Alkali Line Profiles in Degenerate Dwarfs

Derek Homeier

Institut für Astrophysik Göttingen

PHOENIX Collaborators: France Allard (CRAL, ENS Lyon/IAP) Nicole Allard (IAP) Christine Johnas, Peter Hauschildt (Hamburger Sternwarte)

Ultracool Dwarfs

Kirkpatrick 2005

Derek Homeier

Ultracool Dwarfs

 Extremely reddened optical/near-IR spectrum of late L and T dwarfs
 → dust or other opacity source?

Derek Homeier

(Sub-)stellar atmosphere modelling

- independent Variables (minimal):
 - effektive temperature T_{eff}
 - surface gravity $g(r) = GM/r^2$
 - mass *M* or radius *R* or luminosity $L = 4 \pi R^2 \sigma T_{eff}^4$

Derek Homeier

(Sub-)stellar atmosphere modelling

- Radiative transfer solution provides thermal structure to determine
 - gas phase physics (ionisation/occupation ratios)
 - chemistry

 (partial pressures, condensation)

Derek Homeier

- Dust clouds need to be sustained by turbulent mixing.
- Visible clouds have to be supported by convective overshoot.
- Cloud layer recedes from the photosphere in T dwarfs.
- Atomic and molecular lines becoming more important.

Derek Homeier

Alkali Lines in Degenerate Dwarfs

VIth SCSLSA 12 June 2007

NSTITUT FÜR

Astrophysik

Brown Dwarfs — Line Absorption

- Most atoms in ground state, little contribution at longer wavelengths
- Spectral energy distribution shifts toward IR
- Importance of molecular bands dependent on
 - Line strengths **→** *gf*, abundances, chemistry
 - Line shapes
 - Line numbers
 - Line distribution
- Bands with complex spectra (polyatomic molecules) produce strongest blanketing effects.

Derek Homeier

Ultracool Atmosphere Models

- Coming and going of dust clouds explains the M-L-T spectra (Allard et al. 2001)
 - Molecules: 3500-2500 K
 - Dust: 2500-1500 K
 - CH4: 1500-500 K

NSTITUT FÜR

VIth SCSLSA

ASTROPHYSIK

12 June 2007

GOTTINGEN

T Dwarfs — Dust-free atmospheres

 No visible dust

 Massive alkali line broadening responsible for optical/near-IR absorption

Derek Homeier

T Dwarfs — Alkali lines

- Depletion of metals due to condensation and sedimentation
- Alkali resonance lines still strong in deep atmosphere layers
- Powerful probe of atmosphere at very different optical depths!

Derek Homeier

Alkali line profiles

 Impact and single-perturber approximations with accurate inter-atomic potentials (Allard et al. 2005, 2007)

Derek Homeier

Alkali Lines in Degenerate Dwarfs

VIth SCSLSA 12 June 2007

NSTITUT FÜR

Astrophysik

Göttingen

• Far wings shape spectrum over several µm!

VIth SCSLSA 12 June 2007

Derek Homeier

A Unified Set of Model Atmospheres M-L-T-(Y?)-dwarfs

Interaction potentials show local minimum
 quasi-molecular resonance in the blue wing

Derek Homeier

Absorption in the blue wing of KI

 CaH "resurgence" - a molecular band returning or a new absorption feature?

Derek Homeier

Alkali Lines in Degenerate Dwarfs

VIth SCSLSA 12 June 2007

NSTITUT FÜR

Alkali lines - quasi-molecular satellites!

JOTTINGEN

12 June 2007

VIth SCSLSA

New profiles by Allard, Spiegelmann & Kielkopf 2007

Derek Homeier

Challenges - Alkali chemistry

Depletion of refractory species depends on complex chemical reaction network and mixing properties

Derek Homeier

Alkali Lines in Degenerate Dwarfs

VIth SCSLSA 12 June 2007

Challenges - Alkali chemistry

Modelling of condensation still important in late T dwarfs!

Gas density in line-forming region exceeds 10²⁰ cm⁻³
 single-perturber approximation no longer valid in wings

Derek Homeier

Alkali Lines in Degenerate Dwarfs

 INSTITUT FÜR

 ASTROPHYSIK

 GÖTTINGEN

 VIth SCSLSA

Alkali lines in White Dwarfs

H-models log \$g\$ = 8.0, [M/H]=-3.5, [Na,K/H]=-1.5

Strong V absorption in metal-rich cool white dwarfs

Evidence for extremely pressure-broadened Na lines

Derek Homeier

ц~

Alkali Lines in Degenerate Dwarfs

et al. 2001, Salim et al. 2004 (obs.) Homeier et al. EuroWD 06

VIth SCSLSA 12 June 2007

Alkali lines in White Dwarfs

H-models log \$g\$ = 8.0, [M/H]=-3.5, [Na,K/H]=-1.5

FT Expansion breaks down at high density

FT Expansion breaks down at high density

NSTITUT FÜR

VIth SCSLSA

Astrophysik

12 June 2007

Göttingen

Better treatment of far wings by direct calculation required for densest objects!

Derek Homeier

Conclusions

- Atmosphere models have made great progress towards understanding substellar objects
- Condensation and depletion of dust species explains the properties of L dwarfs and the transition from L to T
- Line absorption paramount to correctly model T dwarfs
- Few, massively broadened alkali resonance lines shape large regions of brown dwarf spectra
- Next generation of line profiles needed to model atmospheres of still denser objects
 → Y dwarfs, metal-rich white dwarfs

Thanks for your attention & Thanks to the organisers!

Derek Homeier