THE LONG-TERM EVOLUTION OF THE GEOBIOSPHERE

Siegfried Franck

Potsdam Institute for Climate Impact Research

- 1. The global carbon cycle
- 2. Biosphere-geosphere interactions
- 3. The life span of the biosphere

THE ARCHAEAN GLOBAL CARBON CYCLE

MODEL DESCRIPTION

Franck et al. (2002), Tellus 54B, 325.

ADJUSTMENT

Evolution of the combined ocean and atmosphere reservoir C_{o+a} scaled to the total amount of carbon C_{tot} for various initial distributions of carbon between the pools. Note that after 1 Gyr the system has "forgotten" the initial conditions.

T_m and M_{surf}

Evolution of the average mantle temperature T_m and the surface water reservoir M_{surf} derived from the thermal evolution model.

RESULTS FOR CONSTANT HYDROTHERMAL FLUX

Model results for constant hydrothermal flux: (a) evolution of the reservoirs mantle (green), atmosphere + ocean (red), ocean floor (blue), kerogen (black), and continents (magenta), (b) evolution of the ratio C_{ker}/C_{c} where the horizontal dashed line indicates the observed ratio of 0.25, (c) evolution of atmospheric partial pressure of carbon dioxide pCO_2 where the grey shaded area represents values for non-vanishing biological productivity, and (d) evolution of the surface temperature T_s where the dashed line indicates the result of Schwartzman (1999).

HYDROTHERMAL CARBONISATION

- = Reactions of "warm" (ca. 20°C) water with fresh basalts of the oceanic crust where carbonates are formed
- = CO₂ flux from the reservoir ocean+atmosphere to the reservoir oceanic crust

 CO_2 from water + cations from basalts \rightarrow carbonates

HYDROTHERMAL FLUXES

Parameterisation of hydrothermal fluxes F_{hvd}

1.
$$F_{hyd}$$
 = constant

- 2.
- F_{hyd} SR F_{hyd} SRpCO2 (Sleep and Zahnle, 3. 2001)
- where
- spreading rate SR:
- pCO_2 : partial pressure of CO_2 in the ocean

3 PARAMETERISATIONS FOR *F*_{hyd}

Evolution of atmospheric CO_2 partial pressure pCO_2 where the grey shaded area represents values for non-vanishing biological productivity (a) and surface temperature T_s (b) for three different parameterisations of the hydrothermal flux: constant (red), slow hydrothermal reaction kinetics (green), and fast hydrothermal reaction kinetics (blue).

pH MODELS

Evolution of atmospheric CO₂ partial pressure pCO_2 where the grey shaded area represents values for non-vanishing biological productivity (a,b) and surface temperature T_s (c,d) under the condition of slow hydrothermal reaction kinetics (a,c) and fast hydrothermal reaction kinetics (b,d) for three different ocean pH models: acid ocean model (red), constant pH (green), and soda ocean model (blue)..

THE BIOSPHERE POOL C_{bio}

Evolution of the biosphere pool C_{bio} (a) and its time derivative dC_{bio}/dt , (b) for slow hydrothermal reaction kinetics to emphasise changes in the biosphere pool. In order to demonstrate the correlation between the continental growth rate and changes in the biosphere pool the Condie model (Condie 1990) is displayed additionally in (b).

EVOLUTION OF BIOSPHERE

Symbiosis in cell evolution Lynn Margulis (1993)

GEOSPHERE-BIOSPHERE FEEDBACKS

Biological productivity:

$$\Pi_{\text{bio},i} = \Pi_{\max,i} \cdot \Pi_{T,i}(T) \cdot \Pi_{pCO_2,i}(pCO_2), i = 1,2,3$$

temperature tolerance windows			
<i>i</i> =1	procaryotes	[2°C,100°C]	
<i>i</i> =2	eucaryotes	[5°C,45°C]	
<i>i</i> =3	complex multicellular life	[0°C,30°C]	

GEOSPHERE-BIOSPHERE FEEDBACKS

Biological enhancement of weathering:

$$F_{\text{weath}} \propto \beta \cdot (a_{H^+})^{0.5} \cdot \exp \frac{T - T^*}{13.7 \text{K}}$$

(Lenton and von Bloh, GRL 28 (9),1715, 2001)

$$\beta = 1 - \sum_{i=1}^{3} \left(1 - \frac{1}{\beta_i} \right) \left(1 - \frac{\Pi_{\text{bio},i}}{\Pi^*_{\text{bio},1}} \right)$$
$$\beta_1 = \beta_2 = 1 \qquad \beta_3 = 3.6$$

THE CAMBRIAN EXPLOSION

Evolution of global surface temperature.

Evolution of the cumulative biosphere pools for procaryotes, eucaryotes, and complex multicellular life.

Von Bloh et al. (2003), GRL 30, 1963.

E FIRST SUMMER SCHOOL IN ASTRONOMY AND GEOPHYSICS, BELGRADE, 6.8.-10.8.07

STABILITY DIAGRAM

TERRESTRIAL LIFE CORRIDOR (TLC)

Franck et al. (2006), Biogeosciences 3, 85., and geophysics, Belgrade, 6.8.-10.8.

"[R]iveting . . . The Life and Death of Planet Earth is a gripping tale of modern scientific investigation that underlies the insights produced when scientific disciplines cooperate." –NEW SCIENTIST

THE LIFE AND

DEATH OF

PLANET EARTH

HOW THE NEW SCIENCE OF ASTROBIOLOGY CHARTS THE Ultimate fate of our world

PETER D. WARD AND DONALD BROWNLEE

• The life and death of planet Earth Peter Ward & Donald Brownlee 2002

THE END ?

THE FIRST SUMMER SCHOOL IN ASTRONOMY AND GEOPHYSICS, BELGRADE, 6.8.-10.8.07

Planetary Engineering

Definition: Planetary engineering is the application of *technology* for the purpose of influencing the global properties of a planet (Fogg, 1995). It is a generalization of the *geoengineering* approach, which investigates modifications of Earth's environment on a global scale to avoid dangerous developments for humankind.

Causes and timing of future biosphere extinctions

S. Franck, C. Bounama, W. von Bloh, *Biogeosciences*, 2006

Biosphere type	Temperature tolerance	CO ₂ tolerance	Biotic enhancement of weathering
Procaryotes	[5°C,100°C]	[10,∞] ppm	1
Eucaryotes (protista)	[2°C,45°C]	[10,∞] ppm	1
Complex life	[0°C,30°C]	[10,∞] ppm	3.6

Terrestrial Life Corridor (TLC)

TLC defines guardrails for temperature and CO₂

Special thanks to my co-workers Werner von Bloh & Christine Bounama

THE FIRST SUMMER SCHOOL IN ASTRONOMY AND GEOPHYSICS, BELGRADE, 6.8.-10.8.07