VI SCSLSA 2007 June11-15, Sremski Karlovci, Serbia Pulsation tomography of roAp atmospheres: resolving the third dimension $\varphi = 0.00$ $\omega = 0.00$ $\phi = 0.25$ M.Sachkov¹ T.Ryabchikova^{1,2} $\varphi = 0.50$ $\phi = 0.75$ $\phi = 0.50$ $\phi = 0.75$ ¹ Institute of Astronomy, RAS ² University of Vienna

roAp stars=Rapidly oscillating chemically peculiar A stars

The magnetic chemically peculiar (Ap) stars are upper-main-sequence stars with anomaly strong lines of certain (Si, Cr, Sr, Eu) chemical elements in their spectra and strong globally organized magnetic fields.

They often show remarkable variations of line strengths, light and magnetic field with periods ranging from a few days to many years.

It is believed that this abnormal chemical composition is limited only to the outer stellar envelopes. Chemical diffusion altered by a global magnetic field can produce surface abundance non-uniformities.

Nd 3 400 M 10						
VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV						
\vee						
VVVVVVVVVVV						
V V V V V V V V V V V V V V V V V V V						
VVVVVVVVVV						
VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV						
4796 4822 4912 4913 4928 5006 5242 5263 5367 5383 5397 4796 4822 4912 4913 4928 5006 5242 5263 5367 538897						

5 Nd lines:
Nd III 4796
Nd III 4821
Nd III 4911
Nd III 4912
Nd III 4927
7 Fe lines:
FeI 5005
FeI 5006
FeI 5242
FeI 5263
FeI 5367
FeI 5383
FeI 5397

There is a number of observational features in spectroscopy and spectrophotometry which cannot be fitted with the best available chemically homogeneous atmospheric models and which require abundance stratification.

Core-wing anomaly (CWA) in the atmospheres of cool Ap stars. (from Kochukhov et al. ApJ 578, L75, 2002)

Broad wings indicative of temperatures in the range 7000-8000 K end narrow cores. The widths of these cores are compatible with those of dwarfs with temperatures 6000

Ap stars=Rapidly oscillating chemically peculiar A stars

Cool (Te \sim 6400-8200 K) • chemically peculiar stars with a 180 strong magnetic field (1-8 kG)^{ongitude} Longitude $\phi = 0.25$

240

 $\phi = 0.75$

300

- 28 (of 32) roAp stars are on south hemisphere
- Multiperiodic non-radial puilsations with periods 5-15min
- Photometric amplitudes 0.8 15

 $\phi = 0.50$

 $\varphi = 0.75$ mmag

 $\varphi = 0.00$

 $\varphi = 0.50$

Close to the Main sequence (HIPPARCOS)

roAp stars=Rapidly oscillating chemically peculiar A stars

as pulsators stars (with roAp periods between 6min. and 20 min.), moderate exhibiting to strong magnetic fields and rotation, are ideal objects for the investigation of the interaction between magnetic pulsation, field, and atmospheric inhomogeneities like vertical and horizontal abundance distribution

roAp/noAp co-exist in the same region of the parameter space (photometric, kinematical, abundances, magnetic field).

Contrary to the other pulsating variables known at that time, roAp stars are a subgroup of already "abnormal" stars.

Stratification

.....+

A difference of about 2 dex in the abundances derived from first and second ions

Stratification

Fig. 7. Dependence of the Pr (left panel) and Nd (right panel) anomaly on temperature.

Asteroseismological potential of roAp stars

asymptotic theory of acoustic pulsations (p-mode for $n >> \ell$): $v_{n\ell} \approx \Delta v (n + \ell/2 + \epsilon) + \delta v$, Δv – mean density indicator

 δv - age indicator

Pulsation selectivity

(Savanov, I.S., Malanushenko, V.P., & Ryabchikova, T.A. 1999, Astron. Lett., 25, 802)

Pulsation selectivity (roAp star y Equ)

The *van Hoof* effect – phase lag between radial velocity curves of lines of different elements and ions – is one of the most interesting phenomena in the *roAp* stars. It yields a unique possibility for the vertical atmospheric structure analysis.

Pulsation tomography of roAp atmospheres: *resolving the third dimension*

 $\phi = 0.00$

 $\phi = 0.25$

Reconstruction of the *roAp* vertical atmospheric structure encounters many difficulties: one has to take into account vertical stratification effects, should construct self-consistent stratified atmosphere model and then estimate influence of the surface element distribution and of the magnetic field.

 $\varphi = 0.00$

 $\phi = 0.25$

We have used our own and archival time-series spectroscopic observations obtained with UVES at VLT. In addition, for HD 201601 data from NES at SAO 6-m telescope were used. For each star we measured 200-500 lines in the 4970 – 7010 Å spectral region.

The table gives basic parameters for the roAp stars in our sample.

ų

1	Star	T eff	Log g	V sini	Bs	Analysed periods, min
) =	HD 12932	7620	4.15	3.5	1.6	11.647
R	HD 19918	8110	4.34	3.0	1.6	11.038
	HD 24712	7250	4.30	5.6	3.0	6.125, 6.282, 6.202
	HD 101065	6600	4.20	2.0	2.3	12.148
>=	HD 122970	6910	4.10	4.0	2.3	11.186
	HD 134214	7500	4.00	2.0	3.0	5.691
	HD 137949	7550	4.30	2.0	5.0	8.271, 4.136, 9.422
+-/	HD 201601	7700	4.20	0.0	4.0	12.210

As we showed (Sachkov et al. 2006), Saio's (2005) model for the *roAp* star *HD24712* roughly explains amplitudes and phases up to $log \tau_{5000} = -4$: amplitude and phase increase towards the outer layers. Thus, phases and amplitudes of pulsation should reflect features of propagating wave through the stellar atmosphere. In this way, the later in time pulsation wave reaches its maximum, the higher in the atmosphere a chemical element is concentrated.

60

We propose to use the "phase – amplitude" diagram as a first step of the ^{o=0} interpretation of *roAp* pulsational observations. Such approach has an advantage of being suitable to compare behaviour of different elements, which is impossible for studies of phase/amplitude dependence on line intensity.

This analysis requires accurate measurements of both amplitudes and phases of even weak lines. Therefore, we have chosen a sample of slowly rotating *roAp* stars for our analysis.

 $\omega = 0.75$

Common characteristics of roAp

Common characteristics of roAp

Despite the fact that pulsational behaviour of *roAp* stars is not identical, we find certain similar features. The phase shifts of the ions are arranged in the following sequence:

- pulsation appears in the layers with Y and Eu (+Fe in 33 Lib) then goes through the layers where $H\alpha$ -core + Nd and Pr are formed, reaches maximum and then, in most stars, shows decrease of the amplitude;
- $\varphi = 0.00$ the second ions are after the first ones; = 0.00

 $\omega = 0.75$

 $\varphi = 0.50$

– the largest phase shifts are detected in *Tb* and *Th* lines;

Pulsation wave appears to be similar to a standing wave in the deeper layers and then becomes the running one in the outer layers.

 $\phi = 0.50$

 $\phi = 0.25$

 $\phi = 0.75$

Pulsations and Ca isotopic anomaly

Pulsation selectivity (roAp star y Equ)

LPV in roAp stars: resolution of the enigma?

Pulsations for lines identification

• In roAp stars only lines of the rare-earth elements (REE) show high amplitude RV pulsational variations (up to 1 km/s and even more). Such unique pulsational behaviour can serve to identify unknown lines in roAp stars' spectra.

Line	Period (min)	Probability of Period	Amplitude $(m s^{-1})$	Phasemax	Depth	EqW (mÅ)
4570.65	6.12(0.01)	1.0000	344(30)	0.425(0.014)	0.675	56
4642.99	6.20(0.04)	0.8993	176(37)	0.343(0.034)	0.778	50
4651.62	6.20(0.01)	1.0000	255(19)	0.422(0.012)	0.531	94
4734.76	6.14(0.04)	0.9922	170(32)	0.449(0.031)	0.733	65
4740.67	6.24(0.05)	0.8212	320(79)	0.402(0.040)	0.898	21
4759.54	6.17(0.02)	0.9999	200(19)	0.435(0.016)	0.584	97
5064.05	6.17(0.04)	0.9998	247(52)	0.382(0.034)	0.838	30
5083.85	6.13(0.04)	0.9967	323(58)	0.446(0.030)	0.847	35
5852.44	6.18(0.02)	1.0000	238(28)	0.339(0.018)	0.760	69
6012.30	6.17(0.03)	0.9993	194(29)	0.387(0.024)	0.799	49
6014.56	6.22(0.02)	0.9999	258(29)	0.431(0.018)	0.769	52
6148.86	3.69(0.03)	0.3565	81(44)	0.362(0.087)	0.882	30
6524.48	6.22(0.02)	0.9999	308(37)	0.363(0.019)	0.850	38
7873.68	6.19(0.02)	0.9955	283(27)	0.425(0.015)	0.779	76
8454.68	6.20(0.02)	0.9052	260(25)	0.492(0.016)	0.776	87