.12°, r(a) = r(@)

vely prime.

iff n-2 and r(a) are relati-

We note that the main result of [9] proved without
using the notion of covering group, is the following

proposition:

4.13°. If n-2 and q are relatively prime, then

r(a) = r(a) for each ae€09.

It is clear that 4.12° = 4.130, Thus, a property
of n-groups can be usually easier shown by an indirect
method, i.e. by using the notion of the universal co-
vering group, than by a direct method, i.e. by dealing
only with n-groups. We shall give another example which

support such a conjecture.
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Let Q be an n-group (not necesgsarily finite) and
let £ and g be defined on Q% by

-1 . . -1
f(x,y,z) ] xy z, g(xl,e.-,Xn_z) (X1X2-°-xn_2) -

Then

X KgeooX = f(xl.g(xz,..-.x ).xn)

n-1
and (Q;f,g) is a subalgebra of (Q";£,9) .

Therefore:

4.14°" 1f Q is an n-group, then there is a ternary

‘operation f and an n-2-ary operation g on Q such that
[xlxz...xn] = f(xl,g(xz,...,xn_l),xn), o

The proposition 4.14° is the main result of the
paper”[12], and it is proved there by the "direct
method”. We also note that by this "indirect method"
can be proved-some similar results on inverse n—semij

groups which are obtained in [13].

§5 Universal covering semigroups of finite

n-semigroups
It will be assumed in this section that Q is a

finite n-semigroup and that |Ql = gq, n =2 3 are given.

Clearly, 1Q;1 < g’ and by 3.1° we obtain:
5.19. 0A is finite and 10% < g + q2 Yo+ gt
By 4.8° we have: ’

5,29, If Q is an n-group, then lQiI =q
19" = (n-l)g.
This proposition sugests the question whether there
lQil =q
which are not n-groups. The answer is positive, Namely,

exist finite n-semigroups with the property
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0 2n-1 L (xm=1) (n=1)+1,

let 0= {a,a",a

r(n-1)+1
a ’

P
be a cyclic n-semigroup with index r and period m,
where q = r + m. Then
L(m1+L 3 (nm1)Hl (=4 or \
_ (i,9>r and izj (mod m)) and

n-1 _n
or = (a,a’,...,a" T,a

ar(n—l)’ar(n—l)+1’

y oo o}

’a(r+m)(n—l)}

is a cyclic semigroup with index r(n-1) and period

m(n-1)+1. Therefore:

5.3°. If Q is cyclic, then 10, l=q, 10 =(n-1)q.
Now we shall prove that:

5.49, 1f P = Q\{[ai...aﬁ]\al,...,ane;Q} and
p, then O, >pt + L.

iP|
Proof. First, if al,...,aie:P, then

(-all-.viai) 5£(bll""bi) @ a]_ = blv‘..iai = bi’

i i i he set
and this implies that IQi\ > p-. And, since t
Qi\Pi is a union of f-classes and is nonempty, we
i .
have also ‘IQil >p- + 1.0

As a corollary of 5.4° we obtain that:

5.50. If 0 is a constant n-semigroup, then

o o1 = (-1)% + 1.

Proof. Let (VX ,...,%) [xlgnaxn] = 0. By 5.4°
we have 10,1 2 (g-1)7 + 1, for P =Q\O}, p = g-1l.
Using the associativity of the operation [ 1 and (5.1),
it is easy to show that the fecllowing equality holds
in Q%
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_ Al
a; a,_j%a ., --- a; = 0
for any Aireserdy 1 av+1""’ai€EQ’ v e{l,,a.,i},
i€{2,...,n} and this implies that IQiI = (g-1)" + 1.0

Let us consider the general case.

5.6°. If q > 1, then ,1 < 10,1 < g- for each
i€{2,...,n~1}.
Proof. We have to prove that 1 # IQiI, lQil # qi.
Assume that IQiI = ql for some i€{2,...,n*1},
Thus, if Ayreeardyy bl,...,biEiQ and ay e-- a; =
= bl ‘.. bi’ then a,; = bl,...,ai = bi' By the
associativity we have:
i-1 _ i-1
[al .. an] aj =a; ... ai__l[ai ... apaj ],
which implies that
[a) -~ a ] = 2
for any al,...,anEEQ. By symmetry we also have
[al .. an] = an and thus we have al = [al e an] = an
for any al,...,anéiQ. But this is impossible since

g = 1QI > 1.

Assume now that lQil =1 for some
If a,al,,..,ai, b,bl,...,biGEQ, then we have a
= bl"'bi = bbl I o)
which implies

l...ai=

and also ab. ... b , ’
i-1

1 ToTi-1

aa a. = ab b..

1 "7 7i 1 1 777 Ui
i.e. IQi+l| = 1. Therefore we have lQnI =1, i.e. Q
is a constant n-semigroup and, by 5.50, this implies

that 10,1 = (@-1)" + 1 > 1.0

~.- b, = bb
i

Denote by «f(g,i,n) and a(g,n) the least positive
integers such that there exists an n-semigroup ¢ such

that

i€e{2,...,n-1}.
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1l = a, 10,1 = ala,i,m), 10" = alq,n).

Dually, 8(g,i,n) and B8(qg,n) are the maximal numbexrs
such that lQil = B(g,i,n), 16" = B(q,n), for some
n-semigroup Q with I[Ql = g. Clearly:

it

5.7°. (i)  a(l,i,n) = g(1,i,n) =1,

(ii) o(1,n) = g(1l,n) = n-l,

(lll) a(qylin) = B(qllln) g,

. =1 . -
(iv) ?ﬁla(q,l,n) < a(q,n) < 8(q,n) < ggig(q,i,n).

o
Assume that g >1 and 1 <is<n-1. From 4.8

(5.30) and 5.5° we obtain the following two propositior
5'.'80. a(q,i,n) < g < B(qliln)l
a(g,n) £ (n-1)g < g(g,n). o

5.9°. a(q,i,n) < (g=1)* + 1 < g(q,i,n),

. -1 ;
a(q,n) S.:El(q—l)l +n-1%8(q,n).

5.10°. 2 < al(g,i,n) < glq,i,n) < ql -1,
n-1

g+ 2(n-2) < al@,n) < 8(q,n) < I, g - (n-2).

Clearly (for g>2), 5.8° gives a better approkxima-
tion for °
.8 (qln) »

a{q,n), and 5.9  a better approximation for

We will make a remark about the decidability of
Q" if Q is a given finite n-semigroup. Namely, the
description of Q® given in 51 and §3 do not give a
general procedure for obtaining the semigroup Q*. Na-
mely, if i€{2,...,n-1}, then there are infinitely
many sequences of integers PorecssPys Agre-srdy which
satisfy (3.1) in 3.2°. But we can "improve" the des-

cription of st by the following proposition.
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5.11°. 1f ai”"'éi' bl"°°ﬂﬁ_éC3 are such that

(al""’ai) sf (bl,.,.,bi), then there exist -(cl,.,

...,ci) =c €Qt and nonnegative integers po,pi,..,,
Py qo’ql"°°’qi_ such that ’ :
- 3 - <
Py+1 = Py < ny Ty+1 a, = n .aﬂs‘l)

and (3.1) is satisfied.

Proof.Assume that (3.1)'hoids. if p; 2 yre--sd,

and P < then we can put:

Aytqv

a; [bl oo br_cqr+l e cp1], 9. = .. = q. =1,

pi =1 if pl=l or p, =n if p; > n,

’ -

Pysrp = Py 9y T L Aypy T 9ppy T 9

Thus, we_cah assume that

Py = Py-p = M PR SPEIE

for all v, A : 1<v¥<s, 15A£k. In the same manner as
above we can obtain 0 = pé, pf,..,,pi, 0= q;,
qi,.o.,qi such that (3.1) is satisfied and

&~ % : * - q*
Pu+1 Py = D A+1 @ o=
for all v, A : 1£v<s, 1<xc<k, and this will com-

plete the proof.

From (5.1) it follows that 't £ in, and thus we
can decide if (al,g..,ai) st (bl,.,,,bi), And, as 0Ot
is finite, this implies a procedure for deciding if
(al,.,.,ai)'f(bl,,.,,bi). ul

As it concerns finite n-groups, we have a “better"
procedure. Namely, Qi = {al_lxl x€ 0}, where a is a
1,°nn,ai€ZQ, then the

given element of Q, and if a
i-1
element x£9Q, such that a X = 5

a,,. . is the

3
oo n aiJ.

i " .
solution of the eguation [an 1x] = [an lal
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§6. Presentation of n~semigroups and n-groups

Let B be a nonempty set and F = Fén) be the

n-semigroup which is freely generated by B, i.e. F

w = b.,b,...b on B such that
172 P

p = 1 (mod n-1), and the operation [ ]is defined on

F by:

consists of all words

W {6.1)

[wlw2 e wn]~= n

Let Agl?kf{ and let p* be the congruence'on F

wlw2 )

generated by p. Then we say that the n—semigroup
Q = F/A* "is given by the presentation <B;A>n" and,
as usual, if (u,v) €A, then it will be written u = v

instead of (u,v). It can be easily seen that:
O Pas
6.1, <B;A>n = <B;A>2.
(Namely, <B;A>2 = «B;A> 1is a presentation in the
class of semigroups.) 0O

We do not known the answer of the following que-

stion:

"If the presentation <B;A>n is decidable, is

the presentation <B;A> decidable too?"

This question is equivalent with the following
one. Let j be1as above ahd assume that the presentation
<B;A> has the following property: there exists an
effective procedure for deciding whether or not two
words u,v €F, such that u=a1..;ap,_v=bl..;bq,
p=q (mod n-1), define the same element in <B;A>. "Is
the presentation <B;A> decidable?"

Assume now that B # g,

(n

) B° = BU{b"! |beB)
and F~ = FB’ be the free n- '

semigroup generated by B~”.
4 i

Assume also that I is a set of words b
1 2 °°°

1
-+ bk, b €B, i €Z, such that

W =D
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lwl=il+iz+...+1k.-.0

Define a relation ~~ on F‘ by:

(mod n-1).

u~v iff (u=u1bb_1u2, v=u,uy3 b € B} Qr
(u = ulb_lbuz, v=u,u,; bEB) or

(u=u;wu,, v=u,85; W e x).

If ~ is the gsymmetric and transitive exten-

sion of -~ , then it is a congruence on F~° and the
factor n-semigroup F~“/~, is an n-group; we say that
this n-group has a presentation <B;z>n’gp. Instead
of <B;z>2’gp <B; >
a presentation in the variety of groups. We have the

we shall write and this is

following propositions:
6.29. 3L = <B;z>_ . 0O
2:2 - <BilPn,gp 2”gp
6.3°. The presentation <B;I>
<B; I>
gp

' is decidable
n,gp 7
iff the presentation is decidable.

Namely, if u and v are two "group words"” on B,

then we have first that

u=v in <B:z>gp = |u|l = [v]| (mod n-1),
and if a€B and k is a nonnegative integer such that
1a¥u| = 1a¥vl 21 (mod n-1), then

u=v in <B;E>gp iff .aku=akv in <B;L> e}

n,gp’
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