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Abstract. A complex combination of physical processes affecting mainly the shape of a
spectral line formed in stellar atmosphere can be better distinguished at low Fourier fre-
quiencies than in the profile itself. Considering the analysis of stellar rotationally broadened
line as a typical example of those astrophysical problems where it is more advantageous to
use the Fourier transform of the profile, we present a method for determination of stellar
projected rotational velocity and limb-darkening coefficient.

1. INTRODUCTION

In the past the use of the Fourier transform for spectral line shape analysis has cen-
tered around several active areas as microturbulence and macroturbulence in stellar
atmospheres, stellar rotation, the detection of Zeeman splitting and global velocity
fields in stellar atmospheres (Smith and Gray, 1976).

Many types of line broadening functions involving different kinds of processes, es-
pecially those occuring on a macroscopic scale due to collective motions, are quite
different from one another. These differences may be greately smoothed when con-
volution is performed. A theoretical profile may appear to reproduce an observed
profile fairly well, when in fact, there are small but systematic differences extending
over the profile. Often only subtle variations in the shape of the core and far wings
of the broadened profile can give clues to the mechanism. The power of the Fourier
technique rests on the fact that subtle but systematic variations of the line profile
show up as significant and easily identifiable signatures in the amplitudes of certain
Fourier components. The Fourier analysis provides a sensitive way to use all of the
information contained in the shape of a line profile to estimate the contributions of
various types of velocity fields.

The Fourier transform analysis is most effective when broadening mechanisms in
the stellar atmosphere affect the detailed shape of the observed flux profile. However
it is not such a powerful tool for analysis of physical processes related to global pa-
rameters of the profile as it is, for example, the relation of chemical composition to
the equivalent width of the profile.
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2. ROTATIONAL BROADENING

Rotation is the dominate line broadening mechanism in a large number of stars. Let
us consider the star rotating with the equatorial velocity Ve, inclined by the angle 3.
Under the condition that the shape of intrinsic spectrum does not depend significantly
on the position on a stellar surface, the observed normalized profile is given by the
relation (Gray, 1976) :
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where H(A) is the normalized intrinsic spectrum as it would be observed on the
apparent disc of the star,
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with the axis y, chosen to be oriented in the direction of the spectrum dispersion and
axis z chosen to be oriented in the direction of the projection of stellar rotational
axis on to the tangent plane. The emergent intensity in the continuum IL(M, Ap)
corresponds to the area defined by angle © between the line of sight and the outward
normal at the point M.

By assuming a limb darkening law for the continuum intensity distribution on the
apparent disc of the star in form of :

Ié(M, Ao) = Ic(/\o)[l — €+ €cos @],

for the star with uniform surface intensity distribution I.(A¢) = const., the observed
spectrum of the rotating star can be represented as a convolution of the intrinsic
spectrum of a nonrotating star and the rotational profile defined as :

G(y) = {52(11—:‘735Vl_y2+ =l — v%) z;i , @

where limb darkening coefficient ¢, as a slowly varying function of A is considered
constant over the line profile.
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3. FOURIER ANALYSIS

The mathematical treatment of the problem can be simplified by introducing for a
given distribution F () of the space coordinate A its Fourier transform f(w) of spatial
frequency (radians/length) w defined as :

f(@) = N3 P exp (~wA )
A

where 12 denotes the imaginary unity and N is the number of measurements.
For the Fourier transform pairs R(A), »(w) ; H(}), k(w) and G(A), g(w) the relation
(1) can be expressed in the Fourier domain :

r(w) = h(w) - g(w)

This conversion of convolutions of functions in the wavelength domain to their
products in the Fourier domain is the most obvious reason for the choice of Fourier
domain for analysis of stellar spectra, since in many cases the broadening of a spectral
line can be adequately represented by some unbroadened intrinsic profile convolved
with a function which depends on a geometry of the motions involved.

Further, the Fourier transform of an absolutely integrable function is known to tend
to zero as w — oo and the smoother the function R{\) the faster its Fourier transform
falls. The convolution itself acts as a low-pass filter that eliminates all frequencies
beyond some truncation frequency. It means that the essentia! information about
the shape of the spectral line is described by the components «t lower frequencies.
In contrast, noise is distributed over all Fourier frequencies providing that the low
frequency Fourier components are less affected by the noise than data in original
domain.

As a consequence, many physical functions have characteristic signatures in their
transforms showing up as rather large amplitude differences in Fourier domain com-
paring with shape differences that are often difficult to detect in original domain.

The finite extension of the rotational profile (2) implies that g(w) has zero amplitude
at certain Fourier frequencies w;. Table I list the positions of the first (s;), second (s2)
and third (s3) zero of the rotational profile, where s; = AApw;. Important property is
that the multiplication of g(w) by the transform of H(A) will not change the positions
of zeros sj, s, ...., so the method is applicable for all stars where the dominant
broadening mechanisms act as a convolution with the rotational velocity field.

Since G(A) scales with Vsini (through y) and ¢, it is assumed that only two
parameters need to be measured. In fact one needs to determinz only the positions
of two zeros of the Fourier transform of the roational profile in order to determine
the projected rotational velocity and limb-darkening coefficient. Fowever the position
of the third zero should be also used to estimate the error bars on two parameters,
providing the information if the real star under investigation, cor'forms to our model.
This is true for all broadening mechamisms at microscopic level, microturbulence and
the isotropic macroturbulence that is usually assumed to take the form of convolution
with a Gaussian broadening function.
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TABLE 1

Zeros of Fourier amplitude of rotation profile in function of limb darkening coefficient

€ 8] S2 S3
0.0 0.609 1.116 1.618
0.1 0.616 1.121 1.623
0.2 0.623 1.127 1.628
0.3 0.631 1.134 1.634
0.4 0.640 1.142 1.642
0.5 0.649 1.151 1.650
0.6 0.660 1.162 1.661
0.7 0.672 1.175 1.674
0.8 0.685 1.190 1.690
0.9 0.700 1.208 1.711
1.0 0.716 1.230 1.736

Note that the microturbulence can produce a sidelobe structure as well as a char-
acteristic structure of rotation, however the additional zeros of the Fourier transform
introduced by microturbulence does not affect the position of zeros of the rotational
profile.

Concerning the accuracy of resulting estimates for Vesini and ¢, in addition to
limb angle dependence of line profile and departures from linear model, one should
also be concerned with the existence of global velocity fields. The relevance of these
problems to rotating line profiles has been investigated in Jankov, Unruh, Collier-
Cameron (1995).

Center-to-limb variation of the intrinsic profile has been analysed calculating spe-
cific intensity profiles for different limb angles on the stellar disc. Figure 1. shows the
resulting profiles with and without limb angle dependence of the intinsic profile and
resulting estimates for a star with Vesini = 91kms™! and ¢ = 0.55.

In spite of the fact that the deviation of the observed profile from the calculated
profile are rather small, and that the estimate V.sini = 90.9kms™! is correct the
determination of € (=0.75) is overestimated by neglecting these second order effects.

As other example we use a more general formulation of the nacroturbulence in-
cluding an arbitrary velocity distribution that, in general, cannot be represented by
a convolution. Most of all stars have a macroturbulent velocity distribution which is
not the often assumed isotropic Gaussian. The macroturbulence allowed to move only
in radial and tangential streams (i.e. anisotropically) with a Gaussian distribution of
velocity amplitudes is often called the radial-tangential macroturbulence.

Figure 2. shows the profile calculated performing disk integrations and using the
model of radial-tangential macroturbulence. This effect do not seem to have a major
influence on the profiles in the wavelength domain, however it can be clearly seen
in the Fourier domain. One can notice overestimated value of Vesini = 92.4kms~!
but also a significant interaction between the two parameters (velocity field and limb-
darkening coefficient) leading to overestimated (= 0.73).

78



STELLAR ROTATIONAL BROADENING

Yavelength ln [km/3] units
0

Norrnalized flux
0.95
L}

0.9
T
1t

€ = .64 V, sini= 90.9km/s

-2

Log. Fourier Amplitude
-4

190 180 170 160 150 140 130 120 110 100 90 80 70 60 350 40
Reduced Fourier Frequency in [km/s] units

Fig. 1. 'Top. Full line represents the profile calculated using the equations (1) and (2)
with Vesini = 91kms™! and € = 0.65, under the presumption that the shape of intrinsic
spectrum does not depend on the position on a stellar surface. Dashed line represents the
profile calculated performing disk integrations where a model photosphere for a KO IV star
is used to generate H(A). Bottom. Fourier transforms of corresponding profiles are shown.
Note that the abscisa is reduced to velocity kms™?! units.
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Fig. 2. Top. Full line represents the profile calculated under same conditions as on the
Fig. 1. Dashed line shows the profile calculated performing disk integrations and using the
model of radial-tangential macroturbulence of 5 kms~!. Bottom. Fourier transforms of
corresponding profiles are shown. Note that high Fourier frequencies of *he profile represented
by the dashed line are filtered by the macroturbulence.
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