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PREFACE

This paper is an outcome of the seminar ,,Theory of spectral multipli-
city in Hilbert space with application to stochastic process® that was held in
the Mathematical Institute in Belgrade, during 1971—1973.

Chapter I contains the material necessary for the understanding of Chap-
ter II. According to Plesner’s theory of spectral types ([15]) and ,,regularizing
transposition® of Stone ([18]), by ,,geometrical* reasoning (Lemma 2, Ch. I)
the well known theorem on the complete system of unitary invariants of a
self-adjoint operator in Hilbert space is proved. The preliminary knowledge for
this chapter the reader can find, for example, in the standard book by N. I.
Ahiezer and I. M. Glazman.

Applications of the results presented in Chapter I to stochastic processes
considered as curves in Hilbert space are given in Chapter II. The knowledge
required for this chapter the reader can find in Doob ([3]) or, for example, in
the book by Cramér and Leadbetter ([7]).

Appendices I and II consider examples of Markov’s processes and random
fields.

Appenix III conteats one part of Cramér’s results shown in the work [6]
which we have seen after this work had been in print.

The essential progress in Cramér’s theory has been made by Yu. A. Ro-
zanov: Theory of Innovation Processes (in Russian), Moscow, 1974. Rozanov’s
book became available to us in the course of printing of this work; this is a
reason why a survey of Rozanov’s results is here missing.
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INTRODUCTION

Let {x(),a<t<b} be a complex-valued, second ordered stochastic process,
i. e. Elx(¢)|*< + oo for each te[a, b] (E(x(t))=0, for each ¢ € [a, b]). In the
correlation theory of stochastic processes, all properties of the process (x(¢)} are
defined and determined in terms of its correlation function r (s, )= Ex(s) x(c),
s, te[a, b]. The connection of two second ordered processes {x(z)} and [y (¢))
is defined by their cross-correlation function p (s, t) = Ex(s)y(t), s, t € [a,]. One
of the main problems of the correlation theory is the problem of linear predic-
tion: to find the random variable % (s;t), s<¢, as a quadratic mean limit of the
sequence Z Cen X (Len)s n=1,2, ... such that

kitp,=

Ejx( -x(s;0))?

is minimal. A more general problem :s the problem of linear filtration: to obtain
the random variable ¥ (s;1),s<¢, as a quadratic mean limit of a sequence

chmy (tgw)s n=1,2, ... such that
k.‘tanl

E|x(5)-y(s; )

is minimal.

Studying the stationary sequence (x;,k=...,—1,0,+1, ...}, A. N. Kol-
mogorov ([13]) introduced the Hilbert space method in the correlation theory
of stochastic processes for the first time. Random variables x, y, ... of finite
dispersion are considered as elements of Hilbert space &6 with the scalar pro-
duct defined by (x,y)=Exj, x, y € 6. Hence the stochastic process (x(z)) is a
curve in the space Y6. The problem of linear prediction is so reduced to the
projection problem. Now, X*(s;t) is a projection of x(z) on the subspace
6 (x;5), where G (x;s) is the smallest subspace spanned by the variables x (u),
where u<s. Wold’s representation of stationarv sequence is



8 Z. Ivkovié, J. Bulatovié, J. Vukmirovié, S. Zivanovi¢
n
X, = ch_kz,,, n=...,—1,0,+1, ..., (1)
h=—e

where {z,, n=...,—1,0,+1, ...} is a sequence of the mutually orthogonal
random variables such that

6 (x3n) =6 (z3n) for each n=...,—1,0,+1,... (2)

Applying Stone’s representation of the group of unitary operators, Kolmogorov
gave the effective expression for the coefficients ¢,, 1=0,1,... in Wold’s repre-
sentation.

The equality (2) plays the fundamental role in the correlation theory. It
shows that the stationary sequence (x,} can be substituted by the sequence (z,)
and therefore that all the information about {x,} is contained in {z,). Also, {2,)
can be determined by means of {x,]. For example, from (1) and (2) it follows
that a linear prediction can be expressed by

m

¥mon = E Cp—p By M<H.

b=—c0

Krein, Hanner and Kahrhunen (see, for instance [3]) extended Kolmogorov’s
result to the case of a stationary process {x (t), — 00 <t < + oo} with a continuous
parameter. In this case Wold’s representation of the process {x(¢)} is a stochastic
integral (as quadratic mean integral) of a process with orthogonal increments
{2(t), —0<t< + o0}, i. e

| x(t)=Jg(t—u)z(du); t€(—,+ ) ‘(3)

where

Fo(x58)=F6(=25t), te(— 0,+ 00), (4
E| z(di)P=ds. "

Let us notice once more that (4) shows that, in the framework of the
correlation theory, the processes {x(z)} and [z (¢)] carry the same information,
and that (z(z)), being the process with orthogonal increments, is easier to apply.

It is now natural to study whether Wold’s representation (3) can be exten-
ded to the second ordered process {x(t), a<t<b} in a general case, i. e. the
possibility of the representation '



t i
",

2= [gw) 2 (), r€la bl o ®

a

where [2(¢), a<{t<(b] is a process with orthogonal increments and
6 (x5 0)=F6(258), tela,b). (6)

The first example of the second ordered process for which the represen-
tation (5) is impossible was given by Hida in 1960. However that process had
rather pathological properties (for example, the discontinuity in quadratic mean
at each point).

H. Cramér ([4]) solved the problem of Wold’s representation in general
form. It follows, by simple geometrical reasoning, that every second ordered
process (x(z), a<{t<b} can be represented in the form

r M
£(1)= f > 6.0, @) )
a n==1

where {2, (t), a<<t<b), n=1, M are mutually orthogonal processes with ortho-
gonal increments and

M .
%(3‘3 t)=z @D D6 (2,3 t), t€la, b]

n=1

It is evident that the represantion (7) is not uniquely determined. The question
is which properties of the representation (7) are determined in terms of the
correlation function 7(s,z) of the process {x(¢)]. Applying the theorem of the
complete system of unitary invariants of a self-adjoint operator in a separable
Hilbert space, Cramér pointed out that among the representations (7) exists one
for which M is minimal (min {M]=N, N may be infinite) and that the measures
induced by distribution functions F,(t)=E|z,(t)|?, a<t<b, n=1,N can be
ordered by absolute continuity:

Fi>F>...>Fy,

The equivalence classes g,, n=1, N, of the measures induced by F,, respe-
ctively, are uniquely determined by the correlation function r (s, £). The sequence

PL>pe>. .. >0y it}

is called the spectral type of the process {x(z)).
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Cramér’s main result is that for any given sequence (8) there exists a
stochastic process (x ()], confinuous in quadratic mean (and harmonizable), whose
spectral type is that sequence.

The representation

t N
x(t)= f Zgn (¢, u) 2, (du), te€la,b), 9
a n=1

of the process {x(z), a<<t<b} satisfying (8) and

N
F6 (x5 1) = 2(43 F6(2,58)s te [a,bl, (10)
n=1

will be called Cramér’s representation. Equality (10) shows that any process
{2,(t)), n=1,N is determined by (x(z)) and, conversely, that the process {x (z))
is determined by the processes {z,(z)), #=1, N.

Now, the main problem of the whole theory is to determine explicitly the
pectral type of the given process in terms of its correlation function (Cramér, [5]).

Kallianpur and Mandrekar ([12]) extended Cramér’s theory to an n#-dimen-
sional process and, more generally, to the process |x (¢, 9), a<<t<b, ¢ € D}, where
® is a Hausdorff space with a denumerable base. The other generalizations of
that theory and some special classes of processes are considered in Rozanov ([17]),
Mandrekar ([14]), Rozanov and Ivkovi¢ ([11]).

From the continuity of the process {x(z)} it follows that the correspon-
ding space F6(x) (=6 (x;b)) is separable. The analog theory in the case of
non-separable space &6 (x) can be developed using Plesner’s generalized spectral
types (Ilmecrep [15], Halmos [8}).



Chapter 1

THE COMPLETE SYSTEM OF UNITARY INVARIANTS
OF A SELF-ADJOINT OPERATOR IN SEPARABLE HILBERT SPACE

I.1. The concept of spectral theory of self-adjoint operators

The main aim of this chapter is to desribe the set of all self-adjoint ope-
rators unitary equivalent to a given self-adjoint operator A, defined on a separable
Hilbert space 7.

Two operators*) 4, and A, defined on Hilbert space J6, and P, respectively
(Y6, and Y6, may coincide) are said to be unitary equivalent if there exists an
isomorphism U between %6, and %6, such that

Ay=U A, UL, (L1)

If Y6,=%Y6; the operator U is called a unitary operator.

The problem of unitary equivalence is to find the necessary and suffi-
cient conditions for 4; and A, (in our case they are self-adjoint operators)
under which exists the isomorphism U so that (I.1.) holds.

From the geometrical point of view, there is no difference between uni-
tary equivalent operators. So, the ,,description‘* of A4, is, at the same time,
the ,,description® of the whole class of operators unitary equivalent to A;.

To find out if two operators 4, and A, are unitary equivalent we need,
according to the definition, to prove the existence of the isomorphism U satis-
fying (I.1.). In general, this is rather comlicated. Therefore, we shall solve the
equivalent problem called: the finding of a complete system of unitary invariants
of a self-adjoint operator. This means that we shall correspond an ,,object* F4
to a self-adjoint operator A such that:

(1) If A4, and A, are unitary equivalent, then F, =F, ;

@) If FA1=FA2, then self-adjoint operators A; and A, are unitary equi-
valent ;

(3) For each ,,object F there exists a self-adjoint operator 4 such that
FA=F-

*) The term ,,operator** means a transformation of the space 6 inso itself.
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It should be noted that the spectrum of a self-adjoint operator satisfies
only (1) and (3); so, the spectrum is not the complete system of unitary in-
variants.

The conditions (1), (2) and (3) describe a biunique correspondence between
the set of all equivalence classes of self-adjoint operators and the set of all
»»;objects’ F. We shall see that the ,,objects** F are simpler than the corresponding
operators and that their effective construction will be possible. Furthermore,
the definition of an ,,object” F does not depend on the theory of operators.

Further on, when nothing else is explicitly mentioned, all operators will
be considered as self-adjoint operators defined on the same separable Hilbert
space 6.

Let

(E(2), a <t <b (1.2)

be a resolution of the identity in %6, defined on some finite or infinite interval
[a, b]. If M is a Borel set, then E(M) means

E(M)= f E(dr).
M

For any fixed x e 6
o (M)=|| E(M)x|P? (1.3)

is a measure over [a, b]. Let . be the set of all measures p,(-) x€6: M =
={p,(+), x€Y6). In .# we introduce the ordering relation < in the following
way : py (M) <p, (M) if the measure o, (M)=| E(M)=x, |]? is absolutely continuous
with respect to the measure p,(M)=| E(M)x,|%. We shall say that p, (M) is
subordinated to py (M).

We shall say that p, (M) and p, (M) are equivalent (p,(M)~p,(M)) if
pr(M)<p (M) and py(M)<p, (M) hold. As ,,~¢ is the equivalence relation,
we can consider the set of all equivalence classes #/~. The spectral type is
an equivalence class, i.e. an element of .#/~. We shall denote by p the spectral
type determined by the measure ¢ (M), and for the measure p (M) we shall say
that it belongs to the type p. The notation p; <p, has the usual meaning.

Different measures belonging to the same type p have the same family of
null sets 475, but the families of null sets of different spectral types are different.
This means that the spectral type p uniquely determines its family 47, and
conversely, the family of the null sets 4", uniquely determines the spectral type p.
It is evident, from the definition of the ordering relation <, that the spectral
type p; is subordinated to the spectral type g, if and only if #'5,CC A", This
simple fact enables us to point out that for two arbitrary spectral types there
exists a uniquely determined supremum p=p,+ p;=5Up {p1, py), defined by
p (M) =p; (M) +¢;(M). It means that /", =N, N A, and therefore, p is uni-
quely determined.
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The more general statement is true: any at most countable set {p;, pg, .. .)
of spectral types from ./~ has the supremum. Namely, without the restriction

of generality, we can assume that z p;,(M)< + oo for any Borel set M (for, the
7

measures p;(M) can be substituted by equivalent measures multiplying each
e, (M) by a sufficiently small positive number). Let the measure p;(M) belong
to the type p;. Then for p(M)=2 p;(M) we have: #,= ) A; and spectral

) 13
type p=sup {py, P ... is uniquely determined. It follows that any at most
countable set of spectral types is bounded.

We shall denote with inf (p;, ps, .. .| the maximal spectral type subordinated
to each p,, 1=1,2, ....

The smallest element of the set .4/~ 1is the spectral type 0 identically
equal zero on the whole interval [a, b}. In this and the next chapter we shall
operate with sets of spectral types having the maximal element (we shall see
that the separability of Y6 provides us with that).

Two spectral types p, and p, are said to be orthogoral if and only if
“inf {py, ps) =0. '

Let &6 be a separable Hilbert space and A a self-adjoint operator defined
on it. We shall first consider a spectral type of a subspace of Y6 related to
the operator A.

We shall say that the subspace M of 6 is invariant with respect to the
operator A if Axe M for all xe M. The subspace M reduces A if both M and
96 © M are invariant with respect to A. The operator A, induced by A4 on
any subspace IR which reduces A will be called the part of the operator A.

If A is a self-adjoint operator, any subspace invariant with respect to A
reduces 4 ([1], § 46).

It is well known ([1], § 75) that there is a one-to-one corespondence
between the class of all self-adjoint operators and the class of all resolutions of
the identity on the real axes. Let (E(2), a < ¢ < b} be a resolution of the identity
corresponding to a self-adjoint operatot A and let x be an arbitrary element
of 6. The subspace M (x)=ZLE(t)x, a<t<b)V of Y6 will be called the cyclic
subspace of the operator A with the generating element x. The cyclic subspace
reduces A. We shall denote by p, a spectral type determined by the measure
o, (M)=||E(M)x||% It can be shown ([1], § 83) that the cyclic subspace It (x)
of the operator A, generated by x€ Y6, coincides with the set of all elements
of the form

b
y= f f(2) E(dt) x, - (1.4)

where f () is a square integrable function with respect to p, (M), i. e. f( i) L5 (p,)-
The correspondence f(¢)<>y is an isomorphism -between the spaces.?,(p,) and

W@ (x).

1) & (.} denotes the smallest subspace spanned by the elements in the parantheses
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The spectral type p, defined by the measure p, (M) with respect to the
resolution of the identity of the operator 4 is called the spectral type of the
element x. We say that measures and types of elements of %6 belong to the ope-
rator A. The element x=0 is the only element with zero type. The operator 4
is the operator with the maximal spectral type if and only if there exists the
maximal spectral type among the types belonging to A. Any element generating
the maximal spectral type is called the element with the maximal spectral type.

The operator A is cyclic if there exists an element x€ % such that
G6=M(x), i.e. if the whole space FG is cyclic. It is easy to find the set of
spectral types belonging to a cyclic operator A. If x is a generating element
of Y6 and g, its spectral type, then the spectral type o belongs to the cyclic
operator A if and only if o<p,. Indeed, if ye Y6, then there exists the
function f(r) & &5 (p,) such that (1.4) holds. Let o (M)=| E(M)y|]®.. Then:

G(M)=f!f(t) # o, (d) <p, (M).
M

Conversely, if o<p, then, according to the Radon-Nicodym theorem,
there exists a non-negative p-integrable funciion ¢ (¢) such that

o (M) =f<9 () py (dr).
M

Since f(£)=V ¢ (£) €% (p,), the element y, corresponding to the function
f(2), belongs to 6.

It follows that any element with the maximal spectral type in a cyclic
space is the generating element. Hence the cyclic operator has the element with
the maximal spectral type.

The spectral type of the cyclic operator A is the maximal spectral type
belonging to A.

THEOREM 1. Let M (xy) anp M (x,) be cyclic subspaces of the ope-
rator A and suppose that the generating elements x; and x, have mutually
orthogonal spectral types. Then the space M (x,) @ M (x;) is cyclic and its
generating element x=ux;+x, has a spectral type p,=p,, +p,,

Proof. We shall first show that the subspaces M (x;) and M (x,) are
mutually orthogonal. Let y be an element of 9t (x,), 3, its projection on M (x,)
and z=y—y. As M(x;) reduces 4 and 2 is orthogonal to M (x;), we have

(E(M) 2 31)=(E (M) 3, 2)=0

A A e
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and therefore
WEM)ylP=I|E(M) =2+l E(M) 3|2

That means that the spectral type oy, is subordinated to the type ¢, and, be-
cause of p,<p,,, it holds that o, <p,. As p, <p,, and as the spectral types p,,
and p,, are mutually orthogonal, it follows that p, =0, i.e. y=0. Therefore y
is orthogonal to M (x,) for any y € M (x,), i.e. W (x,) is orthogonal to MW (x,).

From
2
I E(M)x|i2=|| E(M)l_=21x,~l|2=él | E (M) x; |1 = p,,, (M) + p, (M),

we see that p,=p, +p,, is the spectral type of the element x=ux;+ x,.

Hence the spectral type p, belongs to x and is the maximal spectral type of
the orthogonal sum I (x,) ® M (x,). Because of E(M)x=E (M) x,+ E(M)x, x
is the generating element of I (x;) @ M (x,), i. e. that space is a cyclic subspace. A

Let K, be the operator of multiplying by independent variable in the
space F,(p). One can show ([1], § 83) that the cyclic operator A4 with the
spectral type p and the operator K, are isomorphic. The operator K, is called
the canonical representation of the cyclic operator A.

It follows that any cyclic operator is defined at a separable space since
the space on which K, is defined is separable.

The next theorem is a simple generalisation of Theorem 1.

THEOREM 2. The orthogonal sum of at most countable many cycli
operators with mutually orthogonal spectral types p; is a cyclic operator. It
spectral type is p=sup [p;}.

We omit the proof.

It is easy now to prove the following:

THEOREM 3. Two cyclic operators are unitary equivalent if and only
if they have the same spectral type.

Proof, It is clear (from the definition of the unitary operator) that uni-
tary equivalent cyclic operators have the same spectral type. Conversely, if two
cyclic operators have the same spectral type p, then both of them are unitary
equivalent to K, and therefore they are unitary equivalent. A

The problem of unitary equivalence is so solved for cyclic operators. In
a general case, for self-adjoint operators in separable Hilbert space, the same
problem will be solved by reducing it to the preceding problem. The first step
is the following:
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THEOREM 4. If A is a self-adjoint operator defined on any fixed (not
necessarily separable) Hilbert space %6, then Y6 can be represented as an
orthogonal sum of subspaces, cyclic with respect to A.

Proof. Let & be the partitive set of the family of all mutually orthogonal
subspaces of &, cyclic with respect to 4. We can introduce the partial orde-
ring in # by inclusion. According to the axiom of choice, there exists the
maximal totally ordered chain of mutually orthogonal subspaces. Let 96, be
their orthogonal sum. We shall show that ¥6,=%6. If this equality does not
hold, there exists x#0 in Y6 © Y6,. Since FG, reduces 4, F6 © F6, reduces 4
too. Therefore M (x) C Y6 © 6, which contradicts the proposition that the
chain is maximal. A

Later on we will need the following:

THEOREM 5. Let J6=WM (x,) and M (y,) C F6. Let f, EL,(p,,) bea
function corresponding to the element y,, and M,={t : f,(¢) # 0}. Denote by
M, the set of all elements of P such that their corresponding functions in
Z3(py,) Vvanish (almost everywhere with respect to p,) outside of the set M,.
Then M (o) =M,

Proof. The subspace M (y,) consists of all elements

b

b
y= f g E(dD)yo= f g(8)fo(2) E(dr) x,

a a

where the function g (¢) satisfies the condition

b b
f lg ()P oy, (dD)= ] L g () fo(£)] pyy (dE) < + 0.

Therefore the functions g (2)f,(t) € Z5(p,,) correspond to the elements of M(y,).
If t¢ M, then g(2)fy(x)=0 and therefore all elements of M (y,) belong to Wk,
Conversely, let y; € M, and g (t) € L»(p,,) be the function correspondin to y;.
We set

&)
g<z>={fo(z>’ redh,
0 , téM,.

Then g,(t) =g (t) fo(2) and therefore y, € M (y,). Hence M () =MW, A
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Suppose that 6= (x) and y, and y, are arbitrary elements of %6 with
the corresponding functions fy, f,€%,(p,). Let M;={t:f,()#0} and M,=
={t:fa(t)#0}. From Theorem 5 it follows that the elements y, and y, generate
the same cyclic subspace if and only if M;= M, almost everywhere with respect
to p, This means that the cyclic subspace of a cyclic space &% is uniquely
determined by its spectral type.

-~ COROLLARY 1. In a cyclic space different cyclic subspaces have. diffe-
rent spectral types.

1.2. The canonical representation of self-adjoint operators. Unitary
invariants

Theorem 4 shows that Hilbert space 9% can be represented as an ortho-
gonal sum of subspaces cyclic with respect to a self-adjoint operator A4, i.e.

%=z ® M (x,). (1.5)
k2t

In a general case, spectral types p, are not comparable and the cardi-
nality of the set {pxk} is not uniquely determined. In Theorem 7 we shall prove
that 9% can be represented as an orthogonal sum of cyclis subspaces 9t (z:)
such that

Poy >Pzy> "+ v (1.6)

In order to show that this representation has some invariant properties
we shall prove some preliminary facts. ‘

Let X, be the set of all spectral types p and let # be Borel s-algebra
over the segment [g, ] (on which p is defined). To each Borel set Ne # we
correspond the measure

ey (M)=p (MNN).

The spectral type of the measure g, (M) is subordinated to p. We define the
mapping T, from # to Z, by

L,:N—>opy.
LEMMA 1. The mapping I', is a homomorphism of ¢-algebra & onto X..

Proof. Since T, ([a, b])=pis,¢7 and if Ny C Np, then py, <py,, so that [},
is a homomorphism of # into X,. It remains to be shown thatr I, is a homo-

2
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morphism of # onto Z,. For each c€ X, there exists a non—negatlve p—mea—
surable function f(¢) such that

s (M)= | f(2)p(de),
Jroe,

for any Me %. The set N={¢:f(t)#0) belongs to 4. Since the measure o (M)
has the same family of null sets as the measure

py(M)=p(MN N)=fXN(t)dl
M

we get I, (N)=o. A :
COROLLARY 2. For each spectral type « subordinated to a given

spectral type p there exists the uniquely determined spectral type v such that
p=oa+1.

This follows directly from the preceding lemma and the fact that N;=
={[a, b] \ Ng.

THEOREM 6. Let p, and p, be given spectral types and
pa=inf (py, po) + 7.
Then the spectral types p; and T are orthogonal.

Proof. Suppose that inf(p;,7}#0. That means that there exists a
spectral type 7,70 such that

~=inf [py, 7) + 13-
Then »
pe=inf (o1, po} +inf {py, 7) + 71

From p,> it follows that
inf {py, pg > inf (py, 7)
and py=inf{p;, ps} +t; which contradicts to Lemma 1. ' - A

REMARK 1. Theorem 6 is in fact the well-known Lebesgue theorem on
the additive decomposition of a given measure g, (M) into two parts: one ab-
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solutely continuous with respect to a given measure p, (M) and the second sin-
gular with respect to p, (M).

LEMMA 2. Let 9t(x) and 9M(y) be two mutually orthogonal cyclic
subspaces. Then there exist elements 2, and 2, in 9I (x) @ M (y) such that
M () D M () =M (21) D Mt (=,) and for spectral types p,, and p,, holds p,, >p,,.

Proof. According to Theorem 6 there exists the uniquely determined
spectral type v such that

Py = inf (px’ Py) +T
and

inf {p,, 7} = 0.

Since t<p, there exists the element u in QI¥(y) with the spectral type =. We
set g =x+u. Because of the orthogonality of spectral types p, and p, =T we get

P = Pet T
and

I (20) =M (x) D MW (w) | (L7)
(Theorem 1). In 9QNt(y) there exists the element z, with the spectral type
P =inf {p.s p,).
As Pz, >0, and g, >p,, we have P2y > Paye Since inf [p,,, 7}=0 we get

M (3) =M (23) © M (),
or

M (z2) =MW () © M (). (1.8)
From (1.7) and (1.8) it follows that )

WMt (21) © M (20) =M (x) D M (). A

Now we shall prove the following:

THEOREM 7. Let A be a self-adjoint operator defined on a separable
Hilbert space 6. Then there exists a represantation

2%
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= Z O M), (L.9)

such that
Py > Py ™o o> Py e (1.6)

(The number N may be finite or infinite.)

Proof. Let (I.5) be one representation of ¥6. According to Lemma 2, there

exist the elements u;, and u,, in M (xp), k=2, N, such that x, =y, + iy, and the
types p,,, and p,, = inf {le 5 by 0z, are mutually orthogonal, i. e. p,, <
=2

N
Pk k=2, N; it is obvious that the subspace IRt (x) D > ® M (uy,) is 2
’1+_22u1i’ k=2
=

N
cyclic subspace with a generating element z; =x; + > u, whose spectral type is
E=2
N N
the maximal spectral type in 6. Hence Z @ M (x) =M (=) D Z @ Mt (u,,) and

Pug, < Pz k=2, N. Applyiag the same procedure to z @ M (uy,) we can choose

the element 2, with the maximal spectral type m the space Y6 © Mt (z) =

=Z @ Mt (uy,). Evidently: P2y > Pzyr We continue this procedure until we get
2

the sequence {z,} such that

%=Z@ M () A
k=1

and the relation (I.6) holds.

REMARK 2. From the construction of the sequence (z;] it follows that
the cardinality of its non-zero elements is not greater than the cardinality of
the sequence (x,}. If inf {p, }7O these two cardinalities are equal.

The representation (1.9) with the condition (I.6) is called zhe canonical
representation of the space F6 with respect to the operator A. The corresponding
representation of the operator A as a sum of its parts, defined on these subspaces,
is called the canmonical represemtation of the operator A. The sequence (1.6) is
called the spectral type of the operator A.

The uniqueness of the sequence (1.6) follows from the proof of Theorem 7,
i. e. (1.6) is independent of the choice of (x,}. However the elements 2, 25, . . . , 2y
themselves depend on the choice of |x,).
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LEMMA 3. Let Y, and Y6, be two Hilbert spaces, 4 a self-adjoint
operator defined on %6, and U an isomorphism hetween %6, and ¥6,. If x is
an arbitrary element in %6, then

UMt (x) =0 (Ux),
where the left side denotes the set {y:y= Uz, z €0 (x)}.

Proof. Let V be an isomorphism taking I (x) to %, (p,). Then UV-1is
an isomorphism taking Z,(p,) to USIR(x), i.e. UYR(x) is a cyclic subspace
of PG, Since U is an isomorphism, the spectral type p, is the maximal spectral
type in U9QN}(x) and the spectral type of the element Ux is p,, or UGN (x)=

A

=M (Ux).
The necessary and sufficient conditions for the unitary equivalence of two
self-adjoint operators are given by the following:

THEOREM 8. Two self-adjoint operators are unitary equivalent if and
only if they have the same spectral type.

Proof. Let A, and A, be defined on %6, and %G, respectively. Suppose
that A,= UA, U, where U is an isomorphism taking %6, to &6, Let the
sequence {z{) determine the spectral type of 4;. We define a new sequence

(#P) by 2P =UzD, k=1,N. From Lemma 3 it follows that QR (¢{®)=

=UM(EP), k=1, N, s0 ¢ ;y=p ), k=1, N. That shows that unitary equi-
k “k

valent operators have the same spectral type.

Conversely, let {2{} and (22} be sequences defining canonical represen-
tations of &6, and Y6, with respect to 4, and A, respectively and let PO~ PD
k=1, N. According to Theorem 3, there exists the isomorphism V, taking
M) to M(zP), k=1,N. Any element xVe P, is an orthogonal sum:

N I
0 =5 x®, xD e g (2), k=1, N. We define the operator U from 6, to F6, by
E=1

N
Ui = z v, 20,
k=1

Evidently, U is an isomorphism between %6, and Y6, such that 4,=UA4, U-1. A

This theorem solves the problem of the complete system of unitary inva-
riants, formulated in I.1. Let us notice that any set {p,] of spectral types p,
belon%‘i,ng to A is an unitary invariant, but only the sequence (I.6), for which

6= > M (z,) is the complete system of unitary invariants of A.
k=1
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1.3. The reducibility of self-adjoint operators

In this section we shall give conditions under which some subspace 90}
of a separable Hilbert space Y6 reduces a self-adjoint operator A. It is well
known ([1], § 74) that IR reduces A4 if and only if 9t reduces the correspon-
ding resolution of the identity {E(z), a < ¢ < b}, Besides, It reduces A4 if and
only if QIt is an orthogonal sum of subspaces of Y6, cyclic with respect to 4.
Indeed, if 9t reduces A4 and if x, € 9N, then M (x) C M. If x € MO (%),
since MOM (x,) reduces A, then It (x) CTIMOM (xy), etc. Continuing the
procedure, we get the representation YNt => @ Wi(x,). On the other hand, if

%

9%t is an orthogonal sum of subspaces, cyclic with respect to A, then QR re-
duces A, since any of those cyclic subspaces reduces 4.
If we consider Y% and 91t in canonical representation, it holds

THEOREM 9. Let %= Z@ M(x,) and M= Z @Qn(u,,) be canonical

representation of the space Y6 and the subspace m W1ch reduces A. Then the
spectral type of the part of the operator 4 in M is subordinated to the spec-
tral type of the operator A in 96, in the following sense: M < N, p, <¢,,»

n=1, M, p, =0, n=M+ L, N.

Proof. Since p,, is the maximal spectral type in 96, it follows that p, 1 <Py
We can assume that' Puy < Pag does not hold. Let us show that the assumption
that p,, <p,, is not true yelds to the contradiction. If ¢,, <p,, does not hold,
then there exists a spectral type =, not 1dent1cly equel to zero, orthogonal to
Pz, and such that p, =inf [p,,, p,}+7, i e MW(w)= M) D M(u'’), where
pur~1nf {Pugs Pz Pur e Let U béa unitary operator defined on IRt such that

UM () C W(z) and UM (u’) C M (2p). Since py Lo, n=2, 2, N, the subspace
UM (@'") can not belong to Z @ M(z,). Hence, UM (u'")C Wi(z). Since the

subspaces 7t (#,) and Qlt(u”) are mutually orthogonal, the subspaces U ]t (,) and
U (¥'') are mutually orthogonal cyclic subspaces of the cyclic subspace 9t (21).
Therefore the spectral types p,, and g, =7 are mutually orthogonal, which is in
the contradiction with a fact that v <p,, <p,, <p,,. Hence p,, <p,,. The assum-
ption that Pug <Pz, does not hold is, by *the same reasoning, reduced to the con-
tradiction e. t. c. A

In a special case, when A4 is a cyclic operator, we have:

THEOREM 10. Let % be a Hilbert space cyclic with respect to 4. Let
9} be a subspace of 6, and Py a projection operator of &6 onto ft. The sub-
space 90t reduces A if and only if Py =1y (4)?, where the function y (4) is mea-

h (A) is the operator defined by
b
A x=Th@OEWD)x, xc 6.

D If ke, (p), where p is the maximal spectral type of the cyclic operator A4, then .
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surable with respect to the spectral type of A and assumes only the values
O and 1.

Proof. Since A is a cyclic operator, there exists an element x, € %6 such
that QN (x)=F (E () %y a<t<b)=6. As the element Pyx, belongs to 6, it

b

can be represented in the form [f(s) E(ds) o, f(s) € L2 (p,,)- Then E(t) Ponx,=
b t ¢

= [f(s)E(t) E(ds)xy= [f(s) E(ds)x,. Since Py E(t)xo€ Y6, then Py E(t)xy=
| a

- 15() B EOm =18 () E@) s £V (o0

The assumption that ]t reduces 4 implies Pop E(t) = E (t) Py for all z € [a, b].
Therefore

i

f g(s) E (ds)x, = f F(s) E(ds) xo (1.10)

a

for all z€[a, b, or g(s)=1(s) almost everywhere with respect to p,,. The equ-

ality (1.10) shows that the operators Py and f(4) coincide on the dense set
(E(z) %, a<<t<b}, i. e. they coincide on 6. From P2 =Paq we get (f(2)*=1(2)
for all ¢&[a, b]. That means that the function f(z) can assume only the values

0 and 1.
b
Conversely, let Pyp=y(A4). For any x& Y6, we have Pyx=1{(s) E(ds) x
: 5 %
and E()Pmx=1x(s) E(ds)x. Since PpE()x=[x () E)E(@)x=[y(s) E(ds)x
a a a
we conclude that P E(¢)x=E ()P x for all xe Y6 and all ¢ € [a, b).

COROLLARY 3. Any subspace 9t of a cyclic subspace %6 =0t (x,) re-
ducing A is a cyclic subspace with the generating element Pop x,.



Chapter II

'STOCHASTIC PROCESSES AS CURVES IN HILBERT SPACE

II.1. Cramér representation

Further on we assume that all random variables and stochastic processes
under consideration are defined on a fixed probability space.

Let 96 be a set of complex-valued variables x, y, ... with the finite
second ordered moment: E|x|2< + o0, Without loss of generality we shall
assume that Ex=0. The set Y6 becomes a Hilbert space if the scalar product
is defined by (x, y)=ExJ, x,y € 96. The convergence in %6 is the convergence
in norm: x, - x as n— oo means |jx,—x|| >0 as n—> 00. In terms of proba-
bility theory this is the convergence in quadratic mean: E |x,,—x[2—> O when
n— 00,

Let (x(z), a<<t<b} be a second ordered process, i. e. E|x(t) [2< + oo for
each t€[a, ] (Ex(t)=0 for each t € [a, b]). The parameter ¢ runs through the
- segment [a, b] which can be finite or infinite. The process {x(2), a<t<b} will
be considered as a curve in Hilbert space %6.

Let Y6(x;¢) be the smallest subspace spanned by the variables x(s) for
all s<t, i. e. Y6(x; £) is a Hilbert space consisting of limits in quadratic mean
of all possible sequences

n

{z Cor X (Lo)s ~ M= 1,_2, .. .]’

k=1

where c,;, are complex numbers and z,,<t. We set JG (x) =6 (x; b).
In the sequel we assume that the following two condition are satisfied:

(A) The process (x(z)} is continuous in quadratic mean. This condition
can be replaced ‘by the weaker one that (x(z)] is left-side (or rlght-31de) con-
tinuous in quadratic mean for each € [a,b).
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(B) NY6(x;t)=0. This condition means that the process is regular or

t>a

purely nondeterministic.

From (A) it immediately follows that & (x) is separable. For a base in
76 (x) we can choose a countable set (x(¢;)), ¢, is a rational number in [a, b].

Denote by E(t) (or, E, () projection operator from Y6 (x) onto 6 (x; £).
It is easy to see that |E(f), a<<t<b] is a resolution of the identity of a self-
adjoint operator in Y6 (x). Indeed, E(s) E(¢) = E (min {s, t}) for each s, ¢ € [a, b],
E(t—0)=E(r) for each t€[a,b], (a)=0 (because of the condition (B)) and
E(b)=1.

According to the theory of self-adjoint operators in a separable Hilbert
space (Theorem 7, Ch. I), there are elements 2, 25, ..., 2, in &6 (x), such that

Py > P> + v > 05y _ (IL.1)
and ‘
N
How= > ®Me, @
n=1

where N may be infinite.
The number N is minimal in the sense that for any set of elements y,,

Yoy -5 Yy In F6(x), satisfying F6(x) = Z@Qn(y,,), holds N<M.

For an arbitrary element ze%(x) we set z(t)=E(t)z. From the pro-
‘perties of the resolution of the identity it follows immediately that {z (¢); a <<z <)
is the process with the orthogonal increments. The distribution function F, (¢) =
=|l2(®)|F=E|z(2)[*, a<t<b, induces a measure belonging to the spectral type
p, of the element 2. In the sequel, without ambiguity, F will be used in-
stead of o,.

The stochastic integral

b
ff(t)z(dt) ,

where {2 (), a <t < b} is the process with orthogonal increments and f € %, (F.,),
will be considered in the sense of Doob ([3]), Ch. IX). Hence ¥6(2) is exac-
b

tly the set of elements of the form [f(¢) z(dr), f€%,(F,). Since 2z (dt)=E(dt) 2,
it follows that $6(z) coincides with a cyclic subspace Y[ (z) generated by the
element 2. The converse statement is true in the following sense:

LEMMA 1. Let {2(t), a<<t<\b} be a process with orthogonal increments.
Then there exists an element z, in Y6 (2) such that 6 (2) == (2).
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Proof. Let g%, (F,) be a positive function almost everywhere with res-
pect to F,. We set

b

zo=fg(8)z(d3)-

a

Since

t

E(t) 2= f g(s) z(ds),

a

it follows that measures induced by the distribution functions || E(z) 2, |2, a<<t<b,
b
and F,(t), a<<t<b, are equivalent. Therefore each element [f(s) z(dt) of Y6(2),

can be represented in the form

.
1
;[ f@® 20 E(dr) 2y,

i. e. z, is the generating element of the cyclic subspace %6 (2). A
The equality (11.2) can be written in the form

N
Fw= D @He) L3)
n=1 '

where z,(t), a<t<b, n=1, N are mutually orthogonal processes with ortho-
gonal increments. Applying E(t) on (I1.3) we get

N ,
G6 (x5 8)= z @ S(z,3t)  for each r€[a, b]. o (11.4)
n=1

From (1I1.4) it follows

t

N
x()= z / g.(t,u)z,(du)  for each te€[a,b]. (1I1.5)

n=1 a
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where

z f’gn(t: #)|?F, (du)< + oo for each z€ [a,b].

n=1 a

DEFINITION 1. The equality (I1.5) is called the Cramér representation
fo the process |x(1),a<<t<<b]. The sequence (II.1) is called the spectral type of
the process (x(t)}. The number N is called the multiplicity of the process |(x(z)).

The spectral type of the process {x(¢)] will be denoted by g, or F,.

EXAMPLE 1. For a wide-sense stationary process {x(z),— oo <t< + o0
there exists the well know Wold-Kolmogorov representation (see [3])

x(t)=fg(i;u)z(du): lE(—OQ,+®),

where 6 (x;t)=Y6(2;¢) for each t€(— 00,+ ), F,(df)=dr and g (t) € &, (F,)
at the interval [ — c0,+ o). Hence, the multiplicity of a wide-sense stationary
process is N=1 and the spectral type is equivalent to an ordinary Lebesgue
measure over (— 00,4+ o).

In the proof of Lemma | we have shown that the multiplicity of a pro-
cesss with orthogonal increments is N=1 and its spectral type is F,(z)=
=[|E(®) 2, a<t<e.

The fundamental result of the aplication of the theory of spectral multi-
plicaty in Hilbert space to the theory of stochastic processes is the following:

THEOREM 1. (see [4]) For any given sequence of spectral types

Qip>pe>. .. >0y _ Co (11.6)

(N may be infinite), there exists a stochastic process {x(z)}, continuous in qua-
dratic mean, such that (II.6) is its spectral type.
. - In {4] it is shown that there exists even a harmonizable process {x(z))
for which g,=g. '

Before proceeding to the proof of Theorem 1, let us make the following
notice. .

Let s=9(t), a<<t<b, be a diferentiable, strictly increasing function. If we
set y (s)=x(t) for s=9(z), then the processes (x (), a<t<b} and {y(s), 9 (@)<
<s <<p(b)} have equal spectral types in the followmg sense. Let

F F>F> .>F

TNy
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and
F,:F,>Fpy>.. .>Fy1\,2

be spectral types of (x(z)] and (y(s)] respectively. Since Y6 (y;s)=Y6(x;¢) for
s=¢(t), tela,b], we have N;=N, and F,,(s)=F,, (t) for s=9 (), 1€ [a, d],

n=1, N;. Therefore we suppose, without loss of generality, that the distribu-
tion functions, inducing the spectral type in (I1.6), are defmed on the seg-
ment [0, 1].

Proof of Theorem 1. The proof essentially depends on the existence of
: N
disjoint subsets A; Ay, ..., Ay of [0, 1] (JA =[0, 1]), such that for each n,

=1, N, and « and B, 0<<a <B<1, the ordmary Lebesgue measure of 4, N [«, B]
is posmve One construction of these sets is given in [3].
According to the Daniell-Kolmogorov theorem, there exist mutually ortho-
gonal processes {2z, (¢), 0<t<1l}, n=1, N with orthogonal increments for which
F, (0)=E|2,@)|?=F,(), 0<:<1, n=1,N, where F, is the distribution func-
tion inducing the spectral type o, in (11.6).

Let the function y,(z), 0<t<1, be the indicator-function of the set A,.
We shall first show that the process { ¥, (8), 01}, defined by

Yn (t)=‘ f X (W) 2, () dut, e [0, 11,

has the spsctral type F,. Obviously, Y6 (y,; t)C Y6(z,;¢) for each t€[0, 1]. On
the other hand, for each t€ A, we have

y;, (&) =1%n (8) 2, (O =2,(2).

Since A, is everywhere dense in [0, 1], we conclude that F6(y,5t)=6(2,31)
for each e [0, 1). As F6(y, ;1) is always in F6(y,;1) it follows that F6(y,; 1)=
=%6(2,;1t) for each t€[0,1], i. e. F, =F,.

The processes (v, (t)), n=1,N are, obviously, mutually orthogonal

We now define the process {x(z), 0<<z<1) by

MR }: 3. ()= Z f n@e @ t€[0,1] @L7)
n=1

|
(factor P insures the convergence of the series in the case N= ). Ob-

v1ouS1y
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N N
Fos0C D> OF(ni0= > OF (230
n=1 n=1

for each z€(0, 1}.

Any fixed r€[0, 1] belongs to one and only one set A, n=1,N. Let
te A,. From (I1.7) we have

1 .
@)= —k‘zk(t). (11.8)
Since F6(x' ;) CF6(x; 1) for each t€[0, 1] and as 4, is everywhere dense
in [0, 1], from (II.8) we get o
(93 £) =6 (235 ) S (x5 2)

for each r€[0, 1] and each k=1, N. Hence

N
6 (x; t)=z@ F6 (2.3 1)

n=1

for each te[0, 1].

: The last equality shows that the process (x(¢)] has the given spectral
type (IL6).
The correlation function of the process {x(z)} is

N s
r(s,t)=Ex(S);6=Z;1;fjxn(u)xn(ﬁ)Fn(min (u, 2)) du do.

n=1

As r(s,2), 0<s,t<1 is continuous, the process {x(¢)} is continuous in
quadratic mean. A

REMARK 1. The following simple construction can be applied for obtai-
ning the process {x(¢), 0<{r<<1} with a given spectral type (II1.6) (see [9])

N [
x(t)=z% f g, (6, w2, (duw),  t€[0,1], (I1.9)

n=i
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where
l,ifte A,,
0, otherwise.

8. (& u)=[

The same reasoning as in the proof of Theorem 1, Ch. II, gives
N
=D OH st
n=l L«

where, instead of the rhetric density of the sets 4,, n=1, N, it is enough to
assume that they are everywhere dense in [0,1]. However the process {x(z)),
defined by (I1.9), is not continuous in quadratic mean because its correlation
function

min (s, 2]

N
1
r(s, L‘)éz;; fgn_(s’ u)g, (6, ) F, (du) =

n=1 o

F, (min {s, t}), if s and ¢ are in the same
= set A,n=1, N,
0, otherwise,

is not continuous.

REMARK 2. The process [x(z), 0 < ¢ < 1] defined by

: N t 1 :
~1 .
x ()= z;f [ f(t—v)xn(v)dv]zn(du),
n=1 4 u

is continuous and has the spectral type (II.6). This construction is very simi-
lar to that in [4]. After showing

' %(z,,;t))c%(x"'; )
for each re[0,1] and each n=1,N, the proof is analogous to the proof of
Theorem 1, Ch. II.

THEOREM, 2. ([4]) The spectral type g, of the process {x(2)} is uniquely
determined by its correlation function r(s, 2).
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Proof. We shall prove that two arbitrary processes
(x(2), a <t<b and (@), a <t <b)

with the same correlation function r(s,z) have the same spectral type. We
define the operator U by y(t)=Ux() for each t€[a,b] and extend it by
linearity to %6 (x). Since

(s )=y, y@O)=(Ux(s), Ux(@)=(x(s), 2()),

(a <5, t < b) it follows that U is an isomorphism of % (x) onto ¥6 (y). From
the definition of .the operator U it follows Y6 (y;t)=UY6(x;1),i.e. E, (t) U=.
=UE,(t) for each t&[a,b]. According to the theorem of unitary invariants
of self-adjoint operators (Theorem 8, Ch. I} we conclude that g,=g,. A

The converse does not hold, i.e. if two processes have the same spectral
type, their correlation functions need not coincide. For example, for a given
process {x(z)] the process (y(r)} is defined by y(r)=f() x(r), where f(¢) is a
non-random function such that 0 < m < |f()| <M for all t€[a,b]. Then
F6(y;t)=F6(x;1) for each t€(a,b], i.e. E,({)=E, () for each z€[a,b] and
therefore ¢,=g,. On the other hand

1, (5, ) =f () F @) r, (5, 0)F7, (5, 8), a <558 <b.

Theorem 2 introduces the problem of expressing the spectral type g, of
the process [x(¢)} in the terms of its correlation function (s, t). Before consi-
dering this problem we shall give some shorter notations and one definition.

Let (z(t)=(z, ())a=1,%> a<<t<<b] be a stochastic process considered as a

vector-column, where (z,(z), a<t<b}, n=1, N, are mutually orthogonal pro-

cesses with orthogonal increments. Set F (©)=Ez(t)z* (t) = (Fa(2) /:11—11:11 where

z* (t) denotes the transposed matrix of z(¢). The matrix function F (), a<<z<b,
has non-zero elements only on the principal diagonal and we denote them by

F,"(t)=F,,,;(t)=E|z-,,(t) |Z3 n=1,N.
Let %, (F) be the Hilbert space of all complex-valued vector-row functi-

ons £(2)=(f, @)r=tN, a<i<b, for which

b

ff(u)Fx(du)f*v(u)< + o0,

a

* The scalar product in %, (F) is defined by

b

<f1:f2> =f£l (I)F(dt)fi(t), flafzegz(F)'
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DEFINITION 2. The family of functions g (¢, u), a<u<t}, where the
parameter : € [a, b] is complete in ¥, (F) if, for any fixed ¢, from

$

fg(s, w)F(du)f*()=0 for all se€(a,z],

[

it follows that f(u)=0, a<<u<t, almost everywhere with respect to F (i. e.
3
§£(2) F(du) £* () =0).
The spectral type (I1.6) of the process {x(¢), a<{t<b] can be written in
terms of matrix function
F{@ ... 0
F()= . (11.6")
0  ...F,0

where the distribution function F, (), a<{t<b, induces the measure which be-

longs to the spectral type p,, n=1, N in (IL.6). Hence the Cramér represen-
lation of the process {x(r), a<<r<b} with the spectral type (I1.6°) can be written
in the form

x ()= f g(t,wz(du), tela,d), g, u)e &L (F), (11.10)

where F(t)=Ez(t) z*(2).

THEOREM 3. The stochastic process |x(¢), a < ¢ < b} with the corre-
ation function r(s,t), a <s,t < b has the spectral type (I1.6”) if and only if

min (s, ¢}

r(is )= | g uwEdWg*(Lu), a<s,t<b, (IL.11)

a

where the family of functions |[g(z,#), the parameter t€ [a,b]] is complete
in %, (F).

Proof. If F is the spectral type of the process {x(¢)}, from the Cramér
representation (I1.10) it follows that

3
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s t
r (s, t)=Ex(s)x-(_t)'=[j g (s, u) z (du), fg(t, u)z(du))=
min [s, 2}

g (s, ) Ez (du) z* (du) g* (1, u) =

min {s, )

g (s, ) F (du) g* (¢, u).

a

Let us show that the family of functions (g(z, %), the parameter ¢ € [a, b])
is complete in &, (F). Since (I1.10) is the Cramér representation, any element y
N

from F6(x;0)=> @D H6(z,3¢) (¢ is any fixed point in [a, b]) is of the form
n=1

¢

=ff(u)z(du), fe %, (F).

a

The fact that,. if (x(s),»)=0 for all se [a, ], then y=0, can be written
as: if § g(s, ) E(du)£*(u)=0 for all s€[a, ], then f(u)=0 almost everywhere

a
with respect to F on the segment [a,:]. That means that the family (g (z, )}
is complete in &, (F).

Conversely, let {z(f)= (2, (t)),,=i,_fq, a <t < b} be a stochastic process for
which Ez(0)z*()=F (), a <t <b, and F(¢) is from (II.11). We set

x(t)=Ji g(t,w)z(du), tela,b), (I1.12)

with (g (¢, w)) from (II.11). Let us show that (II.12) is the Cramér representa-
tion of the process {x(z)). It is sufficient to show that J6 (x; ) = Z D Y6 (2,;¢)
for each te([a,b]. Suppose that the last equality does not hold From (11.12)

it follows that Y6 (x;1) C Z@%(z ;). Therefore there exists a non-zero
n=1 .

N .
element y € 3 @ Y6(z,;t) orthogonal to x(s) for all s€[a, :}. The element y
=1 -

n
can be written in the form
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t

= f £(4) 2 (d), £ 2, (F).

a

So, we have

(x(s)y)= fg (s, w)F (du) £* (1) =0 for all s€ [a, 1]

and

t

I5lk= [eF@ew>o,

a

which contradicts to the assumption that the family of the functions (f(z, u),
the parameter t € [a, b) is complete in %, (F).

F1nally, the correlation function r(s, r) of the process [x(z)] defined by
(I1.12) is given with (IL.11).

EXAMPLE 2. Let the disjoint sets A4, n=1,N be everywhere dense in

[0,1] and UA =[0,1]. We set

1, if uE[O’ t], IEAJE,
0, otherwise

g (% u)={

(sée 'Remark _1_) It is easy to see that the family of the functions lglt, u)=
=(g, (t, w))"=L N, the parameter ¢€[0,1]) is complete in %, (F), where

t ...0
Fi)=| . , 0<e< 1. (IL.13)
0 .. t

Indeed, for each se A,N[0,1] and for any vector-row function
f=(f, =L Ne%,(F) we have

[g (s, W) F (du) £* (u)= /fk (u) du.

4

3%
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If sjf,c(u)du=0 for all se 4,N[0, ] and as the set A, is everywhere dense

in EO,I], it follows that f,(u)=0 almost everywhere on the segment [0,z]. Hence
the function

min {s, ¢} min [s, ¢}, if s and ¢ are
in the same set
r(s; 1)= | g(s, w)F(du)g* (1, u)= A, n~__T’-ﬁ’ (11.13)
0 0, otherwise

is the correlation function of a process whose spectral type is (II.13). An exam-
ple of a process {x(z), 0<{t<{1} with correlation function (I1.13) is

t s
x (t)==fg @, wyw(du), :€10,1),
where w(£)=(w, (t)),=1;% and the processes {w,(r), 0<<r<{1) are independent
Wiener processes.

RFMARK 3. The analyses of Theorem 3, Ch. II, shows that this theo-
rem holds under some more general conditions in the following sense: Let

|5

G ()= (Gx )k

S

be a matrix function with non-zero elements G,,(¢) n=1, M only on the prin-
cipal diagonal and G,,(¢) be distribution function on [a, 5] (M may be infinite).
Suppose that the function h(t, u), a<<u<t, for each ¢ € [a, b] belongs to %, (G)
and that the process {x(z), a<<t<Cb} is defined by

x(t)=fh(t, u) z (du), (I1.14)

where Ez(1)z*(1)=G(@), i. e z()=@, )= with E|z,()[2=G,, (),
n=1, M. Then

M
S6 (x; t)=2@ (2,3 1), for each re[ab) (I1.15)
n=1
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if and only if the family of the functions {h(r, «), the parameter ¢ € [a, b]} is
complete in #,(G). The representation (II.14) with the condition (II.15) is
called proper canonical (see [9]). We shall consider this in the next section.

I1.2. The fully submitted process

In the present section we discuss the relations between canonical and
proper canonical representation ([9]), fully submitted process ([17]) and reduci-
bilitty of the resolution of the identity in certain subspaces.

DEFINITION 3. ([13], [17]) The process (y(t), a <t < b} is submitted
to the process (x(2), a <t < b} if F6(y;t) C F6(x;1) for each te[a, b].

DEFINITION 4. ([17]) The process {y (), a < ¢t < b} is fully submitted
to the process {x(r), a <t << b) if H6(y;1) CHb(x;51) and F6(y) © F6(y38) C
C F6(x) © F6(x; ) for each z€[a,b).

EXAMPLE 3. In the Cramér representation

t N

x (t) = [ zgn (Z) u) 2y (du)’ t€[a, b],

a n=1
any process {2, (t)}, n=1, N is fully submitted to the process {x()).

EXAMPLE 4. We give an example of a process submitted to a given
process, but not fully submitted. Let {w(r), 0 <t <1} be a Wiener process.
The process {w,(t), 0 <t < 1} defined by

wl(t)=f[2—3y{]w(du), t>0, @ (0)=0,

is also a Wiener process, submitted to {w(2)]. If {w, ()} is fully submitted to
{w ()}, then for each v<r<s

w, (5)—wy (£) € F6 (wy) © F6 (w15 1) C 6 (w) © F6 (w3 ) L w(v),

or

(wl (ORE AR (‘U)) = % 2? (l - _l.)

t s

and therefore, {w,(r)] is not fully submitted to {w ().
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DEFINITION 5. ([9]) Let (w()=(w,(:)s=i7> @ <t < b} be a vector
column stochastic process, where (w,(z)), n=1, M are mutually orthogonal

processes with orthogonal increments (M may be infinite). Let the process
(¥ (), a <t < b be defined by

1

y@)=|h(t, wyw(dw), t€l[a,d], : (I1.16)

a

where h(z, u), a<u<t for each rela, b], belongs to %, (Fy) (h(z, u)=0 if
u>t). The representation (I1.16) is the canonical representation of the process
[y @)} if for all s<¢, s, 1€ [a, b] holds

Pgg.,. n¥ (D)= f h (2, u) w(du).

EXAMPLE. 5 Let {z(z), a<<t<b} be the process with orthogonal incre-
ments and f(¢). a<t<b, be an arbitrary function in %Z,(p,). Th representation

y(t)=ff(u)2(du), a<t<b,

of the process (y(t), a<<r<b} is canonical. Indeed, as y (t)—y(s) is orthogonal
to Y6(y; s) for every s<i¢, we have

Poey, 99 ()= f £ (w) 2 (du).
DEFINITION 6. ([9]) The representation

y ()= f h(e, yyw(du), tela, bl (I1.17)

of the process {y(r), a<<t<<b] is a proper canonical representation if

R
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M
F(y; t)=269 S6 (W, £)
n=1

for each z€{a,b].

DEFINITION 7. ([4], [17]) The process (w(z), a<<t<b) in the proper
canonical representation (I1.17) of the process {y(r), a<{t<b} is the innovation

proces of |y (0)}.

EXAMPLE 6. Every Cramér representation is a proper canonical one.

It is evident that every proper canonical representation is the canonical
one. The converse need not hold. For instance, if the function f(r), a<<t<b,
in example 5, is equal to zero on the set of positive p,-measure, then F6 (y; 1)
is a proper subspace of F6(z;¢) for at least one ¢ e [a, b).

We wish to underline the fact that Theorem 7, Ch. I, shows how we
can get, starting from any innovation process (w(z)] of the process (y(z)}, the
innovation process (z,(z)) of {y(¢)) in the Cramér representation of {y(s)).

THEOREM 4. Let (x(z), a<t<b) and {y(¢), a<<r<b] be two processes
and let {z(r), a<<t<b) be an innovation process of {x(¢)}. Then the following
three statements are equivalent:

(a) The process {y(z)) is fully submitted to the process {x(2)};

(b) There exists the function h(z, u) € %, (0,), a<<u<t, a<t<b, such that
the representation

y(t)=fh(t, w)z(du), te<la,b), , (I1.18)

is a canonical representation of {y ().

(c) For each € [a, b] the subspace F6(y; ) reduces the resolution of the
identity {E,(s), a<{s< b}, defined by (x(r)}.

Proof. We shall first show that (a) and (b) are equivalent. From (11.18) it
follows that F6(y; D) CF6 (z; )=6 (x; £) for each ¢ € [a, b]. The space F6()O
©Y6 (y; 1) ts the smallest space spanned by the variables y (¢ + 5) — Py, , ¥ (1 + )
for all Ae[0, b—¢]. From the canonical representation (II.18) it follows that

¥+ —Pgg .,y (t+h)=
t+h

= [h(t+h, u) z (du) € 6 (x; t + h) © F6 (x5 ©).

t



40 Z. Ivkovié, J. Bulatovi¢, J. Vukmirovié, S. Zivanovié

Hence F6()OY6(y;t)CH6(x)OF6(x;¢) for each t€[a; b], i. e. the process
{y ()} is fully submitted to the process {x(z)}.

Conversely, let {y(¢)) be fully submitted to (x(¢)}. In order to show the
existence of the canonical representation (II.18), it is sufficient to show that
for all s<¢, s,t€[a, b] holds

P Gy, 9 (0= E, (5) y (0).
The last equality follows immediately from

E, ()y(®)=Pgg ., gy ()=

= Pots; o [Pt (35 99 O+ Pt 13y 5 G 350y O] =
=P%(y; S)y (L') +0.

Now we shall prove the equivalence of (b) and (c). For all s<z¢, s, ¢ €[a, b],
we have from the canonical representation (II.18) that

Ex (s)y (t) = [ h(t’ u)z (du) =P% (9 ,)y(t) € %(y;s),

which means that P6(y;¢) is invariant with respect to E,(s), i.e. F6(y;¢)
reduces (E, (s), a < s < b).

Conversely, if Y6(y; ) reduces {E,(s)} then, according to the section L.3,
there is an innovation process (z(z)=(z,(t))a~i;31) of {x(z)} such that

6 (y; )= f@ F6 (2,; 1), for each ¢ € [a, b], M < M.
n=1

As F(x; DEOY6(y; 1) also reduces (E, (s)], we have

F6(x;1) © 6 (y; )= % D (2,5 0).

n=M+1

Hence the canonical representation of the process [y ()} is

y(@®= [h(t, wz(du), tela,b).
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Actually, the functions h,(t,u), n=M+1,M in h(z,u)=(k, @, w)"=LM are
zero for all a <u < ¢ and each re[a, d]. A

Concerning the relation between a canonical and a proper canonical
representation in the case when M =1 we can prove, by use of Th. 10, Ch. I,
the following

THEOREM 5. (see [9]) Let

y(t)"‘ f h(t> u) w (du): tela, b]:

be a canonical representation of the process {y(t)]. Then there exists a p,~mea-
surable function y (), assuming the values O and 1, and the process | (¢), a <z < b}
with orthogonal increments, defined by

w(r)= f L@ w(du), t€la,bd),

such that the representation
11
y(@)= f h(t, w)w (du), t€la,b), (I1.19)

is the proper canonical representation of the process {y(r)}.

Proof. According to Th. 4, the subspace Y6 (y) reduces the resolution
of the identity {E(¢)] in a cyclic space ¥ (w). Let w, be a generating element
of F6(w), such that w()=E()w, tec[a,b]. According to Th. 10 and
Corollary 2, Ch. I,

b b
Wy =Pgg () W, = f x. () E (duw)yw, = f X (u) w (du)
a a
is a generating element of %6 (). If we set
t

7 (t) = En(t)@n = f 4 (u) w (du):

a

then (IL.19) is the proper canonical representation of the process {y(z)]. A
When M>1 the situation is rather complicated. First of all, holds
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THEOREM 6. The representation

M 1

y(l)=z j ho(t; Ww, (du), t€la, b, -~ (I1.20)

n=1 a

is the canonical one if and only if for each n, n=1, M, rhe represetation

Ya (t> = f h, (6, w)w, (du), t€la,b],

is the canonical representation of the process |y, ()}

Proof. The space F6(y;s)is the smallest subspace spanned by the ele-
M

ments > y, (u) when u<Cs:
i

n=

M M
Fo(y;)=% zyn(u)! u<s =Z®${yn(u) u<s). (I1.21)
n=1 n=1

Let us notice that & {y, (&), u<<s)=Y6(y,;s), but in a general case

M M
D &inw, usic Z@%m;s)
n=1 u=1

which we have assined by introducing (—B Hence

M M
Pgg iy ¥ (O=P B & & i un sﬂzyk (r)=zp% o ¥n @ s<t (1122)
k=1 n=1

n=1

If (11.20) is the canonical represenfation then for each #n, n= I;M,

PG (5, 934 (£) = f b, (6 ww, (du), s<t, (I11.23)
y ,

and therefore (II.21) is the canonical representation of (y,(z)).
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Conversely, if (II.21) is the canonical representation of {y, (¢)), n=1, M,
then, according to (I1.23) and (I1.22), it follows that (II.20) is the canonical
representation of (y (r)}. A

EXAMPLE 7. Let {w,(¢), a<<t<<b) and {w,(r), a<<t<b) be two mutually
orthogonal processes with orthogonal increments. Then the representation

Yy (O =, () +we ()= j wy (du) + [ wz(dt?), t€la, b],

a
is the canonical representation of the process {y (¢)}.

REMARK 4. The last example shows that if all representations (II.21)
are the proper canonical ones, the representation (I1.20) need not be proper
canonical. Therefore in a general case, the canonical representation cannot be
reduced to the proper canonical one applying the procedure from Theorem 5
to each of the processes {w, (t)} (compare with [12)].

According to Theorem 4, YG(y) reduces the resolution of the identity
M .
in 3> @ Y6(z,) and from Theorem 9, Ch. I, if follows that the multiplicity of
n=1
the process {y(r)] is not greater then M’ (M’ < M), where M’ is the number

M
of cyclic subspaces IR, in the canonical representation of the space > @ %6 (z,)=
n=1

e
=2 @M,

n=1
THEOREM 7. [17] Let the process (y(z), a <t < b} be fully submitted

to the process (x(z), a<t< b} and let g ,=¢, with the finite multiplicity
N=N,=N,. Then '

F6(y; t)=6(x; t) for each te[a,d].

Proof. If we show that Y6(y)=%6(x), then the equality F(y;t)=
=6 (x;¢t) for each te€[a,bd] follows immediately from the assumption of the
theorem. Suppose that Y6 (x) & F6(y) #0; then there is an element z, ni1#0
in Y6 (x) © Y6(y), such that

Poy, 1 = Poyy2 > " * Z Pay, N Py, N1

The fact that the elements z,,, n=1,N can be choosen so that z,,,=2,, .,

r=1,N, is in contradiction to the assumption that the spectral types of the
processes {x(¢)} and {y(r)) are equal.

EXAMPLE 8. ([17]) This simple example shows that the preceding
theorem need not hold when N is infinite.
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Let all spectral types Poy, o B=1, © be equal and

x(t)‘:Z fg,,(t,u)z_,c,,,(du), t€la, b],

be the Cramér representation of the process {x(¢)]. If we set

(0= Z f a (1), (d). € (a,b)

then the spectral types ¢, and g, of the processes (x(z)) and {y(z)] are equal,
but the spaces ¥6(x) and Y6(y) are not equal.

We end this section with two theorems on the relation of spectral types
of two processes which are in the relation of full submission.

We say that the spectral type g, is subordinated to the spectral type Q,
( <Qz) if sz’n<P‘zm’ n'—l N, where

Oy * Payny > Py > ¢ v > Py

0 - Pzz,1>sza> . e '>Psz,N
(we assume that p, =0, n=M+ 1, N\

THEOREM 8. ([17]) If the process {y(r), a<<t<b} in fully submitted to
the process (x(z), a<\t<(b), then g, is subordinated to g,.

Proof. Since the subspace Y6(y) reduces the resolution of the identity
in &6 (x), the proof follows immediately from Theorem 9, Ch. I. A

The next theorem is somehow the converse to the preceding one.

THEOREM 9. If the spectral type 0: p;>g;>...>p, is subordinated
to the spectral type g, then there exists a process {y(¢), a<<t<Cb] fully submi-
tted to the process {x(z), a<<t<b} and for which g,=o¢.

Proof. From the facts mentioned on the page 14 we conclude: since
Pn<Ps . in each %6(z,,), n=1, N, there exists a process with orthogonal in-
crements (z,,,(z), a<<t<(b) whose spectral type is p, and whose space ¥ (z,,,)
reduces (E, (t), a<z<b} Hence the process [y (£), a<{t<b) with the inovation
process (z,,, (D)la=i,27 is fully submitted to the process (x(z)}. A
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I1.3 The spectral type of some transformations of stochastic
processes

The general problem of this section is: if the process {y (), a<<r<b} is
a given transformation

y (@O =T, |x ), as<u<b)), t€la,b],

of the process {x(t), a<<t<b}, what can be said about the spectral types e,
and o,?

We shall first consider the operator T' defined in the following way: for
each tefa,b), Tx(t) is an element in Y6 (x). The process {y(r), a<r<b)} is
defined by

y()=Tx @), tela,bl. (11.24)

We extend the operator T by linearity and continuity to %6 (x). In such a way
T is the linear operator of Y6 (x) onto F6 ().

EXAMPLE 9. The operator T is defined by
y(@O=Tx()=+"(), t€la],

and by linearity and continuity extended to %6 (x).

In a general case we cannot make any conclusion about the relations of
o, and g,, connected by (IL.24). The following example shows that even in
the case of T being the projetion operator of Y6 (x) onto a given subspace of
6 (x), the process |y (¢)] need not be regular.

EXAMPLE 10. ([10]) Let {w(r), 0<t<1}] be a Wiener process. It is
well known (see, for instance, [16]) that such a process has the representation

-

w ()= z (D2, tel0,1],

k=0

where ¢, (t)=sin [k+ ~21—] wt, 0t <1, k=0,00 are the eigenfunctions of the in-

tegral operator with the kernel

7o (s, £)=min s, 2}, 0<s,1<1,
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and z,, k=0,00 are mutually orfhogdnal random variables for which
1

zk—-j (D () dteT6w), k=0,0.

0

We define the process |y (r), 0<r<1} by

y()= 2 0, (2) 2,

k=0

where n is a fixed integer. The space FG(y) (C F6(w)) is generated by the
elements z,, k=0,n, and

y (z)A=P%(y)‘w (), te[0,1].

For any t> 0 there exist numbers 2, #;, ..., £, in (0,¢] such that the matrix
(0 (¢ )) _—0’—: is non-singular. Therefore the linear system

n

Pr (t]) 2=y (tj): Jj= 6,—17,
k=0 ’ T

has the unique solution

n

g, = Z iy (), k=0,n.

=0
Since z,€F6(y;t), k=0,n, for any >0

NFow;) (=F6(3))#0

i. e. the process (y(¢)} is not regular.

EXAMPLE 11. Let the correlation function r(s,2) of the process
0 ( 1)
0s

{%(r), a <t < b} have the derivate —y S, te[a, b). Suppose further, that

in the Cramér representation
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x()= f g(t,wyz(du), te(a,b],

(I1.25)

of the process (x(¢)] the function g(r,u), a <u <t <b, is continuous with
g(t,t)=0 for each r€[a,b], and that the maximal spectral type F, (i) of {x(¢))
is absolutely continuous. (For instance, the stationary process {x(¢),—.00 <t<

< + o) with Wold representation

x(t)=fg(z—-u)z(du), te(— o0, + o),

where g(r), &[0, + o] is continuous and g(0)=0 satisfies these conditions.)
We shall show that in this case the spectral type of the process (x' (¢), a<<t<{b)

is F,. We set
o (O)de . . . 0

F, (df) = . — () d.
\ 0 .. :q:N(t)dt

From (I1.25) and (I1.26) we have for s < ¢, s, ¢ € [a, b]

r(s, £)= _[ g(su)p W dug* (t,u)

and

2r(s, 0 0g* (&, s) / 28 (s, 4) og* (&, 1)

——— e S, + U du I 5

. 0t os 899 ot J Os v ot
or

Rr(s, o)
Ty (8, f) = ——>2 =
(5 2) 0t 0s

s " '
=f¢)g(s,u)_ o () du og* (&, u) _
0s S0t :

(I1.26)
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s

X
- [33—;&@“@)‘%@, s<t, s, t€[a, b). (11.27)
S I

ogt,u
We shall show that the family of functions [—g%l, the parameter ¢ € [a, b]}

is complete in %, (F). The condition that for f& %;(F) and fixed ¢ € [a, b]

fagf;:") F (du)f*(u)=0 for all s€(a,1]
s

we write as
a 5
B—fg(s, W)F (du)f*(u)=0 for all sela,z],
s

or

$

fg(s, W F (du) £*(u)=0 for all sela,r].

a

As the family (g (z,u)} is complete in %, (F), f=0 almost everywhere with re-
spect to F. From (I1.27) and Theorem 3, Ch. II, it follows that

' (5) = f E%%l‘lz(du), t€ [a, b,

is the Cramér representation of {x'(¢)}, i. e. F,=F. A
) Now we shall consider a more general transformation, the so called non-

-anticipative transformation. Let {z (), a<t<(b} be an innovation process of
the process (x(z), a<<r<b]. The process (y(r), a<<t<b) is a non-anticipative
transformation of (x(z)) if

y@O)=T{xW), as<u<b}= fh (t, w)z,(du), te(a,b]. (11.28)

The last equality shows that the process {y ()} is a non-anticipative tran-
sformation of the process (x(z)} if and only if {y(z)] is submitted to {x(z)).

For instance g, =g, if and only if the family (h (¢, 4)} is complete in &, (F,).
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Or, if non-anticipative transformation {y ()} is fully submitted to the
process (x(z)} then g,<g, (Th. 8).

EXAMPLE 12, ([5]) Let [x(s),— co<t<+0} be a stationary process
with Wold representation : L

t

x(n)= fé’(t~u)_z(du), te(—06‘+oo),

=00

and ¢(u), — 9 <u<+ 0, be a bounded, continuous and everywhere positive
function. Let the process, | y() —o0<t< + o) be the following non-anticipa-
tive transformation of {x(?)}:

t

Ly ()= fg(t—u)q(u)z'(du),. te(=00,+ ).

—on

Since the family (g (z—u), the parameter ;€ (— o0, +00)} is complete in &5, it
is easy to see that the family {g(r—u)q(u), the parameter te(— oo, + o)) is
also complete in %, Hence the spectral type of {y(z)) is the ordmary Lebe-
sgue measure (N,=1).

EXAMPLE 13. ([11]) Let the correlation function r (s, £), s, ¢ € [a, b] of the
process {x(t), a<<t<b} be:Riemann integrable function and the function ¢ (z, ),
a<u<t (p(t,#)=0,u>¢t) be such that for each ¢€[a,d] the quadratic mean
mtegral

b

fcp(t,u)x(u)du
exists. We defme the process { y (t), <r< b as a non-anticipative trans-
formatlon ‘
y(@)= f<P (& w)x(u)du, tela,?b]. (I1.29)

Considering the proper canonical representation

|3

x(2) = f g(, i,)z;(du)_, t€[a 8],

a
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of {x(¢)], it is easy to transform (II.29) into the form (II.28):

y(t)=f<9(t,u) fg(u,v)zx(dv) du =

. =f fQ(z,a)g(u, V)du z?(dv); t€[a. b).

Let us suppose now that F, (¢) is absolutely continuous. We shall show
that, if the family {¢ (¢, u), the parameter € (a, b]} is complete in ,2”2, then
F,=F,.

To prove that, it is sufficient to show that the family | f 9 (t,v) g (v, u) dv,

u
the parameter :€{a, b]} is. complete in £, (F,). Let f € #,(F,) and ¢ be any
fixed number from [a, b]. If

5 §
~

j | f o (5,98 (0, 1) do | F, (@) £% ()=

a u°

=f<9(s, u) fg(u,v)Fz(dv)f*(v)]du;O

for all se[a,t], then, by the completness of {¢(z,u)} in &5, it follows that

uw

f g, v)F, ('dv)‘f* (i)= 0

a

almost everywhere on {a, t]. However, because of the continuity of le ()], the
last equality holds everywhere on [a, t]. Since (g (s, %)} is complete in %, (F,),
it follows that f=0 almost everywhere w1th respect to F,, as we wanted
to prove.

I1.4. The stochastic processes regular everywhere and- processes
with discrete innovation

The regularity of the process {x(t), a<t<b} was defined as the condition

that N Y6 (x; £)=0 or, in other notation,
t>a
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%(x;a+0)%2®%(zn;a+0)=0, (11.30)

where {2 (£) =(z,())n-T%> a<t<{b) is the innovation process of {x(¢)} in the
Cramér representation. The condition (I1.30) is equivalent to

F, (a+0)= lim F_(£)=0,
t—a+0 .

or to the condition that the maximal spectral type )« (z) in F, is continuous
at the initial point z=a

Let us notice that if a is a finite number, instead of the process (x(r))
on the segment [a, b], we can consider the process {x(r)}on the larger segment
[¢, 8], c<a, defining x(t)=0 for re[c,a). In such a way, the new process
|%(2)} on [c, b] is always regular. However, we cannot do that if a= — o0. For
that reason we shall not accept such an extension of the segment [a, b].

REMARK 5. Any (non-regular) stochastic process {x(z), a<{z<b] can be
uniquely represented as the sum of two mutually orthogonal processes {x, (¢),
a<t<b} and {x,(2), a<r<bd};

Cx(@)=x0)+x @), tela bl (I1.31)

where (x,(¢)] is a regular process and {x, ()} is a - so-called singular (or deter-
ministic) process, such that % (x,; a+0)=%6(x,). To show that (I1.31) is true,
it is sufficient to notice that x, (£)=Pg .., 0% (1), t€la,b].

DEFINITION 8. ([10]) The process {x(z), a<t<b} is regular at the point
ty€la, 8] if the maximal spectral type F, (1) in F, (t) is continuous in t=1.
The process (x(r), a<<t<b) is regular everywhere if it is regular at each point
of [a, b].

EXAMPLE 14. A stationary (regular) process (x(f), — o0 <r< + o) is
regular everywhere,

DEFINITION 9. The process {x(£), a < ¢t < b} is the process with discrete
tnnovation if the maximal spectral type F, , () in F, (¢) induces a discrete mesaure.

We remark that F, (t) does not have the discontinuity at :=a, since we
consider only regular processes

THEOREM '10. ([10]). Any process {x(¢), a <t < b} can be uniquely
represented as ihe sum of two mutually orthogonal processes

4 3,

M5

i
&



52 Z. Ivkovié, J. Bulatovié, J. Vukmirovi¢, S. Zivanovié

% () =%, (£) + 2 (8), (11.32)

where {x,(¢), a <t<b} is regular everywhere and (x,(¢), a <: < b} is the
process with discrete innovation.

- Proof. Let (z(t)=(2,(0))s-T% a <t<b] be the innovation process in
the Cramér representation of the process {x(r), @ <t < b]. We write the distri-
bution function F, (¢), a <t < b, as the sum

F, ()=F, ()+F, (D), telab],

where F,, (z) is a continuous distribution function and F, , () induces a discrete
measure. In other words, the spectral type F, is the sum of two orthogonal
spectral types: - e ' B

‘ ’ F,,=F

Zpy

+F,

Zng*

According to Theorem 1, Ch. I, there exist two mutually .ofthogénél
processes with orthogonal increments (z, (¢), a <t < b} and (z,,(¢), a < ¢ < b)
with spectral types E, = and F,., respectively, such that

2, (=5, () +2,0), telab],
F6(205 ) =F6(2,,38) ® F6(z,,51), te(a,b).

Since

F,>F,>...> F‘N
we have

F,11>F,21- > o> Fle
and

F, >F, > ««+> F,

212 22 . 'No

Introducing {2, (5)=(2,, )18 a <t <b) and |2,(t) = (2, O)=iTn> a<I<B)
we can write the Cramér representation »

4

x(t) = f g(l’ u)‘z (du)’ t€la, bl,

a

of {x(2)) as

t

x ()= f g (6 u) z, (du) + f gt v)za(du), 1€ (a, b),

e i

T
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which proves (I1.32). Finally, the uniqueness of (II.32) follows by the standard
procedure. Let

x() =% (t) + %), telab],
be another decomposition of {x(r)]. Then

(D) - %@ =% (@) %0 r€lab),

which is a contradiction because the process {x;(¢) — %, (¢), a < ¢ < b) is every-
where regular and the process (%, (¢)—x,(2), a <t < b} is the process with
discrete innovation. A

REMARK 6. According to the well-known Lebesgue theorem any distri-
bution function F(z), a < t < b, has the unique decomposition

F()=F, (t)+ F,(t)+ F,(t),- te(a,b],

where F,. (z) is the distribution function inducing the measure which is abso-
lutely continuous with respect to the ordinary Lebesgue measure, F,(t) induces
the discrete measure and F, () is continuous distribution function which induces
the singular measure (with respect to the ordinary Lebesgue measure). Now,
similarly to the preceding theorem, any process {x(z), a < ¢t < b} can be uniquely
represented as a sum of three mutually orthogonal processes

x(8) =21 () + %, () + %5(2), 2 € [a, ]

where (x,(¢), a<t<b} has an absolutely continuous maximal spectral type,
{x5(2), a<t<b) has discrete innovation and (x,(z), a<t< b} has a continuous
maximal spectral type singular with respect to the ordinary Lebesgue measure.
Let [x (), at<b} be a process with discrete innovation. The Cramér
representation of that process has a simpler form since for the self-adjoint ope-
rator A, defined by the resolution of the identity (E, (s), a<<s<(b] the set
{tl, ty ...} of discontinuity points of the maximal spectral type F, (t) of {x (¢}
is the set of all exgenvalues of A. (see [1], §82) The multlphclty N, of the
eigenvalue 1, k=1, 2,... is the number of the members of the sequence

F, ) >F,(0)>...> F,N @),

Wthh has discontinuity at the point t=¢, and N= sup N,. Let 2,(t,), n=1, N,

'be mutually orthogonal eigenvectors correspondmg to the eigenvalue ¢, and let
Y6, (1) be the space generated by z,(t,), n=1,N N,. Then

T (x; t)=2@ F6.(t),  telabl, (11.33)
. =t

or
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x(8)= 2 zgn(t, 4 2, (tk), tE[a,b] (I1.34)

pSp n=1

__Introducing 2 (z,)=(2,(t) n=1,% k=1, 2, ..., where z,()=0 for
n= N1, N from (I1.34) we get the Cramér representation

2= gl €lb) ©awss)

tkS t

of the process (x(f)] with discrete innovation. The form (II.35) (or (11.34))
shows that the study of such a process is more simple then, for instance, the
study of everywhere regular one. So, it holds

THEOREM 11. Let {x(z), a<<t<b} be the process with discrete innova-

tion in a finite set of points (t;, fy, ..., &) (z#a, k=1,1), T be a bounded
operator in Y6 (x) and let the process {y(z), a<<t<(d) be defined by:

y(@)=Tx (), tela,b]. (I1.36)
Then F, <F,.
Proof. Applying T on (I1.33) we have

' %(y;t)=z%y(tk): L‘G[a,b],

tkst

where

G, (1) = TF6, (1), k=1, 1. (IL.37)

From (II 37) it follows that dim % (r)<dim 96,(t), k=1,1, or the multi-
plicty N,, of the eigenvalue 7, with respect to {E (s), a<{s<b} is not grea-
ter then the __multiplicity N,, of the eigenvalue 7, with respect to (E, (),

a<<s<h) (k=1,0). It means that F,<F,. A

The next example shows that Theorem 10. need not hold if the set of
dlscontmulty points is not finite.

EXAMPLE 15. Let {w(z), 0<t<1} be a given Wiener process and let
the process {x(t),— 1<<t<<1} be defined in a following way:
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0, - 1<e<0,
1 1 1
x(={w]—], —<i< ,n=1,2,...
© (2] 2 2n- ’
w (1), r=1.

The spectral type F,(¢) has the discontinuity points t,c=%, k=1,2,...

and r=0 is its point of continuity.

The operator T and the process {y(r), —1<¢<{1) are defined in the
following way

0, -1 0,
1 1 1 1
- ={—w{—], — <t sn=1,2, ...,
y(t) Tx(t) 27& (2] 2n\ == 2n_1
w{—l—}, t=1
2

The only increasing point of the spectral type F, is :=0 and hence F,
is not subordinated to F,.



Appendix I
THE SPECTRAL TYPE OF WIDE-SENSE MARKOV PROCESS

The class of wide-sense Markov processes is one of the simplest classes
of second ordered processes. In this section we shall expose one simple proce-
dure ([10]) for effective obtaining the spectral type of Markov process in terms
of its correlation function. Multidimensional wide-sense Markov processes were
studied in [9] and [14].

The process (x(:), @ <t <b) is the (wide-sense) Markov process if for
any s,tE[a, b}, s<t, the pro;ectlon of x(¢) on %(x s) coincides with the
projection of x(¢) on the element x(s):

P%(x;s)x(z)=a(t, s)x(s), s<u.
It is easy to show that the scalar function' a(z, s), defined for s<z, s,z €
€la, b] is
r(t,s) o v
= U -
a(t, s) s s< g . (1)
where r(t,s5) is the correlation function of {x ('t)‘}.
According to the theorem of three perpendiculars, we get following tran-
sitive property of a_»(t, s): for any 6, <t <y, I, &3 36 [a, b] we have
a (e, 1)) = a (13, ta) - @ (b0 1)y )
" To avoid some non-essential difficulties, we shall assume in the sequel
that #(z,5)5£0 for each t,s€[a, b] (see [9] and [11]).

Let s, be any fixed point from [a, b]. We define ([9]) the function
g@), agt<bh by

L t&(a, sy

g@®)=1 a0ed)’ 3)

a(t,so), "tE€(spb].
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From (2) it follows that for any s < ¢, s, € [a,b] we have

a(t,s)=2 8

Let the process {z(t), a <<t < b] be defined by

z(1)= x(2), te€la,b]. @

()

It is easy to show that {z(f)] is a process with orthogonal increments and that
Poge .. 02 @O=2(0), s<u
Indeed, since 6 (z;t)=Y6(x;1) for each r€fa, b], we have for s <t
P%(z S)z(z) P%(z s)g(t) x ()= ( a([’s)x(s) z(s).

From (4) it follows that the processes {x(¢)} and {z(f)} have the same spectral
type. Hence

F, (t)=F,(t)=w-r(z, 9,

or, from (3) and (1), we have

. ( ) lrr(?;: gl ’ re [a’ So]; (5)
\L)= 2
:—((%’;%) cr(e, 1), ¢ € (sp Bl '

It. remains to be shown that the spectral type F,(r) does not depend on the
choice of the point s,. For another s, (say s,<s,) we have

[7(5152) la
r(t,eo) °
(s 8y) |2
r (e, 57

te(a, 4, . .
F.0)= (6)

.7 (t, ), (s, b).
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From (1) and (2) it follows that

2

7 (51, %) F (2), t€la,b].

r (so: 30)

F.()=

7 (51, 50) | . -
7 (51, 50) is positive for all sy, s;€[a,b], we conclude that the

7 (S05 So)
distribution functions (5) and (6) belong to the same spectral type.

As the factor

We remark that from

x(@)=g(®2(), te&la,b),
we get

r(t, s)=g () F (min {s,2)) g (s), s,t€[a,b]. )
Setting

g(®), ucela,1].
g(t,u):{ 0, uE(t,b], (8)

we conclude that the representation (7) is the representation (II.11) in Ch. II.
Since g()#0 for all t&[a,b), the family (g(z, ), the parameter ¢€ [a, b])
defined by (8), is complete in £, (F,).
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THE CRAMER REPRESENTATION OF A RANDOM FIELD
OVER THE COMPLEX PLANE

In Ch. I we have established the complete system of unitary invariants
of a self-adjoint operator in'.a separable Hilbert space. However, all the menti-
oned theorems hold even for normal operators defined .in a separable Hilbert
space (see [18], [15]). That enables us to give the Cramér representation of a
:andom field {x(),{e D), where the parameter { is a complex number and

=({ta<Rel <b, c<Im{Kd} is a finite or infinite rectangle in a complex
plane We shall give the procedure concisely (see [2]).

Let us consider a field (x({),{e D), Ex({)=0, E|lx(Q)|*< + o0, CeD

with a correlation function (%, &)= Ex (§) x (%), Ly L€ D. Let F6(x; %) be the
smallest linear space spanned by random  variables x('q), where Ren < Reg,
Imy < Imt. .

We shall assume that
(A) the field (x (C),CED} is contmuous in quadratlc mean for each CED
. (B) the field {x(¥), { € D) is regular, i e.

N Fx:; 0= N %(x,C) 0.

iRe(>a . :Im &>

Let E(%) be the projection operator of Y6 (x) onto Y6 (x;%). According
to the assumptions (A) and (B), it follows that {E({), { € D) is the resolution
of the identity of a normal operator T in a separable Hilbert space J6(x)

([13, § 82).
The element x€%6(x) produces the measure p,(-) over a Borel field
of sets from D, defined by

0. (A)={ E(A)x[1%
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where A={{:q,<Rel <by, ¢, < Imi<Ldy), a<a,<by<b, c<Ley<dy<d, is a rec-
tangle in D, and

E(A)=E (b, + dii)— E(by + 1) — E(a, + dyi) + E (a, + byt).
A field (2(%), Le D)} is a field with orthogonal increments if for every
pair of disjoint rectangles A; and A,, the increments 2(A,) and 2(A;) are mutu-

ally orthogonal random vanables (z (B)=2 (by+dif)— 2 (by+ cyf)— (ag + dy) +

+ 2 (ay + byt)).
The following theorems are analogous to the theorems in Ch. II.

THEOREM 1. For each field {x (), € D) holds the Cramér representation

x(C)= gx &)z, (dn), teD
At n=1

{v; a<Ren<Rel, c<Imn<Imf), where {z,(n),me D}, n=1,N are mutu-
ally orthogonal fields with orthogonal increments, '

Py <Py < - <Puy S
and
%‘(x;c)=z@%(zn;c),  for each {eD.
- n=1
The sequence (1) is called the spectral type of the field (x(T)).

THEOREM 2. The correlation function r({y, §,) of the field (x(%)} uni-
quely determines its spectral type.

THEOREM. 3. For each sequence (1) there exists a field {x (%)} such
that (1) is its spectral type.
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ONE CLASS OF PROCESSES WITH MULTIPLICITY N=1

Let
t N
x(t)= f g (¢, u)z (du) :Z fgn (¢, w) 2, (dw), tela,b]y (1)

be the Cramér representation of the real-valued process. (x @)

THEOREM 1. [6] If each term fg,, (twz,(du), a<u<Lt<bn=1 N,
in (1) satisfies the conditions
S 1. g, (e u) and _‘2_3"7(2’_”2 are bounded and continuous for all wtra <

Lu<<t<b;
2. g,(t,)>0 for all te[a,b]; ‘
3. F,()=Ez,2(¢r) is absolutely continuous and ¢, (t) F',(¢) has at most

a finite number of discontinuity pomts in any f1n1te submterval of [a, b], then
{x(2)} has multiplicity N=1.

Proof. We shall show that, if N>1, then, for te[a, b], the family of
functions (g(r,u), a <wu<t) is not complete in &, (F), which is the contra-
diction, because (1) is. the Crarnér representanon g

By hypothesis 3, we can find a finite subinterval [al, bl] of [a, 8], such
that the derivatives ¢,(¢) and ¢,(¢) are continuous and positive for all ¢ €[ay, b,].
To prove that the family {g(z, 4)} is not complete in .2”2 (F), it is sufficient to
show that there exlsts the vector—functlon

£ = (i fu(y 0,0, ..., (hG)#0, £, (u)#o),
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such that

f (£(w)* F (du) = j £7 () @y (1) du + f £3(W) (W) du>0, t€[arby),  (2)

ay az

k)

f g (s, ) £(u) F (du) = f 81(5, ) f1(u) 9 () du + [ 82 (s, ) f () 92 () du=0 (3)

a1 az

for all se{ay, t].
We may replace the condition 2 by the condition

g, (t,)=1, te€la,b], n=1, N,

if we transforme g, (¢, ») and z,(du) into g, (¢, «) and z,(du), by writing

5. (60— o () =g, (wy4) -2 (di)y =T, N.
gn t’ t » -

Because of that, we may suppose that g,(s,t)=1, n=1, N, t€[a, b]. By the
conditions 1. and 2., the relation (3) may be différentiated with respect to s,
s0_we obtain .

1000+ [EEDp e was©n0r [EED 4w aw0=0
for all se(ay, t]. vThis equation is satisfied if, for examplg,
fl(s)ep1<s>+f—"—5—’§j’—“)f1(u>cpl<u)du= 1,

a1

AOuE+ / %80 1 o @du=+1.

The last two equations are the integral equations of Volterra type, where
F1() @ (s) and f3(s)p,(s) are the unknown functions. By above hypothesis, each
of these equations has the uniquely determined solution, which is bounded and
continuous for s & [a;, t];: these "solutions -are not almost everywhere equal to
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zero. Thus, the relation (3) is satisfied. Since ¢,(#) and ¢,(u) are positive for
u € [ay, by], it follows that (2) is also satisfied.

THEOREM 2. [6] If in the representation

x()= f g(t,u)z(dw), tela,b], 4

of the process {x(z)}], the functions g (r, u) and F () satisfy the conditions 1, 2, 3
of the przceding theorem and if a is finite, then (4) is also Cramér repre-
sentation (i.e., in this case, the proper canonical representation) of the process

{x(2)}.

Proof. This theorem will be proved if we can show that the family
lg (¢, w)} is complete in £, (F); we will do that like in the preceding theorem.
The condition .

s

fg (s, w)f (W) e () du=0, for all s&[ay, ],

a

may be differentiated with respect to s, and we obtain

F®e(s)+ fﬁié%ﬂf(u)¢(u) du=0, for all se{ay, t].

ay

This is a homogoneous integral equation of the Volterra type and, under our
coaditions, it follows that its the only solution is f(s)¢ (s)=0, s&[ay, ¢]. Since
@ (#)>0 in [ay,b,], it follows that f(s)=0 for all s& [a;, b,), i.e. almost every-
where with respect to F. A

REMARK. If a= — o0, accord to the theory of the integral equations
of the Volterra type, Theorem 2 will hold under the additional assumption

t
f ig_(l’_u) du < oo
ot

for all te[— 0, b].
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