Chemi-ionization processes. Alkali-metal geocosmical plasmas

 A.N. Klyucharev, N. N. Bezuglov, A. A.Matveev
V.A. Fock Institute of Physics, Saint-Petersburg State University, Ulianovskaya 1, 198904 St.Petersburg, Petrodvorets, Russia

A. A. Mihajlov, Lj. M. Ignjatovic Institute of Physics, P. O. Box 57, 11001 Belgrade, Serbia

M. S. Dimitrijevic

Astronomical Observatory, Volgina 7, 11160 Belgrade 74, Serbia

Keywords: alkali atom collisions, ionization processes, geo-cosmical plasmas, Io atmosphere

chemi-ionization processes

attention will be paid on a group of ionization processes in excited and especially Rydberg atom (RA) collisions with ground state parent atoms, known in literature as chemi-ionization processes, namely

$$A^* + A^*(A) \rightarrow A_2^+ + e, \quad AI$$
$$A^* + A(A^*) \rightarrow A^+ + A + e, \quad PI$$

Al rate coefficients for the process $Na(3^2P) + Na(3^2P) \rightarrow Na_2^+ + e$

Experimental conditions	Beam source temperature	Original value K, 10(-11) cm3/s
Gas cell, resonant lamp	550 K	3.8 (±20%)
Single beam, laser	580 K	0.015 (factor 2)
Gas cell, laser	650 K	0.56 (±40%)
Beams crossing at 90 degree, laser	520 K	0.34 (±50%)
Uncollimated single beam, laser	570 K	1.8 (±40%)

Relative-velocity distribution function for thermal beams of particles crossing at different angles

Chemi-ionization rate constants functions of the effective quantum number of excited states

1—Li (1100 K), 2—Na (720 K), 3—Na (600 K), 4—K (660 K), 5—Cs (560K), 6—range of values of k (Na*(L)+Na, L=0, 1 and 2, 1000 K),7—calculated using the model relying on electron capture to an autoionizing state of a negative ion (Na,500 K), 8—qualitative form of k(neff) according to the model relying on the scattering of a quasi-free weakly-bound electron in the sodium atom; solid curve—DSMY model (Na, effusive beam, 700 K)

The coefficients for chemi-ionization in collisions $Na^*(n_{eff}^2 P) + Na$

dotes: cb-conditions, (600K), associative ionization experiment the full curve: cb (600K), cell (720K), theory $_{6}$

Chemi-ionization rate constant for as a function of the neff for Rb, Hg, and Cd

- 1 Rb(n P)+Rb(5 S) (520 K)
- 2 Rb(n D)+Rb(5 S) (470 K)
- 3 Rb(n S)+Rb(5 S) (470 K)
- 4 Rb(5 P) + Rb(5 P) (470 K)
- 5 Hg (300 K)
- 6 Cd (575 K)
- 7 Rb(D)+K(4 S) (440 K)
- 8 DSMY model calculations for Rb (520 K)

Illustration of the mechanism of the RA + A collision process

 Σ – the ionic states, Λ – the initial quasi-molecular states Λ state crosses Σ state at Ri

Experimental and stochastic theoretical *Na*(neff,I)* + *Na* AI rate coefficients

dotes - cb conditions, l = 1 (600K); open circle, sb-conditions, l = 1 (1000K); open triangle, sb-conditions, l = 2 (1000K); open square, sb-conditions, l = 0 (1000K);

full curves - theory, stochastic theory results

Energy spectrum of electrons with an energy from 0 to 2.1 eV formed during resonance Na vapor excitation

Illustration of possible mechanisms for the evolution of photo-plasma during absorption of resonant radiation

Concurrence between AI and radiativecollisional ionization in Cs plasmas

1 - Ta=500K, Ne=10(14) cm(-3) 2 - Ta=1500K, Ne=10(14) cm(-3) 3 - Ta=500K, Ne=10(12) cm(-3)

Conclusions

Presented results and preliminary model evaluations show that in the weakly ionized alkali plasmas, including astrophysical formations, specifically in volcanic gases on Io chemi-ionization processes can provide possible channels for primary medium ionization

Thank you for your attention!