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Observation of hot stars

e shells in the surroundings of hot stars

la close to the star WR 124 (HST)



Observation of hot stars

e the Interstellar medium around hot stars

pen cluster NGC 3603 (HST)



Observation of hot stars

e P Cyqg line profiles in UV
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Observation of hot stars

e X-ray emission
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Observation of hot stars

e Ha emission line
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How to explain the observations?

e nebulae: circumstellar envelope around hot
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Influence on the interstellar medium: envelope
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How to explain the observations?

e nebulae: circumstellar envelope around hot
stars

Influence on the interstellar medium: envelope
|S expanding

Cyg line profiles: supersonic outflow from hot
rs: wind

ay emission: shocks in the wind
mission line: recombination

tive study of the wind



Hot star wind theory

e why Is the wind blowing from hot stars?

what are the main wind parameters (mass-loss
rate, velocity)?

ow to predict the wind line profiles?

w the wind influences the stellar evolution
the circumstellar environment?



Why Is the wind blowing?

e some force accelerates the material from the
stellar atmosphere to the circumstellar
environment
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Why Is the wind blowing?

e hot stars are luminous: radiative force?

frad = l/ x(r.v)F(r,v)dv
¢ Jo

e spherically symmetric case
x(r,v) absorption coefficient
F(r,v) radiative flux



Why Is the wind blowing?

e hot stars are luminous: radiative force?

frad = l/ x(r.v)F(r,v)dv
¢ Jo

o radiative force due to the light scattering on
free electrons

x(r.v) = oTnne(r)

otnh Thomson scattering cross-section
ne(r) electron density
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Why is the wind blowing?

e hot stars are luminous: radiative force?
1 o
ﬂad:E/ x(r.v)F(rv)dy
0

o radiative force due to the light scattering on
free electrons

othne(r)L
Aréc

ﬁad —

omparison with the gravity force

ample: o Cam, L = 6.2 x 10°Lp,



Why is the wind blowing?

e hot stars are luminous: radiative force?
1 o
ﬂad:E/ x(r.v)F(rv)dy
0

o radiative force due to the light scattering on
free electrons

othne(r)L
Aréc

ﬁad —

omparison with the gravity force

diative force due to the light scattering on
e electrons Is important, but it never (?)
eeds the gravity force



Why is the wind blowing?

e hot stars are luminous: radiative force?
1 o
ﬂad:E/ x(r.v)F(rv)dy
0

e radiative force due to the line transitions

n;(r) nj(r
gi 9gj )

X(r.v) = Zcpu<u>g, ] (

Imes

p;i(v) line profile, [~ ¢;(v) =1

f;; osclllator strength

n;i(r), ni(r) level occupation number, g;,
; statistical weights
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Why Is the wind blowing?

e hot stars are luminous: radiative force?
1 o
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0

e radiative force due to the line transitions
> n;(r ni(r
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Why is the wind blowing?

e hot stars are luminous: radiative force?
1 o
ﬂad:E/ x(r.v)F(rv)dy
0

e radiative force due to the line transitions

2
WeeCZ / Z /J (’7/(/’) njg(Jr)) (P/J(U)F(l’ v)dv

I
line

problem: influence of lines on F(r,v)?
crude solution: F(r,v) constant for
frequencies corresponding to a given
Ine, v ~ Vij



Why Is the wind blowing?

e hot stars are luminous: radiative force?
1 o
ﬂad:E/ x(r.v)F(rv)dy
0

e radiative force due to the line transitions
e Mmaximum force

max __ ni(r) ni(r) -
lines — mec2 Z (7 — Jgj ) F(l’,UU)

lines

v;j Is the line center frequency



Why is the wind blowing?

e hot stars are luminous: radiative force?
1 o
ﬂad:E/ x(r.v)F(rv)dy
0

o radiative force due to the line transitions
e Mmaximum force: comparison with gravity

Z fun/( ) V(UU)

line

fmax B L

line

fgrav 4mePG Mc?

neglect of n;(r) < n;(r)
Ly(vj;) = 4mr?F(r,v;))



Why Is the wind blowing?

e hot stars are luminous: radiative force?
1 o
ﬂad:E/ x(r.v)F(rv)dy
0

o radiative force due to the line transitions
e Mmaximum force: comparison with gravity

Max
hines _ /—Z g Nilij V(’/u)
f OT1h N
grav lines Th e
Te?f;;




Why is the wind blowing?

e hot stars are luminous: radiative force?
1 o
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0

o radiative force due to the line transitions
e Mmaximum force: comparison with gravity

Max
hines _ /—Z g Nilij V(’/u)
fgrav OTh Ne

lines

hydrogen: mostly ionised in the stellar
envelopes = n;/ne very small =
egligible contribution to radiative force



Why is the wind blowing?

e hot stars are luminous: radiative force?
1 o
ﬂad:E/ x(r.v)F(rv)dy
0

o radiative force due to the line transitions
e Mmaximum force: comparison with gravity

Max
hines _ /—Z g Nilij V(’/u)
fgrav OTh Ne

lines

neutral helium: n;/ne very small =
negligible contribution to radiative force



Why is the wind blowing?

e hot stars are luminous: radiative force?
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Why is the wind blowing?

e hot stars are luminous: radiative force?
1 o
ﬂad:E/ x(r.v)F(rv)dy
0

e radiative force due to the line transitions
e maximum force: which elements?

max
fllnes _ /—2 : O Ni Vi V(I/U)
fgrav OTh Ne

lines

heavier elements (iron, carbon, nitrogen,
oxygen, ...): large number of lines,

j/oth ~ 107 = £ /fo . up to 10°



Why is the wind blowing?

e hot stars are luminous: radiative force?
1 o
ﬂad:E/ x(r.v)F(rv)dy
0

e radiative force due to the line transitions
e maximum force: which elements?

max
fllnes _ /—2 : O Ni Vi V(I/U)
fgrav OTh Ne

lines

radiative force may be larger than gravity
(for many O stars £, /fyray ~ 2000,

lines

bbott 1982, Gayley 1995)
tellar wind



Radiative force?

e speculations of Kepler, Newton



Radiative force?

e predicted by James Clerk Maxwell (1873) in the
book A Treatise on Electricity and Magnetism
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Radiative force?

e predicted by James Clerk Maxwell (1873)

experimentally tested by Pyotr Nikolaevich
Lebedev (1901), main problem: heating

hy do we not observe the effects of the

diation pressure in a ,normal world“?

classical particle: Ep = 2mv Pp = %

photon: E, = hv, p, = £

or Ep E, the momentum ratio IS
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Radiative force?

e predicted by James Clerk Maxwell (1873)

experimentally tested by Pyotr Nikolaevich
Lebedev (1901), main problem: heating

hy do we not observe the effects of the
diation pressure in a ,normal world“?

particle with thermal energy E, ~ kT

bv _ hy NOOOl( ", ) T —2
o ovmkT 101551/ \ 100K

0 possibilities:
large v = X-rays, Compton effect
Inimise heating (as did Lebedev)
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Radiative force?

e predicted by James Clerk Maxwell (1873)

experimentally tested by Pyotr Nikolaevich
Lebedev (1901), main problem: heating

hy do we not observe the effects of the
diation pressure in a ,normal world“?

how to minimise heating?

cooling: emission of photon with the same
energy as the absorbed one

line absorption followed by emission
Thomson scattering

both processes important in hot star
winds



The Sobolev approximation

e the main problem: the line opacity (lines may
be optically thick)

necessary to solve the radiative transfer
guation



The Sobolev approximation
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radius —
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The Sobolev approximation

radius ——

the Doppler width of the line



The Sobolev approximation

radius ——

Avp 1 .
— =2 is the Sobolev length

Vij ar




The Sobolev approximation

radius ——

re does not significantly vary over Lg =
ation of the calculation of 29 possible



The Sobolev approximation

radius ——

nonnegligible only over Ls = solution
In the ,gray“ zone only



The Sobolev approximation




Our assumptions

e spherical symmetry



Our assumptions

e spherical symmetry
stationary (time-independent) flow



The Sobolev line force I.

e the radiative transfer equation

1—u? o
r  ou
— ’f]([’”u,,u) — X(I’,,LL,V)/(I’,/,L,V)

[(r,u,v) =

me of static observer

lonarity, spherical symmetry

frequency, u = cosf

v) Is specific intensity

v) Is absorption (extinction) coefficient
) IS emissivity (emission coefficient)



The Sobolev line force I.

e the radiative transfer equation

1—u? o
r  ou
— ’f]([’”u,,U) — X(I’,,LL,V)/(I’,/,L,V)

[(r,u,v) =

blem: x(r,u,v) and n(r,u,v) depend on p
to the Doppler effect



The Sobolev line force I.

e the radiative transfer equation

1—u? o
r  ou
— ’f]([’”u,,u) — X(I’,,LL,V)/(I’,/,L,V)

[(r,u,v) =

blem: x(r,u,v) and n(r,u,v) depend on p
to the Doppler effect

tion: use comoving frame!



The Sobolev line force I.

o CMF radiative transfer equation

1—u? o

[(r,u,v) + p 6ul(r’u'u)_
2
(1 Su \'l/L(rr) d\(/:l(rr)) 661//0'“'1/) -

=n(r,v) —x(r,v)l(r.uv)

oving frame (CMF) equation
s the fluid velocity
and n(r,v) do depend on L



The Sobolev line force I.

o CMF radiative transfer equation

1—u? o
[(r,u,v) + r“ 6ul(r’“’u)_
2
L rdv(r)\ 0O B
(1 e v(r) dr ) aul(r,u,u) B

=n(r,v) —x(r.w)I(ruw)
ected aberration, advection (unimportant
< ¢, e.g., Korcakova & Kubat 2003)

ct of the transformation of /(r,u,v)
en individual inertial frames



Intermezzo: the interpretation

radius ——

. continuous redshift of a given photon



The Sobolev line force Il.

e the Sobolev transfer equation (Castor 2004)

—1

2
, )@A-lz%/(r,u,u)—

ro O

2
o kordv(r)) 9 B
(1 = +v(r) dr )6///0'“'1/)_

=n(rv) —x(r,v)l(r,uv)



The Sobolev line force Il.

e the Sobolev transfer equation (Castor 2004)

—1

2
,)@A—lzkél(ruu)—

du

wr dv(r)
cr (1_M +v(r) dr )61//(”“/)

=n(rv) —x(r,v)l(r,uv)

ible when 2422 (1 1) > 2(r,uv)

sional arguments:

(rpv) ~ 12,

[(r,u,
(r,v) ~ LoEY)

v-0 is the line Doppler width



The Sobolev line force Il.

e the Sobolev transfer equation (Castor 2004)

—1

1 — 2
V/(r,u)@A—zk,E/(r,u,u)—

ro O
y
o kordv(r)) 9 B
cr (1 K +v(r) dr )6///0'“'1/)_

=n(rv) —x(r,v)l(r,uv)

ible when v(r) > w



The Sobolev line force IllI.

e solution of the transfer equation for one line

U2y dv(r)) a%/(r,u,u) _

=n(r,v) —x(r,v)l(r.uv)



The Sobolev line force IllI.

e solution of the transfer equation for one line

(1 2+ w2r dV(r)) gl(r,u,u) _

=n(r,v) —x(r.w)I(ruw)

absorption and emission coefficients are

e n(r) ()
(rv) = meC(Pij(l/)gif/j( g Jgj )
U3 2
n(rw) = 2T ()g )

C2 mecC g,



The Sobolev line force IllI.

e solution of the transfer equation for one line

(1 2+ w2r dV(r)) gl(r,u,u) _

=n(r,v) —x(r.w)I(ruw)

line opacity and emissivity are
x(r.v) = xL(re;(v)

n(r.v) = XL(r)SL(r)(Pij(V)

ere XL(/’) :; 9gi fu (nlg(lr) njg(jr))




The Sobolev line force IllI.

e solution of the transfer equation for one line

2
o kordv(r)) 0 B
L=ptt v(r) dr ) aul(r’“'”) B

= xL(r)pi(v) (SL(r) = I(r.u.v))




The Sobolev line force IllI.

e solution of the transfer equation for one line

vv(r) w’r dv(r)\ o B
(1 —E Uy dr ) gy () =

= xL(r)pi(v) (SL(r) = I(r.u.v))

roduce a new variable

y=/ dv';(V)

0: the incoming side of the line
1. the outgoing side of the line



The Sobolev line force IllI.

e solution of the transfer equation for one line

2
ok rdv(r)\ 0O B
e +v(r) dr )Gy/(r'ﬂ'y)_

= x.(r) (Su(r) = 1(r.p.y))




The Sobolev line force IllI.

e solution of the transfer equation for one line

2
ok rdv(r)\ 0O B
e +v(r) dr )Gy/(r'ﬂ'y)_

= x.(r) (Su(r) = 1(r.p.y))

variables do not significantly vary with r
within the ,resonance zone*




The Sobolev line force IllI.

e solution of the transfer equation for one line

y) = le(p) exp [=7(p)y] + SL 11 —exp [=7(u)y]}

where
e the Sobolev optical depth is

xL(r)cr
vou(r) (1 — 2 + #5840

T(u) =

e boundary conditionis /(y = 0) = Ic(u)



Intermezzo: the interpretation

radius ——

—1
n by the slope = 7 ~ (%)



The Sobolev line force IV.

o the radiative force (the radial component; force
per unit of volume)

frad = l/ x(r.v)F(r,v)dv
¢ Jo



The Sobolev line force IV.

o the radiative force (the radial component; force
per unit of volume)

frad = %/ dux(r,l/)]{dﬂ ul(r.p,v)
0



The Sobolev line force IV.

o the radiative force (the radial component; force
per unit of volume)

27.(. ©.0) 1
w2 [ Ao [ dupitr)



The Sobolev line force IV.

o the radiative force (the radial component; force
per unit of volume)

2T r 1 1
frad = XCL( )/O dyflduu/(r,u,y)




The Sobolev line force IV.

o the radiative force (the radial component; force
per unit of volume)

~2mx(r) :
= - /Odyx

ple(w) exp [=7(uw)y] + S {1 —exp [=7(u)y]}}

re the Sobolev optical depth is

xL(r)cr
vou(r) (1 — 2 + #5840

T(W) =

an even function of u



The Sobolev line force IV.

o the radiative force (the radial component; force
per unit of volume)

1 1
:27TXC|_(F)/O dy /1d/J,/L/c(/L)eXp [—7(w)y]

net contribution of the emission to the
lative force (S, Is isotropic in the CMF)



The Sobolev line force IV.

o the radiative force (the radial component; force
per unit of volume)

1 N —
rad = 27T)i|_(l’) /1 du /L/c(/JJ)l ej_p(L)T(M)]

erting

xL(r)cr

vov(r) (1 — p2 + #5.940)

T(W) =




The Sobolev line force IV.

o the radiative force (the radial component; force
per unit of volume)

y 1
2”;;2(” _1duulc(u) (14 w?o(r)] x
xL(r)cr
’ {1 o [_Vov(f) (1+ ma(r»] }
~r dv(r)
reo(r) = o0 dr 1

lev (1957), Castor (1974),
| & Hummer (1978)



Optically thin lines

o optically thin line:

xL(r)cr

() (L + i20(n)) <1




Optically thin lines

o optically thin line:

xL(r)cr
vov(r) (1+ w2o(r))

e radiative force proportional to

<1

xL(r)cr
vov(r) (1+ w2a(r))

frag ~ 1 —exp |—



Optically thin lines

o optically thin line:

xL(r)cr
vov(r) (1+ w2o(r))

e radiative force proportional to

<1

xL(r)cr
vov(r) (14 pu2o(r))
N xL(r)cr
~ wov(r) (1 + p2a(r))

frag ~ 1 —exp |—




Optically thin lines

o (1
frad = 7/1duulc(u)xL(r)



Optically thin lines

frad = %XL(f)F(f)




Optically thin lines

frad = %XL(f)F(f)

optically thin radiative force proportional to the

adiative flux F(r)

tically thin radiative force proportional to the
rmalised line opacity x, (r) (or to the density)

same result as for the static medium



Optically thick lines

o optically thick line:

xL(r)cr

(1) (L+ 120(n) =




Optically thick lines

o optically thick line:

xL(r)cr
vov(r) (1+ w2o(r))

e radiative force proportional to

> 1

xL(r)cr
vov(r) (1+ w2a(r))

frag ~ 1 —exp |—



Optically thick lines

o optically thick line:

xL(r)cr
vov(r) (1+ w2o(r))

e radiative force proportional to

> 1

xL(r)cr
vov(r) (1+ w2a(r))

frag ~ 1 —exp |—



Optically thick lines

2oV (r)
rc?

1
frad = /1 du ple(w) [1+ p2o(r)]



Optically thick lines




Optically thick lines

2mrgv(r)
rc?

ﬁad —

1
/ du wle [1+ p2o(r)]
L




Optically thick lines

[1 + o(r) (

: 1 R?
D r?

)|



Optically thick lines

o= 2O 1400 (1-22)]

rc2 2 r?

large distance from the star: r > R,



Optically thick lines

o= 2O 1400 (1-22)]

rc? 2 r?
large distance from the star: r > R,

voF (r)dv(r)
c2 dr

frad ~



Optically thick lines

= 2OEO 1oy (1 R_2)]

rc? 2 r?
large distance from the star: r > R,
voF (r)dv(r)
c2 dr

ically thick radiative force proportional to the
jative flux F(r)

frad ~

ally thick radiative force proportional to 5,

lly thick radiative force does not depend
level populations or the density



Wind driven by thick lines

e continuity and momentum equation of
Isothermal spherically symmetric wind

- _ 2 e
ot trar (7PY)
Ov.  ,0p oGM(1 —1T)
LA T R =

are the wind density and velocity
he sound speed



Wind driven by thick lines

e continuity and momentum equation of
Isothermal spherically symmetric wind

1d

59 (repv) =0
dv ,dp oGM(1—1T)
IOVE = —d a‘l‘ﬂad_ r2

umption: stationary flow



Wind driven by thick lines

e continuity equation

—— (r?pv) =0 = M = 4xr°pv = const.

/1 is the wind mass-loss rate



Wind driven by thick lines

e Momentum equation

V— —
dr 0 r2

eglect of the gas-pressure term 32$ < frad
ossible in the supersonic part of the wind)

dv _ frag GM(1-T)




Wind driven by thick lines

e Momentum equation

_ ov(r)F(r) [1 o) (1 B ER_Q)]_GM(l — )

prc? 2 r? r?

cIu5|on of the expression for the optically

= 4,”;2, where L, Iis the monochromatic
lar luminosity (constant)
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e Momentum equation
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Wind driven by thick lines

e Momentum equation

2 r

Vol B 1/-_\’_3 % B vov(r)L, GM(1-1T)
4tr2pc? dr  8mpc2r3 r?

as a critical point

ATrr2pc? 2r2 )

lect of 5= term:

voly
C2

M = 4tr?pv(r) =



Wind driven by thick lines

e Momentum equation

vol, ( 1 Rf)] dv wv(r)L, GM(1-T)

Amr2pc2 \© 212 )| dr ~ 8mpc2r3 r2

as a critical point

ATrr2pc? 2r2 )

lect of 5= term:

I/OLU L
C2

M = 4nrépv(r) = >
loss rate due to one optically thick line
imatively equal to the ,photon mass-loss

IS stellar luminosity)



Example: a Cam




Example: a Cam
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mass M 43 Mg

(Lamers et al. 1995)
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Example: a Cam

temperature 7o 30900 K
radius R, 27.6 Rg
mass M 43 Mg

ass-loss rate due to one optically thick line
~ [ /c?

ss-loss rate due to Ny optically thick lines
Ninick L/ ¢

calculations: Niick =~ 1000
aRfTe‘*ﬁ, [ =620000Lq

x 107> Mg yr—1, more precise estimate:
oM yr—t (Krticka & Kubat 2008)
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optically thick and thin lines

e optically thin line force
1
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CAK theory

e In reality the wind is driven by a mixture of
optically thick and thin lines

e optically thin line force
1
frad = EXL(r)F(r)

optically thick line force

voF(r)dv
frad = c2 dr

lev optical depth 75 = ’%CK

0dr

faa = O (NF() (757)°

= 0 (thin) or a = 1 (thick)
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CAK theory

e In reality the wind is driven by a mixture of
optically thick and thin lines

the radiative force in the CAK approximation
Castor, Abbott & Klein 1975)

OThNelL 1 dv\“
ﬁad — k 2
dmtrec \ o1hNeVin dr

re
, o are constants (force multipliers)

h IS the Thomson scattering cross-section
IS the electron number density



CAK theory

e In reality the wind is driven by a mixture of
optically thick and thin lines

the radiative force in the CAK approximation
Castor, Abbott & Klein 1975)

OThNelL 1 dv\“
ﬁad — k 2
dmtrec \ o1hNeVin dr

dimensional parameters k and o describe
Ine-strength distribution function (CAK,
et al. 2000)

eral NLTE calculations necessary to
k and o (Abbott 1982)



CAK theory

e momentum equation with CAK line force
(neglecting the gas pressure term)

dv GM(1—-1T
PVE:ﬂad_p ( )

2



CAK theory

e momentum equation with CAK line force
(neglecting the gas pressure term)

dv O1hNelL ( 1 dv)a B oGM(1—1T)

= K
r Arec \ otpneVip dr r2



CAK theory

e momentum equation with CAK line force
(neglecting the gas pressure term)

v _ kO'ThL Ne (p 47rr_2v dv)a—G/\/I(l—/_)
r 4mc p \ Ne onMwy, dr



CAK theory

e momentum equation with CAK line force
(neglecting the gas pressure term)

)a—cmu—r)

Ne o1h Mvip, dr

v ol ne (o 4mr?v dv
r  4mc p

locity in terms of the escape speed

2 2GM(1 — I
W = ‘/2 , where vz = ( )
Vesc R

adial variable

(Owocki 2004)



CAK theory

e momentum equation with CAK line force
(neglecting the gas pressure term)

1—|—W’=C(W’)a

here
w' = d—‘;‘/
- — koL Ne (p47rGM(1—/_)>a
AncGM(1—=T) p \ne ohnMuy

%mH

ebraic equation



CAK theory

e momentum equation with CAK line force
(neglecting the gas pressure term)

(01

1+w =C(w)

Ifferent solutions fo_r different values of C
r mass-loss rate M)
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CAK theory

e momentum equation with CAK line force
(neglecting the gas pressure term)

(01

1+w =C(w)

I

1+w

-
-
-
-
-
-
- -
- ™
-
-

O L N W b O

0 1 2 3 4 5

(small M): two solutions



CAK theory

e momentum equation with CAK line force
(neglecting the gas pressure term)

(01

1+w =C(w)

O L N W b O

(large M): no solution



CAK theory

e momentum equation with CAK line force
(neglecting the gas pressure term)

(01

1+w =C(w)

O L N W b O

value of C (M): one solution



CAK theory

e momentum equation with CAK line force
(neglecting the gas pressure term)

1—|—W’=C(W’)a

ritical (CAK) solution for a specific value of M:
e only smooth solution of detailed momentum
uation from the stellar surface to infinity

solution: the largest M possible



CAK theory

e momentum equation with CAK line force
(neglecting the gas pressure term)

1+w =C(w)"
ritical (CAK) solution for a specific value of M:

e only smooth solution of detailed momentum
uation from the stellar surface to infinity

sible to derive the wind mass-loss rate and
city profile
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y supersonic!
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CAK theory

o ( R*)W
= W = X=> V=V |l——
1l — o r

ere the terminal velocity

a
1l —«

Voo = Vesc

ales with vegc!

le: o Cam, Vese = 620kms—!, a = 0.61
iction: v, = 780kms—1



CAK theory

1 — a—1
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aa
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CAK theory

1 — a—1
o _ (-
aa
v [4TmaGM(L— 1) = a (kL)i
OTh v (1 — )= \ €

ample: o Cam: M~ 9 x 107° Mg yr—!
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Beyond the classical CAK theory

e Inclusion of the dependence of k on the
lonisation equilibrium — § parameter
(Abbott 1982)

ropping of the radial streaming approximation
auldrach, Puls & Kudritzki 1986,
lend & Abbott 1986)

TE calculation of the level populations
uldrach 1987, Vink, de Koter & Lamers
, Grafener & Hamann 2002,

a & Kubat 2004)

Ing of the Sobolev approximation
rach et al. 1994, Grafener & Hamann
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Comparison with observations

e nice wind theory = compare it with
observations!

time for hot chocolate (observers will do the
ork for us)!?

roblem: it is not possible to ,measure” the
Ind parameters directly from observations

have to work more to understand the wind
ctral characteristics

theory, please!



Observations: Ha line profiles

e Ha emission line of o Cam
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np is the number density of H*
ne 1S the number density of free electrons
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Observations: Ha line profiles

e our assumption: Ha line is optically thin
number of Ha photons emitted per unit of time

NHOC Y np ne

sibility to derive M using NLTE models

mple: o Cam
ur estimate: 9 x 107 °Mg yr—!

eoretical prediction: 1.4 x 107° Mg yr—1
rticka & Kubat 2007)

line observation: 1.5 x 107° Mg yr—*
Is et al. 2006)
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Observations: P Cyg lines I.

e lines of the most abundant ion of a given
element
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e |UE spectrum of o Cam
~aCam |
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Observations: P Cyg lines I.

e |UE spectrum of o Cam
~aCam |

0 1510 1520 1530 1540 1550 1560 1570 1580
A A]

sorption edge originates in the wind with
hest velocity in the direction of observer

lity to derive the terminal velocity v
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e |UE spectrum of o Cam
~aCam |
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e |UE spectrum of o Cam

"

i

a Cam
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line

o Is the laboratory wavelength of



Observations: P Cyg lines I.

e |UE spectrum of o Cam
~aCam |

0 1510 1520 1530 1540 1550 1560 1570 1580
A A]

AN =79A = v, = 1500km s
imate: 780kms—?
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e |UE spectrum of o Cam
~aCam |
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the absorption part saturated?

) exp [=T(w)y] + SL {1 —exp [=7(m)y]}
rgent intensity: y — 1



Observations: P Cyg lines I.

e |UE spectrum of o Cam
~aCam |

0 1510 1520 1530 1540 1550 1560 1570 1580
A A]

the absorption part saturated?

w)exp [—7(w)] + S {1 —exp [—7(w)]}
thicklines > 1with S < I = | <€ I



Observations: P Cyg lines I.

e |UE spectrum of o Cam
~aCam |

0 1510 1520 1530 1540 1550 1560 1570 1580
A A]

turated lines (7 > 1) the absorption part
P Cyg line profile does not depend on 7

ermination of v, possible
rmination of M impossible
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e HST spectrum of HD 13268
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e HST spectrum of HD 13268
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e HST spectrum of HD 13268
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Observations: P Cyg lines Il.

e HST spectrum of HD 13268

F
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Observations: P Cyg lines Il.

e HST spectrum of HD 13268

F
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2 Ze M [dv\?
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e carbon number density relatively to H

he Ionisation fraction of CIV



Observations: P Cyg lines Il.

e HST spectrum of HD 13268
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mec” 77 4rmy v2 R,

er-of-magnitude approximations:
, r = Ry, dv/dr — v /R



Observations: P Cyg lines Il.

e HST spectrum of HD 13268
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Observations: P Cyg lines Il.

e HST spectrum of HD 13268
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(s 62 4 C 1

= 1) = — X\

) den V1
mec” 77 4rmy v2 R, SN

ase geyM =4 x 10719 Mg yr1
e derived with a knowledge of gcy



Observation: X-ray emission

o X-ray spectrum 6! Ori C

KX >
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(CHANDRA, Schulz et al. 2003)




Observation: X-ray emission

o X-ray emission of hot stars consists of
numerous lines of highly excited elements
(NvI, Ovil, Fe xxiv, ...)

ignature of a presence of gas with
mperatures of the order 10° K

ray emission originates in the wind
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e problem:
e the wind temperature is of the order of the

stellar effective temperature — 10*K (as
expected from the observed ionisation
structure and as derived from NLTE
models, e.g., Drew 1989)

how can such gas emit X-ray radiation with

typical temperatures ~ 10° K?
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Observation: X-ray emission

e problem:

e the wind temperature is of the order of the
stellar effective temperature — 10* K

e how can such gas emit X-ray radiation with
typical temperatures ~ 10° K?

lution:

most of the wind material is ,cool“ with
temperatures of order of 10* K

nly a very small fraction of the wind is very
t ~10°K

,2hot* material quickly cools down
diatively)

roblem: how is this possible?
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How to create X-rays?

e hot stars have stellar wind with typical
velocities ~ 1000 km s~

1000kms—1 v, = —1000km s~

T=2-10"K
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Wind instabilities |.

e Mmain idea

e the Sobolev approximation gives reliable
prediction of wind structure

=- a sound basis for the study of instabllities



Wind instabilities |.

e time-dependent hydrodynamical equations

Op 10 o
§+ﬁ§(r pv) =0
ov Ov.  ,0p oGM(1—1T)
t T PVer 7 6r+ﬂad r2

are the wind density and velocity
the sound speed



Wind instabilities |.

e time-dependent hydrodynamical equations

- - 2 —
5t T 7 ar 7PY)
Ov.  ,0p oGM(1—1T)
i Ve T @ 6r+ﬂad r2

oving fluid-frame + small perturbations of
lonary solution

2004‘5,0,
—\vo+0v, vg=0



Wind instabilities |.

e equations for perturbations dp, dv

65,0 ooV
ot NET or =0
dov 285,0
Po— = P + 0frad

turbation of the radiative force
= P0Jraq OV/0Or

e g;ad — agrad/a (dV/dI’)



Wind instabilities |.

o the wave equation

826v_32626v+ , 020V
otz @ Tgrz " Irdpra,




Wind instabilities |.

o the wave equation

0%ov 32626v L 028v
oz~ 7 Tar2 T Irdpey
olution in the form v ~ exp [/ (wt — kr)]
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e the wave equation

0%ov 32626v L 028v
o2~ © o2 " gy
e dispersion relation

W? 4 glagwk — a*k? =0
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e the wave equation

0%ov 32626v L 028v
o2~ © o2 " gy
e dispersion relation

1/2
W 1 1
— =~ T (—gﬁgd + 32)

K 2 4

radiative force
W

E:ZIZE]

ry sound waves



Wind instabilities |.

e the wave equation

0%ov 32626v L 028v
o2~ © o2 " gy
e dispersion relation

1/2
W 1 1
— = —S0q T <—9gd + 32)

K 2 4

ral case

ew type of waves — radiative-acoustic
bbott) waves (Abbott 1980,
ldmeiler et al. 2008)

nstream (+) and upstream (-) mode



Wind instabilities |.

o the wave equation

0%ov 32626v L 028v
o2~ © o2 " gy
e dispersion relation

1/2
W 1 1
— = —S0q T (_ggd + 32)

K 2 4

al point: radial wind velocity equals to the
d of (upstream) Abbott waves

1 / 1 12 2 V2
c— Egrad - (Zgrad +a ) =0



Wind instabilities |.

o the wave equation

0%ov 32626v L 028v
o2~ © o2 " gy
e dispersion relation

1/2
W 1 1
— =~ T <—9gd + 32)

K 2 4

al point: radial wind velocity equals to the
d of (upstream) Abbott waves

ormation can travel from the regions with
towards the stellar surface (critical
resembles the even horizon of a black
ldmeier & Shloshman 2000)



Wind instabilities |.

e the wave equation

0%ov 32626v L 028v
o2~ © o2 " gy
e dispersion relation

W 1 1 e

2 2
P = _igzad + (Zgzad +a )
al point: radial wind velocity equals to the
d of (upstream) Abbott waves

ormation can travel from the regions with
towards the stellar surface

Ss rate Is determined there
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o the wave equation

0%ov 32626v L 028v
o2~ © o2 " gy
e dispersion relation

1/2
W 1 1
— =~ T (—gﬁgd + 32)

K 2 4

stablility of hot-star winds!



Wind instabilities |.

o the wave equation

0%ov 32626v L 028v
o2~ © o2 " gy
e dispersion relation

1/2
W 1 1
— =~ T (_ggd + 32)

K 2 4

stablility of hot-star winds!

dynamical simulations
ba et al. 2007)
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Wind instabilities Il.

e our stability analysis showed that the wind
should be stable

what causes the occurrence of X-rays?
hat is wrong with our stability analysis?

e Sobolev approximation is not valid for small
tically thin) perturbations!
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lative transfer in the comoving frame



Wind instabilities Il.

| = 15 exp(-Tf, ¢(v)dv)
d(v)

Vo

orption profile in the comoving frame



Wind instabilities Il.

| = 15 exp(-Tf, ¢(v)dv)
d(v)

force




Wind instabilities Il.

=1 exp(-Tf, d(v)dv)

force after a small change of the
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e the radiative acceleration

21 [ L
rad = —/ dVXL(r)(Pij(V)/ du wl(r,u,v)
cp Jo ~1

ptically thin perturbation
21 [° L
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e the radiative acceleration

21 [ L
rad = —/ dVXL(r)(Pij(V)/ du wl(r,u,v)
cp Jo ~1

ptically thin perturbation
21 [° L

=—/ duxL(r)éw/j(//)/ du wl (r,p,v)
cp Jo —1

do;; (v do;(v) ov
oy = o =

= 5grad — QéV (Q > O)



Wind instabilities Il.

e equations for perturbations dp, dv

65,0 ooV
ot T or =0
Oov 285p

Po— = 5, t 0fad
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e the wave equation

0%y _ ,0%v  0bv
ot2  ~ or2 ot

olution in the form v ~ exp [/ (wt — kr)]
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w? + iQuw — a’k? =0
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e the wave equation

0%y _ ,0%v  0bv
ot2  ~ or2 ot

e dispersion relation

1 1 2 21,2 e
W 1<2 ( 2“4+ a )

igible gas pressure: Q2 > a°k?
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Wind instabilities Il.

e the wave equation

0%y _ ,0%v  0bv
ot2  ~ or2 ot

e dispersion relation (non-zero w)
w = —Iif2

wave amplitude varies as (€2 > 0)

ov ~ exp (iwt) = exp (£2t)

Instability of the radiative driving
& Solomon 1970, MacGregor et al.
arlberg 1980, Owocki et al. 1984)



Wind instabilities lll.

e our instability analysis is linear only

hydrodynamical simulations are necessary to
describe the instability in detail (Owocki et al.
088, Feldmeier et al. 1997, Runacres &
wocki 2002)



Wind instabilities lll.

e hydrodynamical simulations
(Feldmeler et al. 1997)




Wind instabilities lll.

e hydrodynamical simulations are able to explain
the main properties of X-ray emission of hot
stars



Hot star winds: micro-view

o stellar wind of hot stars is accelerated due to
the scattering of radiation in lines and on free
electrons.

ow does it work on a micro-level?
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Hot star winds: micro-view

pical volume with:
00 H ions

e radiative acceleration due
to the line absorption can
be In most cases
neglected

e radiative acceleration due
to the free-free processes
also negligible o, < oe



Hot star winds: micro-view

pical volume with:
O Hions + 100 He ions
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Hot star winds: micro-view

pical volume with:
00 H 1ons + 100 He 1ons

e radiative acceleration due
to the line absorption can
be In most cases
neglected

e radiative acceleration due
to the free-free processes
also negligible
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Hot star winds: micro-view

pical volume with:
D0 H 1ons + 100 He ions + 1200 e—

o [ = ge/Ygrav ~ 0.1 for
many OB stars =- signifi-
cant contribution to the ra-
diative acceleration



Hot star winds: micro-view

pical volume with:
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Hot star winds: micro-view

pical volume with:
00 H 1ons + 100 He ions + 1200 e~ + 2 metals

e Mmaximum radiative accel-
eration due to the lines
gina® & 1000 ggrav (Gayley
1995) = crucial contribu-
tion to the radiative accel-

eration



Hot star winds: micro-view

pical volume with:
00 H 1ons + 100 He ions + 1200 e~ + 2 metals

[ 4
% o . \ .‘o ® o0 &
Q L] ° A
S L4 o °
Se o ¢
° ° A ®
o %, o8 ° N -
00. ° :: ‘
[ ] . e o ° .o
o0 o ® °®
® . "0‘°. ° ¢ o s
[ ) .~ ° .. :
o © L4 ° .
® ° Y ®e
e ® ° e C
® ® P 0o 00
- o8 ..00 ¢ ° °
o © A 8 ‘ [}
¢ e o L] LA o] ° L
'S ° ° ° O
&*
' “ ® '“ ° () [ )
° ® )
[ ] ... 0.,. ¥
t ‘. oo ® ¢
L) ® % e
© e . ® °% % S
3 o’ ® ° e
o ©® .‘o -
° ° °
° L .~ .‘.. ® ‘
° ° °
o ‘ ° " LS



How can this work?

o efficient processes necessary:



How can this work?

o efficient processes necessary:

process which transfers momentum from
radiative field to heavier ions



How can this work?

o efficient processes necessary:

process which transfers momentum from
radiative field to heavier ions

rocess which transfers momentum from
eaV|er lons to the bulk flow (H, He — mostly



How to transfer momentum?

e wind is ionised = Coulomb collisions are
efficient to transfer momentum from heavier
elements to the passive component.



How to transfer momentum?

ictional force on passive component (p) due to

s (i)

AT q3 g7
Kk Tip Vi — Vol

np, N are number densities of components, v,

heir radial velocities, and gy, g their charges.

Vi— W

INAG(xp)

foi = PpJpi = Nphi

Chandrasekhar function G(xip)

. 0.25
|VI Vp| 0.20

0.15 |
0.10 }
miTp + mpTi) 0.05 |

0.00




Momentum transfer efficiency

Chandrasekhar function G(xip)

Xip = Vi ~ vrp o |
Xip 2 015 |
® 0.10 ¢}
2k (miTp — mpTi) 005 f/
mj My Yo 1 2 3 4 s

clent transfer of momentum from heavier
. one-component models sufficient



Momentum transfer efficiency

Chandrasekhar function G(xip)

Xip = Vi ~ vrp o |
Uip 2 015} [~—
® 0.10 ¢}
2k (miTp — mpTi) 0.05 |
mj My o1 2 3 a4 s

ip

fficient transfer of momentum from heavier

> Xip 2, 0.1, part of energy goes to heating —
nal heating



Momentum transfer efficiency

Chandrasekhar function G(xip)
0.25

| Vrp| 0.20 } I | | | :

Ol|p ’;9- 0.15 N 1

o 0.10} :

miTp + mpTi) 0.05 | -
0.00 : : : :

m|mp 0 1 2 3 4 5

ant for low-density winds (Springmann &
ach 1992, KrtiCka & Kubat 2001, Votruba



Hot chemically peculiar stars

e hotter main sequence O stars have winds
accelerated by the line transitions of heavier
elements (C, N, O, Si, Fe, ...)
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radiative diffusion x gravitation settling
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Hot chemically peculiar stars

o for late B stars and A stars (of the main
sequence) the radiative force is not strong
enough to drive a wind

owever: the radiative force may cause
Iffusion of some elements whereas other
ements settle down due to the gravity force

radiative diffusion x gravitation settling

ically peculiar (CP) stars

emical peculiarity affects surface layers
he initial chemical composition of the
core is roughly solar one)
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Hot chemically peculiar stars

o example: HD 37776
Si surface distribution (Chochlova et al. 2000)



Stars In HR diagram
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The importance of hot star wind |.

e Stars more massive than M 2 20 Mg have
strong winds basically during all evolutionary
phases

he duration of the main-sequence phase of
assive stars is about 10° yr

ring this time massive stars lose mass at the
of the order of 107° Mg yr—?!

nificant part of stellar mass can be lost
to the winds
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The importance of hot star wind |

e the evolutionary phases connected with the
wind
Wolf-Rayett stars

e hot stars with very strong wind (mass-loss
rate could be of the order of 107> Mg yr—1)

wind starts already in the stellar
atmosphere

spectrum dominated by emission lines

nhanced abundance of nitrogen and/or
rbon and oxygen
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The importance of hot star wind |

e the evolutionary phases connected with the
wind

Wolf-Rayett stars
e how can these stars originate?
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e during the AGB stage of solar-like stars
(M =~ 1My) the star loses a significant part

of its mass via slow (~ 10kms™1)
high-density wind
the hot degenerated core is exposed

during this stage the star has fast
low-density line-driven wind

lanetary nebula: interaction of slow
Igh-density and fast low-density winds
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The importance of hot star wind I

e hot star wind influence also the interstellar
environment

e enrichment of the interstellar medium
e momentum input to the interstellar medium

(e.g., Dale & Bonnell 2008)
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e the most uncertain quantity is the wind
mass-loss rate!

why?
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What Is unclear. . .

e Mmass-loss rate and observation

mass-loss rate can not be derived directly from
observation

ost of observational characteristics does not
epend on p, but on p?

agine: clumps with the density p¢, the mean
d density is (p)

we significantly overestimate wind
ss rate (by a factor of v/C)
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What Is unclear. . .

e Mmass-loss rate and theory

Instability of the radiative driving = clumpy
wind

ass-loss rate predicted using smooth wind
odels

at is the influence of inhomogeneities on the
dicted mass-loss rates?

Ise values of wind mass-loss rates can not
tained until we underhand the influence of
ogeneities



What I1s unclear |Il.

rives winds of WR stars?
er & Hamann 2005)



What Is unclear Ill.

uses explosions like this?




What Is unclear |V.
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ppens outside the well-studied regions?
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