ELECTRON, ION AND ATOM COLLISIONS LEADING TO ANOMALOUS DOPPLER BROADENING IN HYDROGEN AND HYDROGEN RARE GAS MIXTURES

Z.Lj. Petrović, V. Stojanović and Ž. Nikitović

Institute of Physics, Pregrevice 118, 11080 Zemun

Cross section set for				 Dutton (1975) — MCS(isotropic) — Phelps and Petrovic(2005) fit 		
•	ele Table Isotro No	E. Processes for electron scattering. Process	ng on H ₂ . <i>ng on H</i> ₂ . Threshold [eV]	$\begin{bmatrix} 10^{2} \\ \mathbf{m} \\ \mathbf{n} \\ n$		
• • • •	1) 2) 3) 4) 5) 6) 7)	elastic scattering $J=0\rightarrow J=2$ $J=1\rightarrow J=3$ Vibrational excitation (v=1) Vibrational excitation (v=2) Vibrational excitation (v=3) $B^{3}\Sigma$ excitation	0.000 0.044 0.073 0.516 1.000 1.500 8.900	$\begin{bmatrix} 10^{-1} \\ 10^{-2} \\ \hline \\ 10^{-2} \\ \hline \\ \hline \\ MCS \\ \hline \\ \hline \\ MCS \\ \hline \\ $	10 ³	
• • • •	8) 9) 10) 11) 12) 13) 14)	B ¹ Σ excitation C ³ Π excitation A ³ Σ excitation C ¹ Π excitation G ¹ Σ (v=2) excitation D ³ Π DISS. EXC.(N=2) Lyman α	11.300 11.750 11.800 12.400 13.860 14.000 15.000		H ₂	
•	15) 16) 17) Electron branchi	RYDBERG SUM IONIZATION (Rapp and EG) DISSOC.EXC (N=3) Ha n impact dissociative ionization is inc ng of 7 % to ionization cross section.	15.200 15.400 16.600 cluded by introducing	E/N[Td]	1 1 400 500 600	

Heavy particle cross sections

 These cross sections (PP2005) are based on Phelps (1990) data and are modified to fit spatial excitation and Doppler broadened profile of Hα excitation in Townsend discharge by his multibeam method.

PP2005 – Phelps and Petrovic (2005)

No	Process by product	Anisotropy	CMS threshold [eV]	LAB threshold [eV]
1)	elastic scattering (an)	Isotropic	0	0
2)	CT (an) Prod. of slow H ₂ ⁺ ,fast H	Forward	0.66667	1.0
3)	Lyman α[P1990]	Forward	11.9	17.85
4)	Ha production (an)	Forward	13.3333	20.0
5)	ionization [P1990] ^{\$}	Forward	15.4	23.1

Vib-Vibrational excitation cross section is sum of v=0-1,0-2,0-3 transitions, from P1990 and is used only in P2006.

an – analytic cross section (PP2005). $^{\$}$ - production of H₂⁺ P1990 – A.V. Phelps, J.Phys.Chem.Ref.Data,19(3) (1990). CT – charge transfer

H₂⁺ + H₂ cross sections

No	Process by product	Anisotropy	CMS threshold [eV]	LAB threshold [eV]
1)	$H_{3}^{+} + H$ (an)	Isotropic	0	0
2)	H ₂ (v=1) [P1990]	Forward	0.516	1.032
3)	DCT proj (an)	Forward	3	6
4)	DCT target (an)	Forward	3	6
5)	Lyman α [P1990]	Forward	11.3	22.6
6)	e- prod. [P1990] ^{\$}	Forward	15.4	30.8
7)	H_{α} excitation (an)	Forward	10	20

an – analytic cross section (PP2005),

 $^{\text{\$}}$ - production of H₂⁺,

P1990 – A.V. Phelps, J.Phys.Chem.Ref.Data,19(3) (1990),

RCT – resonant charge transfer,

DCT - dissociative charge transfer.

H₃⁺ + H₂ cross sections

(fast)H + H₂ cross sections

(fast)H₂ + H₂ cross sections

No	Process by product	Anisotropy	CMS threshold [eV]	LAB threshold [eV]
1)	elastic scattering (an)	Isotropic	0	0
2)	Ha excitation (an)	Forward	22.90	45.8
3)	H ₂ destruction [(f)H formation] [P1990]	Forward	4.4781*	8.9562

an – analytic cross section (PP2005).

P1990 – A.V. Phelps, J.Phys.Chem.Ref.Data,19(3) (1990).
* E.W. Mc Daniel, 1989, Atomic Collisions, Electron and Photon Projectiles, p.655. Cross section for H2 destruction is tabulated from 17.78 eV. Cross section is linearly extrapolated to 0 at 8.9562 eV. It is assumed that destruction proceeds via projectile dissociation.

Modeling heavy particle refl. on surface

- 1. Each charged particle born in the discharge (H^+, H_2^+, H_3^+) is **neutralized** at the surface.
- H⁺, H₂⁺ and H₃⁺ form one, two and three H atoms upon reflection from the surface, respectively, with 2/3 of the incoming energy per particle, and 50 % probability of escape
- Impact of fast H results only in backward reflection; impact of fast H₂ produces two H atoms with 2/3 of incoming energy per particle, alaso with 50 % probability of escape
- 4. H atoms are followed backward ONLY if they have kinetic energy sufficient to excite $H\alpha$.
- 5. Fast H atoms are **backscattered diffusely** (cosine distribution).
- Anode is assumed to be a perfect absorber for all particles (Ra=0).

Ra, Rc – reflection coefficients for heavy particles at anode and cathode respectively.

Monte Carlo Simulation **RFSUITS**

E/N=10 kTd, E=609.5 V/cm, p=185 mTorr,d=3.9 cm

Heavy particle *membrane* energy distributions of particles approaching the cathode and the anode

MOST IMPORTANT CONTRIBUTION – FAST H ATOMS

MEMBRANE ENERGY DISTRIBUTION OF fast H ATOMS ARRIVING TO THE ELECTRODES

PP2005

ionic contributions to (f)H

(f)H₂ contribution to (f)H

MEMBRANE ENERGY DISTRIBUTION OF fast H ATOMS ARRIVING TO THE ELECTRODES

ANGULAR DISTRIBUTION OF PARTICLES AT THE ELECTRODES

CHARGED PARTICLES FORWARD PEAKED AT THE **CATHODE**

(fn) FORWARD PEAKED AT THE CATHODE **ISOTROPICALLY ARRIVING AT THE** ANODE

no angular dependence of reflection coefficient **PP2005**

Contribution to (f)H Particle fluxes

Membrane flux a) of (f)H atoms as a function of distance for PP2005. Contributions to spatial profile

EXP H α Doppler profile detection

• Wavelength change for λ =656.28 nm line due to the atom emitter velocity is

$$\Delta \lambda = 0.03041 \sqrt{\varepsilon[eV]} \ [nm]$$

excited atom energy

- For 100 eV : $\Delta\lambda = 0.304$ nm
- For 1000 eV: Δλ=0.962 nm

Spectral resolution is 0.24 nm that gives the energy of excited species 62.3 eV

WHY SO POOR – well think of the current necessary to maintain the Townsend discharge conditions: i.e. 1-5 max 10 μ A

Spectr. profiles for the H α line observed parallel to the axis of low-pressure, low current H₂ discharge at E/N=10 kTd (N=0.6095 10¹⁶ cm⁻³). **DI** – contribution from H⁺ produced in electron dissociative ionization, fast H (noDI)- contribution of all fast H according to the scheme without DI,

sum - effect all particles according to the scheme

Phelps fit, EXP from Petrović et al., Phys.Rev. Lett. (1992) (Fig 1 a)

ionic (no DI) – contribution of H+,H2+, H3+ ions without .DI, fast H2(noDI) – contribution from fast H2 without DI

How good is present (PP2005) model?

• MCS results fit experimental spatial excitation and Doppler broadened profile of H α excitation

• Absolute spatial emission is about 4 times larger than EXP!!! Can we improve that?

by making a more realistic model?

1st- will modify $H_2^++H_2$ cross section set:

Effect of modification of the shape of RCT cross section for $H_2^+ + H_2$ EDF at the cathode

Effect of modification of shape of RCT cross section for $H_2^+ + H_2$ on Doppl.profile

- slightly changed "direct" profile,

-increased "backward" profile due to the inreased number of (f)H produced by higher energy H_2^+ ions and faster H_2 than in previous model (PP2005)

2^{nd} –will modify $H_2^++H_2$ cross section set:

3^{rd} :Will modify H⁺ + H₂ cross section set:

Excited Atom Energy [eV]

Effect of ALL MODIFICATIONS OF the CROSS SECTION SET:

- shape change for RCT cross set. for $H_2^+ + H_2$
- excluding vib. excitation from $H_2 + H_2$ cross sct.
- adding vib excitation to H⁺ scattering model
 (appears to bi insignificant at these E/N)
- On Hα Doppler broadened line profile.
- IS SMALL AT VERY HIGH E/N

4th: will modify particle reflection model at the surface:

 energy of the reflected particles instead of being 2/3 of incoming energy per particle now is uniformly distributed up to incoming energy per particle.

FINAL COMPARISON OF THE RESULTS FOR TWO SCATTERING MODELS

Particle fluxes for 2 scattering models

Doppler profile for 2 scattering models

Spatial dependence of Hα emission for 2 scattering models

Comparison of Monte Carlo results with an experimental spatial profile for 2 scattering models

for 1000000 electrons

We also analyzed

- Effect of reflection coefficient dependence with incident angle with model PP2005,
- How all vibrational losses affect results obtained by model PP2005,
- Effect of electron anisotropy in collisions leading to singlets and ionization.

So to conclude

- Basic physics of the process is included in the model,
- Details of the model still require some fine tuning,
- Two key issues:
 - Too few collisions of ions in MC
 - Exact model of reflection.

LITERATURE

- [1] Petrović Z.Lj. and Phelps A.V. (1991), Proc. of the International Seminar on Reactive Plasmas, E-3, 35
- [2] Petrović Z.Lj., Jelenković B.M. and Phelps A.V. (1992) Phys. Rev. Lett. 68, 325
- [3] Gylys V. T., Jelenković B. M. and Phelps A. V. (1989) J. Appl. Phys., **65**, 3369
- [4] Phelps A. V. (1990) J. Phys. Chem. Ref. Data., 19, 653
- [5] Petrović Z. Lj. and Phelps, A. V. (1989), Bull. Am. Phys. Soc., 35, 1824
- [6] Petrović Z.Lj. and Phelps A.V. (1990) Proc. ESCAMPIG, 118
- [7] Vrhovac S., Radovanov S., Petrović Z. Lj. and Jelenković B. M. (1991) Proc. of the Joint Symposium ofElectron and Ion Swarms and Low Energy Electron Scattering, Bond University, Gold Coast, Australia
- [8] Videnović I.R., Konjević N. and Kuraica M.M. (1996) Spectrohimica Acta Part B: Atomic Spectroscopy, 51, 1707
- [9] Konjević N. and Kuraica M. (1992) Phys. Rev. A, At. Mol. Opt. Phys., 46, 4429
- [10] Bogaerts A. and Gijbels R. (2000) J. Anal. At. Spectrom., 15, 441
- [11] Gemišić Adamov M. and Kuraica M. M. (2004) Eur. Phys. J. D, 28, 393
- [12] Stokić Z., M.M.F.R. Fraga, J. Božin, V. Stojanović, Z.Lj. Petrović and B.M. Jelenković (1992) Phys.Rev. A, **45**(10), pp.7463-7468.