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Abstract. We present a new form of merit function which measures an agreement between large 
number of data and a model function with the particular choice of parameters. We demonstrate the 
efficiency of introduced merit function on the common problem of finding base line of the spectrum. 
Also, we discuss efficiency of existing minimization algorithms in discrete topography which is 
concomitant to proposed merit function in general case. 
 
 

1. INTRODUCTION 
 
In the past two decades experimental technique was moved from analog to digital domain. 
Consequently, the amount of data acquired in experiments has increased significantly 
requiring reliable automated algorithms for data processing. A frequent task in data 
processing is to find best parameters of some model function, in the sense of  the “best fit”,  
related to the particular data set.  It is common practice to use the least-squares as a merit 
function for various data fittings.  Unfortunately, the measurement process is not free of 
errors which cause that some experimental points are occasionally just way off. Also, data 
of interest are frequently spoiled by small amount of points due to some undesirable 
process which can not be avoided. This can easily turn the least-squares into nonsense. To 
overcome these problems various robust techniques have been proposed. 
 In astrophysics and physics a prominent example which requires the rough 
approach is the task of spectrum baseline and continuum estimation.  In Gabel et al. (2002) 
is in details described the complex procedure of continuum estimation in the presence of 
superimposed spectral lines. It is shown that a prior knowledge of spectral line positions is 
necessary for continuum estimation. Moreover, the described procedure assumes that parts 
of recorded signal, taken for continuum estimation, are not spoiled by unknown spectral 
lines of low intensity. In general case it is difficult to satisfy all requirements necessary for 
reliable continuum estimation. Here, spectrum lines act as an undesirable feature of the 
signal and the points belonging to the spectral lines can be considered as outliers. 
 The intention of this paper is to introduce a simple and efficient method for rough 
estimations, insensitive to outlying points. Proposed method is suitable for large data sets 
only, i.e. it can not replace least-squares for data sets containing just a few points.  
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2. MERIT FUNCTION 
 

Consider a particular data set of  xi ‘s and yi ‘s  (i=1, 2, .. n) and a model function y(x; a1, 
a2, ... am) depending on x and some parameters a1, ... am. Let’s define quantity d in the 
following way. At a distance    y(xi; a1, a2, ... am) – yi  <  d  we will say that the point (xi, yi) 
is close to the model function y(xi; a1, a2, ... am) for given set of parameters {a}.  If so put  fi 
=1, otherwise fi=0. Now we will define quantity χ: 
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The purpose of  χ is to be used as a merit function.  Thus, we will search for a set of 
parameters {a} for which the merit function χ has a minimum in respect to the chosen 
value d. In other words, we will search for set of parameters {a} for which the maximal 
number of data points will be close to the model function, i.e. the model function will 
closely resemble the data in respect to d.  
 The explained approach will be termed Close Points Concept (CPC). The aim of 
the CPC is to quantify our ability to recognize trace-like set of points as a line and, at the 
same time, to ignore outlying points. The distance d defines what will be ‘close’ and which 
points will be disregarded. A straightforward way to apply CPC is to incorporate merit 
function (1) in some of the existing minimization algorithms. 
 
 

3. ESTIMATION OF THE SPECTRUM BASE LINE 
 

First we will consider most common and most simple case of a spectrum when the base line 
is supposed to be horizontal i.e. parallel to the y axis. This is justified when a narrow range 
of the spectrum is recorded. In such a case we can avoid the use of the merit function in 
general form (1) and explicit use of a minimization algorithm.  
 Suppose that the spectrum contains n points obtained by means of k bit linear A/D 
converter. It means that spectrum intensity in each point is expressed via one of q=2k 
different levels of the A/D converter. In order to obtain the base line we will make an 
auxiliary histogram consisting of exactly 2k bins, each bin corresponding to the one of 2k 
values of the A/D converter. We will proceed as follows: starting with the point 1 we 
incerese the content of bin y1 by 1, similarly for point 2 content of bin y2 is also incresed by  
1 and so on, up to the last point n. Finally, each bin will contain the number of occurrences 
of appropriate level of the A/D converter within chosen part of the spectrum. It will be 
assumed that obtained histogram has just one maximum, i.e. bin j has a maximal count, see 
Fig. 1. It is obvious that the line yb =j is a base line of the spectrum in respect to the merit 
function (1).  In this case the distance d, which is used to distinguish “close” and “far” 
points, was set to be one half of the A/D converter step. Also, the search for the best y was 
done within discrete set of values defined by the A/D converter. The proposed procedure is 
extremely simple and works successfully practically with any spectrum or spectrum like 
signals (Djeniže and Bukvić 2001, Spasojevic et al. 1996) 
 It is of interest to estimate discrimination level, parts of the signal above this level 
will be considered as spectral lines, everything below discrimination level will be 
considered as a noise. The key assumption is that the signal below the spectrum base line 
originates only due to noise of any kind which is present in the system, while the signal 
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above the base line consists of a useful signal spoiled by the noise.  It is a matter of choice 
how to represent the noise distribution which is present in our histogram below spectrum 
base line, however one standard deviation (σ) appears as a most common manner. 
Accordingly we can take the value σ as a discrimination and  yd=j+σ as a discrimination 
level, see Fig. 1. 
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Fig. 1:  Spectrum base line estimated by CPC approach. See text for details. 
 
 
 The purpose of our second example is to demonstrate the potentials of the CPC in 
numerically more complex situation with explicit use of the merit function (1) and 
appropriate minimization algorithm. To control the numerical process we will consider an 
artificial set of data generated according to the following relation: 
 
   BPPPy +++= 321     (2) 
 
where peaks P1, P2, P3  have the same, Gaussian, form:    
 

   ⎥
⎦

⎤
⎢
⎣

⎡ −
= 2

2)(
exp

i

i
ii d

cx
aP  

 
 and B is a broad line also of the Gaussian form which mimics a nonlinear base line:   
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In Fig. 2 is shown a graph generated by function (2) with the following coefficients: 
 

a1=5, c1=20, d1=10;  a2=1, c2=30, d2=12;  a3=1, c3=70, d3=10 
ab=1, cb=50, db=1000, b=0 
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Fig. 2: Non linear base line of the spectrum estimated by CPC approach. See text for 
details. 
 
Each point is randomized with normally distributed errors in order to simulate a noise 
concomitant to experimental data. Our intention is to obtain coefficients ab, cb, db, and b for 
the function B using the whole data set relying on the Close Points Concept. In other words 
we will fit our data to the function B considering sharp peaks P1, P2, and P3 just as a 
deviation (outliers) of the main flow of the data given by term B. This task requires 
minimization of the merit function (1) by some of existing algorithms. We have chosen 
downhill simplex method (Press et al. 1988) applied in the routine AMOEBA, as the most 
suitable.  
 In Fig. 2 is shown the graph of the function B for parameters found by fitting for 
distance d set to 0.1. The best fit values are: ab=1.03, cb=49.7, db973, b=-0.0037. One can 
notice that these values are reasonably close to the original ones. Initial values for 
AMOEBA algorithm were: ab=1.3, cb=30, db=750, b=-0.2. 
 
  

4. DISCUSSION 
 
Initially we will discuss the influence of the distance d on the results. As it has been 
explained the role of d is to discriminate close and far points. If data are obtained by A/D 
converter and data set contains over a thousand points it is most simple to accept one step 
of A/D converter as a reasonable value for d. For data sets with several hundred points the 
distance d is most suitable to be slightly less than the magnitude of the noise present in the 
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system. A very low d value can cause that just a few points, or no one, are close to the 
model function making any algorithm unusable. Similarly, too high value for d can cause 
that all points become close to the model function for too broad range of parameters making 
the result useless.  Generally, the distance d should be similar to the width of the line we are 
going to fit. Such a value provides sufficient number of close points in the sense of CPC. 
 An important feature of the CPC is that topography of a multidimensional space 
defined by (1) is not smooth; rather it is stepwise, discrete, topography. On the contrary, 
practically all minimization algorithms are supposed to be used in smooth, continual space. 
Some of them, however, work in stepwise topography, and we have applied downhill 
simplex method as a most rough one. Due to discrete nature of the topography, the choice 
of initial guess is more difficult then usual. Too bad choice can cause that no one 
experimental point is close to the model function moving initial point into completely flat 
region of the multidimensional space where not any minimization algorithm can work. 
Also, the usual problem of finding just a local minimum is more emphasized here due to 
discrete nature of the merit function (1). For very large data set the merit function becomes 
pseudo continual which facilitates the use of standard algorithms. But, for small number of 
points the discrete nature of (1) make it useless in the sense of finding the best fit. It is 
interesting to relate this feature to our ability to recognize trace which is consisting of many 
points as a line, while just a few points are very difficult to be thought of as a line.  
 A few words more about uncertainties concomitant to the parameters obtained by 
fitting. Unfortunately this problem is related to the non statistical approach of the CPC. 
Namely, we suppose that outliers are not distributed according to the Gaussian model, 
therefore, we can not apply standard procedures to estimate uncertainties of the best fit 
parameters. AMOEBA minimization algorithm is suitable because it is not based on the 
assumption of normally distributed errors and, consequently, it does not produce 
uncertainties for the best fit parameters.   
 

5. CONCLUSION 
 
We have introduced a new form of merit function (1) based on close points concept suitable 
for problems where rough approach is necessary. The efficiency has been shown on two 
typical examples of the introduced merit function. In the first example, which is related to 
the common problem of finding spectrum base line, we have explained a simple numerical 
procedure avoiding explicit use of the merit function (1) and appropriate minimization 
algorithm. In the second example a standard minimization algorithm has been used to fit 
artificially generated data to the nonlinear function of the Gauss type over which three 
sharp peaks were superimposed.  Comparing original and values obtained by fitting we 
have demonstrated the potentials of CPC. Also, we have discussed the influence of 
introduced parameter d and possible problems related to the discrete character of merit 
function (1). Finally, we would like to emphasize the necessity for appropriate 
minimization algorithm developed for the use in discrete space. 
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