The Broadening of Spectral Lines by Collisions with Neutral Hydrogen Atoms in Cool Stars

Paul Barklem

Department of Astronomy and Space Physics

Uppsala University

Contents

- Scientific Motivation
- History
- ABO theory
- Application and Testing
- Why it works
- Conclusions

Acknowledgements

- Jim O'Mara
- Stuart Anstee
- Jenny Aspelund-Johansson
- Boutheina Kerkeni
- Nicole Feautrier
- Annie Spielfieldel

Need accurate stellar chemical abundances from spectroscopy for many problems in modern astrophysics:

- Understanding the chemical and dynamical evolution of the Galaxy, e.g.:
 - Origin and evolution of bulge, thin and thick disks
 - Merger history
 - Astrophysical sites of nucleosynthesis processes
- Solar composition and its place in the solar neighbourhood
- Strong lines are often the best to use in some cases, e.g. very cool stars, galaxies, there is no choice

Solar neighbourhood

Galactic Thick and Thin Disks

June 11, 2007

SCSLSA IV - Sremski Karlovci

UNIVERSITET

Weak lines are susceptible to blends

Medium strength lines are saturated and insensitive to abundance

Strong lines typically have the best
oscillator strengths, and often no choice:
E.g. very cool stars, galaxies, distant stars

Cool star atmospheres dominated by neutral hydrogen, in its ground state

90% H, 9% He, 1% metals
$$\frac{N_H}{N_c}$$
 7

$$\frac{N_H}{N_e} \approx 10^4$$

Weight of number means generally dominant over electrons

June 11, 2007

• E.g. Ca II IR triplet in the Sun

June 11, 2007

History

- Lorentz (1906)
- Weisskopf/London (1930's)
- Lindholm/Foley (1940's)
- Unsöld (1950's)

Impulse theory (prior to QM) VdW potential, strong collisions weak collisions, averaged interaction apply VdW + approx, general formula

VdW = van der Waals $\Delta E \approx C_6 / R^6$ $\Gamma = 17 \upsilon^{3/5} C_6^{2/5} N_H$

• (1960's -) Accurate calculations for a few specific cases

- Astrophysical evidence that Unsöld theory is inadequate
- Astrophysics needs a theory to compute data for a large number of lines of various elements (e.g. Fe, Ni, Mg, Ca, etc)
- Theory should ideally to be simple to use!

History

- Lorentz (1906)
- Weisskopf/London (1930's)
- Lindholm/Foley (1940's)
- Unsöld (1950's)

Impulse theory (prior to QM) VdW potential, strong collisions weak collisions, averaged interaction apply VdW + approx, general formula

- Brueckner (1970's)
- O'Mara (1970's)
- Anstee & O'Mara (1992)
- Barklem & O'Mara (1998-)

numerical RSU perturbation theory analytic RSU perturbation theory removal of averaged interaction+more extension to d and f states, and ions

ABO theory

- isolated lines
- impact approximation (Lorentzian profile)
- classical straight path approximation
- no fine structure (orbital angular momentum basis, *nlm*)
- no quenching
- Important part is the potentials:

ABO theory: RSU potentials

ABO theory: RSU potentials

$$\Delta E = \langle i | V | i \rangle + \sum_{j \neq i} \frac{\langle i | V | j \rangle \langle j | V | i \rangle}{E_i - E_j}$$

$$\approx \langle i | V | i \rangle + \frac{1}{E_p(R)} \langle i | V^2 | i \rangle$$

$$\approx \langle i | V | i \rangle + \frac{1}{E_p} \int_{0}^{\infty} R_{nl}^2(p_2) I_{lm}(p_2, R) p_2^2 dp_2$$

• Coulomb wavefunctions
$$(n^*, l)$$
 $n^* = \begin{bmatrix} 2E_{binding} \end{bmatrix}$

• Unsöld approx
$$E_p = -2/\alpha_H = -4/9$$

$$n^* = \left[2E_{binding}\right]^{-1/2}$$

• Cross sections depend only on n^* , $l \longrightarrow$ Independent of species!

UPPSALA UNIVERSITET

June 11, 2007

ABO theory: Results

Figure 1. Plot of the cross-section for a perturber velocity of 10^4 m s^{-1} against the effective principal quantum number of the two states.

Tabulated results dependent only on effective principal quantum number

Figure 2. Plot of the velocity parameter α against the effective principal quantum number of the two states.

UPPSALA UNIVERSITET

June 11, 2007

ABO theory: Results

Comparison with Unsöld's theory for 4891 lines, Li to Ni:

Mean difference of 1.88, in rough agreement with astrophysical fudge factor commonly used of 2

SCSLSA IV - Sremski Karlovci

Applications

• Application to lines of Na, Ca and Fe in the solar spectrum indicate uncertainties as low as 5%

Figure 8. Empirical cross-sections obtained under the assumption that the solar abundance of iron is the same as in meteorites are plotted against theoretical cross-sections. The agreement is good except for lines with upper $e^{5}D$ upper states.

June 11, 2007

Testing

• Comparison with more detailed calculations indicates uncertainties of order 5-20%.

Table 1. Comparison of line widths per unit perturber density $(w/n_H \text{ in units } 10^{-8} \text{ cm}^3 \text{ rad s}^{-1})$ at 5000 K for resonance lines of Mg, Ca and Sr using different potentials and dynamics.

Dynamics \rightarrow Potentials \rightarrow	Quantal MOLPRO	Semi-classical MOLPRO	Semi-classical ABO	Semi-classical Hybrid
Mg	1.13	1.10	1.01	1.25
Ca	1.23	1.24	1.10	1.28
Sr	1.49	1.48	1.18	1.48

No difference due to dynamics

10-20% due to potentials -neglect of ionic crossing

UNIVERSITET

Extension to lons

• Unsöld approx $E_p = -4/9$ is no longer valid

• Compute via

$$C_{6} = \frac{3}{2} \sum_{k' \neq k} \sum_{l' \neq l} \frac{f_{kk'}^{A} f_{ll'}^{H}}{(\Delta E_{k'k}^{A} + \Delta E_{l'l}^{H}) \Delta E_{k'k}^{A} \Delta E_{l'l}^{H}},$$

$$E_{\rm p} = -\frac{2\left\langle p_2^2 \right\rangle}{C_6}.$$

Large Scale calculations for Fe II using large scale semi-empirical atomic data calculations by Kurucz

Applications

June 11, 2007

SCSLSA IV - Sremski Karlovci

ABO theory: Why it works

ABO theory: Why it works

Often, avoided ionic crossings either diabatic, or in the strong collision regime:

June 11, 2007

SCSLSA IV - Sremski Karlovci

Summary of Results

- Tables of general data for transitions in neutrals involving s, p, d and f states
- Code for interpolating in tables available
- Table of 4891 strong lines, Li to Ni, mostly neutral + important ionised lines
- Table of 24188 Fe II lines
- Table of 13167 Cr II lines (unpublished)
- Also extended to H Balmer lines

Conclusions

• ABO theory provides a general and widely applicable theory, with accuracy of better than 20%

- Strong lines can now be used with confidence in analysis of cool star spectra (no fudge factors)
- Theory is gaining wide use

• Future: inclusion of ionic state should lead to some improvement

