

Plasma analogue for astrophysical dust

Ilija Stefanović

Experimentalphysik II, Ruhr-University Bochum, Germany

Ilija Stefanović, VI SCSLSA, Sremski Karlovci

Acknoledgment

- Bochum: Applied Plasma Physics
 - E Kovačević, J Berndt, C Godde, J Winter
- Institute for Astrophysics/Observatorium, Fridrich-Schiller
 University, Jena, Germany
 - H Mutschke, C Jäger
- NASA Ames Research Centre, Moffet Field, California
 - Y J Pendleton

Ilija Stefanović

Background: Astrophysics

Gas: dust = 99 :1 (%)

Dust is omnipresent!

07.06.2007

The role!!!

- 1. regulates star formation,
- 2. catalyzes molecule production and
- 3. reprocess UV

Observational data: extinction & emission

Ilija Stefanović

Background: Astrophysics

Famous example horsehead nebula

Optical depth

07.06.2007

Plasma analogue for astrophysical dust

Ilija Stefanović

Ilija Stefanović

Carbonaceous dust

- 3.4 µm IR feature: sp³ (aliphatic) component in carbon grains
- UV bump (217.5 nm): sp^2 (graphitic, aromatic) component in carbon grains, coming from $\pi \pi^*$ transition

Laboratory work for astrophysics/chemistry

Astroanalogues

Ilija Stefanović

- Laboratory material giving astrolike data
- Not the "universe in small" but scenarios!
- Low temperature plasma jet similar to outflow regions of red giants! (circumstellar environments)
- Carbon containing materials important!
- Which features realy originate from carbonaceous material?

CaF,

07.06.2007

Ilija Stefanović

Experimental Set-up

Experimental Set-up

Capacitively coupled RF *f* = 13,56 MHz, *d* = 30 cm p = 0,1 mbar, P = 10-20 W Ar : $C_2H_2 = 8 : 0.5$ sccm ... N₂, O₂ Multipass in-situ FTIR

Ilija Stefanović

Ex-situ Identification (SEM, TEM)

Overview :

monodisperse particles

Ilija Stefanović

SEM

Extract from Murchison Meteorite (Bernatowicz Ap.J. 1996

Plasma analogue for astrophysical dust

Plasma analogue for astrophysical dust

Ilija Stefanović

Criteria for a "good" astroanalogue

Pendleton&Allamandola (*ApJS* 2002 **138** 75)

- Comparison of the profile and subpeak positions of the 2940 cm⁻¹ (3.4 μm) aliphatic CH stretch
- Ratio of the optical depth (O.D) of the aliphatic stretch to the OH near 3200 cm⁻¹ (3.1 $\mu m)$
- Ratio of the O.D of the aliphatic stretch to the CO near 1700 cm⁻¹ (5.9 $\mu m)$
- Ratio of the O.D of the aliphatic stretch to the CH deformation modes near 1470 cm⁻¹ (6.8 μm) and 1370 cm⁻¹ (7.25 μm)

Ilija Stefanović

Ilija Stefanović

IR feature - data comparison

3.4µm

Observed in more than dozen galaxies

C-H stretching vibrations:

2955 cm⁻¹ -CH3 antisymmetrc

2930 cm⁻¹ -CH2- antisymmetric

2870 cm⁻¹ -CH3 symmetric

Kovačević E, Stefanović I, Berndt J, Pendleton Y J, and Winter J, 2005, *ApJ* 623, 242

Ilija Stefanović

Plasma analogue for astrophysical dust

Spectra/particle variation

Variation of carrier gases: Ar vs. He

Ilija Stefanović

Ilija Stefanović

Spectra/particle variations

Argon

07.06.2007

Helium

Spectra/particle variations

Variation of carrier gases: Ar vs. He

- *Ex situ* diagnostic techniques:
 - Nuclear reaction analysis (NRA):
 - Argon: ~ 50% H, ~ 50% C
 - Helium:~ 40% H, ~ 60% C (for UV bump H/C<1 supposed)
 - NEXAFS

Ilija Stefanović

• sp^2 / sp^3 ratio

NEXAFS, ratio *sp*²/*sp*³

Ilija Stefanović

Plasma analogue for astrophysical dust

UV bump

Extinction curve in VIS/UV region

Extinction: scattering + absorption1) information on the dust size2) information on the refraction index

Bump at: 217.5 nm /~4.6 µm⁻¹

Stable position Variation of the width

Origine:

Carbonaceous *sp*² sites

Absorption due to π - π ^{*} transitions

Ilija Stefanović

Plasma analogue for astrophysical dust

UV bump

First results:

Ilija Stefanović

Plasma analogue for astrophysical dust

Ruhr-Universität Bochum

UV Extinction of the plasma analogue

Incorrporating N?

07.06.2007

Ilija Stefanović

Ilija Stefanović

Conclusions

Plasma polymerized dust particles:

- Controlled growth of spheroid particles
- Versatile and well controlled growth process
- IR spectra fullfilling MIR criteria for ISM analog
- Particles are isolated, no agglomeration optical measurements and simplified modeling

Ilija Stefanović

Outlook

- Incorrporating different heteroatoms, like nitrogen
- Trying another experimental methods to tailor the (optical) properties of nano-particles: laser ablation+plasma polymerization

